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Episodes of water deficit (WD) during the crop cycle of tomato may negatively impact
plant growth and fruit yield, but they may also improve fruit quality. Moreover, a moderate
WD may induce a plant “memory effect” which is known to stimulate plant acclimation
and defenses for upcoming stress episodes. The objective of this study was to analyze
the positive and negative impacts of repeated episodes of WD at the plant and fruit
levels. Three episodes of WD (–38, –45, and –55% of water supply) followed by
three periods of recovery (“WD treatments”), were applied to the eight parents of the
Multi-Parent Advanced Generation Inter-Cross population which offers the largest allelic
variability observed in tomato. Predawn and midday water potentials, chlorophyll a
fluorescence, growth and fruit quality traits [contents in sugars, acids, carotenoids, and
ascorbic acid (AsA)] were measured throughout the experiment. Important genotypic
variations were observed both at the plant and fruit levels and variations in fruit and leaf
traits were found not to be correlated. Overall, the WD treatments were at the origin of
important osmotic regulations, reduction of leaf growth, acclimation of photosynthetic
functioning, notably through an increase in the chlorophyll content and in the quantum
yield of the electron transport flux until PSI acceptors (J RE1

0 /JABS). The effects on fruit
sugar, acid, carotenoid and AsA contents on a dry matter basis ranged from negative
to positive to nil depending on genotypes and stress intensity. Three small fruit size
accessions were richer in AsA on a fresh matter basis, due to concentration effects.
So, fruit quality was improved under WD mainly through concentration effects. On the
whole, two accessions, LA1420 and Criollo appeared as interesting genetic resources,
cumulating adaptive traits both at the leaf and fruit levels. Our observations show that the
complexity involved in plant responses, when considering a broad range of physiological
traits and the variability of genotypic effects, represent a true challenge for upcoming
studies aiming at taking advantage of, not just dealing with WD.
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INTRODUCTION

Drought is a major threat for crop yield and improving
agricultural productivity while reducing water use is a major
issue. Indeed drought events are expected to increase in intensity,
frequency, and geographic extent as a consequence of global
change. Maintenance of plant productivity under limited water
supply is a stress tolerance/acclimation trait, which shows inter-
and intra-specific variation. In a recent review on fleshy fruits,
Ripoll et al. (2014) championed the idea that drought can have
positive effects on fruit quality while yield reduction could
be minimized. However, developing plants adapted to drier
conditions requires a better understanding of the physiological
responses to WD. Many mechanisms may be involved in yield
maintenance under WD conditions; in particular those involved
in the reduction of water losses, in resource acquisition and
allocation between source and sink organs, and in protection
against oxidative stress (Ripoll et al., 2014). Exploring the existing
genetic diversity in such traits opens new perspectives to address
current challenges in the context of climate change. In tomato,
current breeding methods have intensively selected yield or
quality traits, while less attention has been paid to tolerance
traits to abiotic stresses (Causse et al., 2001; Saliba-Colombani
et al., 2001). MAGIC populations are an interesting source of
genetic variability, since they display the largest allelic variability
observed in different populations (Cavanagh et al., 2008). The
eight parents of the MAGIC TOM S. lycopersicum L. have been
selected for their higher rate of SNP differences among 360 others
tomato accessions (Ranc, 2010), but to our knowledge these
accessions were poorly characterized under stress conditions
(Table 1). RIL populations have been developed from the
MAGIC TOM population; they are used for genetic studies and
breeding programs (Pascual et al., 2015). For instance a RIL
population derived from an intraspecific cross between Cervil
and Levovil, two of the eight MAGIC TOM parents (Saliba-
Colombani et al., 2001), was used to identify QTLs of fruit quality
(Chaïb et al., 2006). More recently, 119 recombinant inbred
accessions derived from the same cross have been phenotyped
and genotyped under two water regimes (control and moderate
WD). This study revealed 11 interactive QTLs which determine
genotypic expression as a function of watering regimes and which
are associated to plant and fruit quality traits (Albert et al.,
2015). This study concluded that large fruit tomatoes are more
sensitive to drought than cherry tomatoes and that breeding
for crop performance under conditions of deficit irrigation
should aim at achieving trade-offs between fruit quality and
yield.

Abbreviations: ANOVA, analysis of variance; AsA, ascorbic acid; AUC, area
under the curve; DM, dry matter; MAGIC TOM, Multi-Parent Advanced
Generation Inter-Cross population of Tomato; Plovdiv, genotype PlovdivXXIVa
(S. lycopersicum L.); PS, photosystems; RP, recovery period; RP1, recovery period 1;
RP2, recovery period 2; RP3, recovery period 3; Stupicke, genotype Stupicke Polni
Rane (S. lycopersicum L.); WD, water deficit; WD1, water deficit period 1; WD2,
water deficit period 2; WD3, water deficit period 3. Parameters: �predawn, predawn
water potential; �midday, midday water potential; �soil , soil water potential;
FV/FM, maximum efficiency at which light absorbed by PSII is used for reduction
of QA; J0RE1/JABS, quantum yield of the electron transport flux until PSI acceptors;
PI, Performance Index (Strasser et al., 2004).

Water deficit is known to impact the leaf physiological
activity, usually resulting in a reduction of stomatal conductance,
conducing to a reduction of photosynthetic activity, a decrease in
growth and an increased risk of photo-oxidative stress (Tardieu
et al., 2006). However, during RPs, mechanisms of plant defenses
or acclimation are expected to be exacerbated by WD thanks
to priming mechanisms (Bruce et al., 2007). Moreover, two
successive stress periods may stimulate water uptake during the
second stress period, resulting in a reduction of the negative
impact of WD on plant growth (Al Gehani, 2005). During
RP, growth may not completely recover depending on the
duration and the intensity of WD. In tomato, when water
supply is suppressed during the reproductive period (from 9 to
13 days), leaf water potential, stomatal conductance, and net
photosynthesis rate can recover their initial values (Rahman
et al., 1999). Cell wall extensibility which plays an important
role in cell expansion, is less likely to recover after drought
stress, arguably due to the rapid accumulation of abscisic acid
(Mahdid et al., 2011). However, in tomato, it has been observed
that someMediterranean drought adapted landraces tend to have
thinner, more elastic cell walls, which allow them to maintain cell
turgor by reducing cell volume, when cultivated under drought
(Galmés et al., 2011). Under extremeWD, recovery may be partial
due to damage on PSII. Indeed the synthesis of reactive oxygen
species can increase under WD, and recovery depends on the
quantity produced vs. the quantity scavenged (Xu et al., 2010).
More generally, it has been demonstrated that “plant memory”
of stress induces a faster activation of response mechanisms to
other stressors (abiotic or biotic stress) through the common
hormonal response pathways (Li and Zhang, 2012). The faster
activation of defense response in primed plants is associated
to an increased gene expression and to the accumulation of
inactive signaling proteins and transcription factors (Bruce et al.,
2007).

Regarding fruit quality (e.g., contents in soluble sugars,
organic acids, carotenoids or C vitamin), the impact of WD may
differ according to the stage of fruit development at the time of
WD (reviewed in Ripoll et al., 2014).WhenWDoccurs during the
cell division stage, it may induce carbon starvation that negatively
regulates cell division and consequently final fruit size. However,
a positive effect on carbon supply to the remaining fruits has
been suggested due to a negative regulation of fruit setting and
fruit load. In peach (Prunus persica L.), WD has been shown
to improve fruit sweetness, flavor and fruit size when applied
during the stage of cell division and rapid endocarp hardening
(Li et al., 1989; Vallverdu et al., 2012). In tomato, a moderate
WD applied during the stage of cell division does not reduce fruit
size, arguably due to important osmotic regulations (Ripoll et al.,
2015). During the cell expansion stage,WDmainly impacts water
flows between source and sink organs (Münch, 1930) through
osmotic and turgor regulations. In peach, negative effects on yield
have been observed associated with a decrease in fruit water
content (Li et al., 1989; Girona et al., 2004). During ripening,
which coincides with seed maturation, progressive softening,
accumulation of pigments, sugars, and acids, and release of
volatiles (Osorio et al., 2013), WD may interact with ethylene
synthesis (Fray et al., 1994; Barry and Giovannoni, 2007). In
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tomato, moderateWD during ripening reduces the accumulation
of some carotenoids, whereas the effects on sugar accumulation
seem to be genotype dependent (Ripoll et al., 2015). Different
combinations of WD applied during flowering and fruit growth,
or during flowering and ripening, showed that the improvement
of fruit quality is counterbalanced by the decrease in yield when
at least one development phase is exposed to intensive stress in
oranges Citrus sinensis L. (García-Tejero et al., 2010). Thus, WD
episodes followed by RP may impact fruit quality in a different
way from single WD episode. For instance, fruit carotenoid
content increases in tomato plants grown under WD and this
increase is exacerbated after a second period of WD due to an
increase in antioxidant enzyme activity during both the first WD
period and the RP (Stoeva et al., 2010, 2012). So understanding
the effect of WD on fruit quality is a complex issue due to
the numerous factors involved, even though WD is generally
expected to improve fruit quality (Ripoll et al., 2014). Similar
observations have been made in response to moderate salt stress,
involving similar mechanisms (e.g., Munns, 2002; De Pascale
et al., 2007). Finally it appears that one could take advantage
of the “memory effect” induced after a moderate WD, in order
to promote fruit quality while minimizing yield reduction. Even
though there is some evidence that WD can be used as a lever to
increase quality of fruits, there is a lack of references about the
effect of WD episodes of increasing intensity followed by periods
of recovery.

In the present study, our objectives were: (i) to provide
an overview of the beneficial and detrimental impacts of WD
treatments at the plant and fruit levels, (ii) to assess the genetic
variability of these responses, and (iii) to reveal interesting traits
of plant acclimation to WD, which could be used in future
breeding programs. The work was performed on the eight parents
of the MAGIC TOM population. Plant and fruit responses were
measured during three successive periods of WD of increasing
intensity followed by RP (“WD treatments”), which is clearly an
original feature of the present study. Moderate WD was achieved
by reducing the supply of water by about 38% during the first
WD period, 45% during the second WD period and 55% during
the last WD period when compared to control plants. Predawn
water potential, stem water potential at midday, chlorophyll
content and chlorophyll a fluorescence as well as leaf composition
(soluble sugars and organic acids) were assessed before and after
each WD period. Fruit quality (soluble sugars, organic acids,
carotenoids, and AsA contents) was measured on two batches of
fruits which developed at different periods of theWD treatments.

MATERIALS AND METHODS

Plant Material and Experimental
Conditions
The eight parents of the MAGIC TOM (Table 1) encompass
four large-fruit accessions [Ferum, LA0147, Levovil, and Stupicke
Polni Rane (here called Stupicke)], and four cherry accessions
[Cervil, Criollo, LA1420, and PlovdivXXIVa (here called
Plovdiv)]. All are indeterminate tomatoes. LA1420 seeds were
provided by the Tomato Genetics Resource Centre, Davis, CA,

USA. Cervil and Levovil seeds were provided by Vilmorin Seed
Company. The other accessions were supplied by the Tomato
Genetic Resource Centre of INRA, Avignon, France (Causse et al.,
2013).

The experiment was conducted during spring and summer
2012 in a glasshouse located near Avignon, France. Irrigation
was calculated according to daily ETP (Penman, 1948), taking
into account crop coefficients (Kc = 40% before treatments, 50–
75% during the first WD, 75–100% from the first RP and 100%
until the end of the experiment). The control irrigation met the
evaporative demand. The WD treatments corresponded to three
phases of WD of increasing intensity (–38, –45, and –55% of
water supply when compared to control plants) followed by three
RP (Figure 1A). Each WD and RP period lasted approximately
15 days. During recovery, WDwas first reduced by half for 2 days
and then brought back to the control level. Climate conditions
(temperature, humidity, and light intensity) in the glasshouse
were recorded every minute and data were averaged hourly
throughout the experiment. Average day and night temperatures
were stable until 12 June, i.e., until RP2 (around 25◦C and 18◦C,
respectively). Temperatures increased during WD3 and RP3
(around 30◦C and 22◦C, respectively) due to seasonal effects. At
the same time, the daily light integral increased in the glasshouse
(from 5 to 11 MJ m−2 day−1), whereas average day and night
humidity decreased (from 57 to 37% at daytime and from 80 to
60% at night) from WD1 to RP3. Plants were grown in 4 L pots
filled with compost (substrate 460, Klasmann, Champety, France)
distributed in two rows (control and stressed plants) of 80 plants
each (10 plants per genotype) surrounded by border plants. The
density was 1.3 plant m−2.

The soil water potential (�soil) was measured daily with
Watermark probes (Watermark 253, Campbell Scientific,
Antony, France) placed at the opposite of the drippers
(Figure 1B). One probe per treatment per genotype was
used and connected to a data logging system (Data logger,
Campbell Scientific, Antony, France). Results were converted
into MPa using equation 8 given by Shock et al. (1998). In
control conditions, �soil was rather stable until the WD3 period
(-0.04 ± 0.01 MPa) and decreased during RP3 due to plant
development (–0.05 ± 0.01 MPa). On the contrary, the soil
water potential decreased to –0.09 ± 0.02, –0.29 ± 0.06, and –
0.43 ± 0.04 MPa during WD1, WD2, and WD3, respectively.
Nutrients were applied daily using a commercial solution
(Liquoplant Rose, Plantin, Courthézon, France).

Flowers were pollinated three times a week using an electrical
bee. Trusses were pruned according to final fruit weight (Table 1)
in order to obtain comparable levels of competition among fruits
for all genotypes (Cervil: 12 fruits per truss, Criollo: 10 fruits,
LA1420: eight fruits, Plovdiv: eight fruits, Stupicke: six fruits,
Ferum: five fruits, LA0147: five fruits, Levovil: four fruits). No
chemical treatment was applied and Macrolophus caliginosus
were released throughout the culture to protect plants from
whiteflies.

Plant Measurements
Stem water potential was measured using a pressure chamber
(SAM Précis 2000 Gradignan, France) at predawn and at solar
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TABLE 1 | Some characteristics of the eight parents of the MAGIC TOM population selected for their high degree of allelic variability (Ranc, 2010).

Genotype Cultivar Fruit
weight (g)

Duration of cell
division (days)

Duration of cell
expansion (days)

Duration of
ripening (days)

Known resistance to stressor

Cervil S. lycopersicum ‘cerasiforme’ <5 14 25 10 Sensitive to saline stress (Manaa
et al., 2011)

Criollo S. lycopersicum ‘cerasiforme’ <15 21 24 10 No reference

LA1420 S. lycopersicum ‘cerasiforme’ <50 21 24 10 No reference

Plovdiv
XXIVa

S. lycopersicum ‘cerasiforme’ <50 20 25 10 No reference

Stupicke
Polni Rane

S. lycopersicum ‘esculentum’ <70 21 24 10 1. Stomatal closure after five days
without irrigation (Hnilickova and
Duffek, 2004)

2. Resistant to Phytophthora
infestans (Petrikova et al., 2003)

3. Increased photosynthesis after
4 days at cold temperature
(Hnilickova et al., 2002)

5. Strong emission of volatiles
(Subrtova et al., 1985)

Ferum S. lycopersicum ‘esculentum’ <130 25 26 10 No reference

LA0147 S. lycopersicum ‘esculentum’ <130 25 25 10 No reference

Levovil S. lycopersicum ‘esculentum’ <130 25 25 10 Tolerant to saline stress (Manaa
et al., 2011)

All of them have an indeterminate growth pattern.

FIGURE 1 | (A) Water supply (water in l plant−1 day−1) for control and WD treatments, and (B) mean soil water potentials during each WD and RP period
(n = 8 ± SE), during the experiment period. Irrigation of control plants was monitored according to the measured potential evapotranspiration. The WD treatments
consist in 3 cycles of WD of increasing intensity (–38, –45, and –55%) followed by RP periods. Transition periods of 2 days were applied after each WD period in
order to reduce the risk of fruit blossom end rot. The fruit development periods of S1 and S2 lots are indicated by arrows.
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noon (�predawn and �midday) at the end of each WD and RP
period (n ≥ 4 for a given genotype, 64 plants minimum). Leaves
were bagged the day before, at nightfall.

Fluorescence of chlorophyll a was measured on dark adapted
leaves (30 min.) using a fluorimeter (HANDY-PEA, Hansatech,
King’s Lynn, UK). Dark-adaptation allowed the PSII electron
acceptor pool to be gradually re-oxidized to a point where all
PSII reaction centers are capable of undertaking photochemistry.
Measurements were carried out with an induction period of
1 s and leaves were illuminated to a light level of 3000 μmol
photons m−2 s−1. The measurements were carried out on
non-senescent mature leaves, at around 11 a.m. during the
last three days of each period (n ≥ 4 for a given genotype,
64 plants minimum). The maximum photochemical efficiency
of light harvesting of PSII (FV/FM), the PI of Strasser et al.
(2004) and the quantum yield of the electron transport flux
until PSI acceptors (J0RE1/JABS; Stirbet and Govindjee, 2011)
were calculated. The chlorophyll content was evaluated using a
chlorophyll meter (SPAD 502, Konica–Minolta, Osaka, Japan) on
adjacent leaves.

Plant leaf number and leaf length were measured at the
end of each period (n ≥ 5). The last day of the WD3
period, two non-senescent mature leaves, which were initiated
during the WD treatments, were harvested on each plant
and their specific leaf area (n ≥ 5, 80 plants min.) was
measured. Leaf area was measured with a Planimeter (Li-
3100 C Area Meter, Li-Cor, Lincoln, NE, USA) and leaf dry
weight was measured after seven days at 70◦ C in a ventilated
oven.

Furthermore, at the end of each WD and RP period four
leaflets of two mature leaves were harvested around 11 a.m.
on five plants per genotype per treatment (80 plants in total),
immediately frozen in liquid nitrogen and stored at –80◦C, for
biochemical analysis.

Fruit Measurements
The dates of anthesis of the successive trusses were recorded on
all plants during the whole experiment. Thus, fruits could be
pooled according to the developmental stage at the time of the
WD treatments. The first pool of fruits (S1) was harvested during
RP2, whereas WD1 occurred during the cell division period and
WD2 during the cell expansion period. For the second pool of
fruits (S2), WD2 occurred during the cell division period and
WD3 during the cell expansion and ripening periods (Figure 1A).
Fruit setting and abortion were recorded on the first eight trusses
of each plant.

All measurements were performed on red mature fruits
(breaker stage plus at least five days) harvested on five plants
per genotype and per treatment (80 plants in total). Fruits were
harvested at 11 a.m., avoiding the first proximal and the last distal
fruits of each truss. Fruit diameter and fresh weight of all fruits
were measured. Then fruits were frozen in liquid nitrogen and
kept at –80◦C prior to biochemical analysis of pericarp soluble
sugars, organic acids, carotenoids, AsA, starch (only for Cervil),
and DM contents. For biochemical analyses, fruits were pooled
into five batches of three to five fruits for each treatment and
genotype.

Biochemical Analyses
Soluble sugars and organic acids were extracted according to
Gomez et al. (2002) and measured by HPLC method. Starch
was measured on the supernatant after hydrolysis. The glucose
released by starch hydrolysis was measured using the micro-
method of Gomez et al. (2007) and starch content was calculated.
DM content was measured after lyophilisation.

Assays of total, reduced and oxidized AsA content were
carried out on ground powder conserved at –80◦C using
microplates and a plate reader, as previously described by
Stevens et al. (2006). The absorbance was read at 550 nm. The
specificity of the assay was checked by comparison with other
knownmethods (Stevens et al., 2006). Carotenoids were extracted
according to the method of Serino et al. (2009) and assayed by
HPLC.

Statistical Analyses
All statistical analyses were performed using R3.1.0 (R Core
Team, 2014). The evolution of physiological parameters over
the experiment was compared between stressed and control
plants using the AUCs. AUCs were calculated according to
the Trapezoidal rule (Atkinson, 2008). Genotype and treatment
effects on all parameters were analyzed by two-way ANOVA.
The residue normality (ANOVA) was tested using the Shapiro–
Wilk test (Royston, 1995). Levene’s test was used to verify
homoscedasticity of variances of the residues (Car package; Fox
and Weisberg, 2011). When authorized, two-way ANOVA was
performed and followed by multiple comparisons of means
(Tukey test, lsmeans and multcompView packages; Graves
et al., 2012 and Lenth, 2014, respectively). Alternatively, we
used the non-parametric Kruskal–Wallis test (pgirmess package;
Giraudoux, 2014). Heat-maps of the fruit traits were plotted
according to control and WD treatments (gplots package;
Warnes et al., 2014). Partial correlations network was built
on plant and fruit data, based on the residues of the linear
regressions (elimination of the genotype effect) and performed
independently for the control and for the WD treatments (P
threshold < 0.001; GGMselect, GeneNet, and igraph packages;
Giraud et al., 2009; Schaefer et al., 2014, and Csardi and Nepusz,
2006, respectively). Finally, clustering analysis was performed
on leaf and fruit data (FactoMineR package; Husson et al.,
2014).

RESULTS

Mean Effects of the WD Treatments at
the Plant and Leaf Levels
In order to evaluate the global plant response to the WD
treatments, AUCs were calculated for �predawn, �midday, DM
content, soluble sugars, organic acids, starch content, chlorophyll
content, the maximum efficiency at which light absorbed by PSII
is used for reduction of QA (FV/FM), the quantum yield of the
electron transport flux until PSI acceptors J0RE1/JABS and the PI
index (Table 2). AUCs represent the cumulated response from
the onset of the WD treatments until the end of WD3 (Figure 1).
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TABLE 2 | Relative differences in plant and leaf traits between the WD treatments and the control.

CERVIL CRIOLLO LA1420 PLOVDIV STUPICKE FERUM LA0147 LEVOVIL

Predawn water potential 31.2 19.0 28.2 33.3 32.9 30.0 15.8 5.3

Midday stem water potential 12.7 28.4 7.0 14.3 13.6 54.9 20.8 –8.7

Length∗number of leaves 7.0 –10.0 –3.0 –16.3 –5.2 –17.8 –8.6 –15.3

Fv/Fm –1.7 –1.0 –2.3 –2.6 –3.0 –2.8 –2.7 –2.7

J0
RE1/JABS 9.1 25.1 17.6 7.9 24.7 –0.6 23.1 11.1

PI –12.6 –17.0 –19.8 –19.4 –11.1 –30.9 –9.2 –32.0

Chlorophyll content 1.7 6.8 10.9 2.7 16.1 4.5 1.8 17.0

Dry matter content 6.5 18.6 12.7 13.9 5.6 12.5 13.5 15.8

Citric acid –18.1 –0.7 –6.9 3.7 –1.0 7.0 –7.4 –12.1

Malic acid –7.3 9.4 38.1 23.9 30.6 25.5 5.2 41.6

Quinic acid 21.5 41.1 24.7 34.1 25.3 27.9 66.6 64.9

Total acids –1.5 9.8 20.8 8.5 20.3 22.0 19.3 19.6

Glucose 14.1 16.4 35.5 36.6 143.1 9.9 59.1 129.9

Fructose 11.5 27.1 11.1 30.6 71.8 5.8 47.6 72.1

Sucrose –5.0 12.4 4.4 9.6 8.6 5.7 17.3 10.5

Total sugars 8.3 20.8 6.6 41.9 14.6 65.1 29.1 62.3

Sugar/acid ratio 13.4 5.3 –160 29.3 –7.9 30.5 6.1 34.6

Starch –4.9 79.2 12.8 242.0 101.5 195.5 101.3 212.4

Color scale:

–35 –25 –10 –0 25 50 100 300

Stem water potentials (in absolute values), leaf length × leaf number, leaf metabolite contents (soluble sugars, organic acids, and starch on a DM basis) and parameters
related to leaf photosynthetic activity were measured at the end of the WD for the eight parents of the MAGIC TOM (ranked in order of increasing fruit size). Relative
differences were calculated based on total AUCs as: Parameter (%) = Mean WD−Mean Control

Mean control × 100.
The percentages were scaled by color (green for high and red for low values). Significant differences are indicated by bold, italic, and underlined fonts for P < 0.05
(Two-way ANOVA test or Kruskal–Wallis test).

FIGURE 2 | Specific leaf area of the eight parents of the MAGIC TOM,
measured at the end of the trial (control and WD treatments). Data are
means ± SE (n ≥ 5). Significant differences between control and WD
treatments are indicated by stars for P < 0.05 (Student test performed for
each genotype).

RP3 was discarded because healthy non-senescent mature leaves
were rare at this time.

The FV/FM index decreased in response to theWD treatments
in all genotypes except in Criollo. AUCs of PI index also
significantly decreased for four genotypes (–19.4% in Plovdiv, –
19.8% in LA1420, –30.9% in Ferum, and –32% in Levovil). On
the contrary, J0RE1/JABS increased in several genotypes (+25.1%
in Criollo, +17.6% in LA1420, +24.7% in Stupicke, +23.1%
LA0147) as well as the relative chlorophyll content (+6.8% in

Criollo, +10.9% in LA1420, +2.7% in Plovdiv, and +16.1% in
Stupicke). Then, leaf DM content (Table 2) increased due to the
WD treatments (except in Cervil and Stupicke) as well as the
contents in malic (except Cervil, Criollo and LA0147) and quinic
acids, in glucose (except LA1420 and Ferum), in fructose (except
Cervil, Criollo, and Ferum), and in starch (except Cervil and
LA1420). The plant leaf area, assessed through leaf size and leaf
number, significantly decreased in all genotypes except Cervil,
LA1420, and Stupicke.

The specific leaf surface area measured at the end of the
experiment on non-senescent mature leaves varied by a factor
three among genotypes and it significantly decreased in response
to the WD treatments in LA1420 (–26%), Stupicke (–26%),
LA0147 (–15%) and Levovil (–36%) while it increased in Cervil
(+21%), (Figure 2).

Effects of the WD Treatments on Fruit
Size and Composition
A hierarchical clustering analysis, based on fruit composition
variations (on a DM basis) among genotypes, is presented in
Figure 3 for the first batch of fruits (S1). Clusters indicate fruit
traits that co-varied under a given condition and highlight the
differences in metabolite concentrations among genotypes. For
both conditions, total soluble sugars, total organic acids, lutein,
and β-carotene could be pooled together, as could be pooled
together AsA and phytoene contents, on the one hand, and
lycopene and total carotenoids contents, on the other hand.
Figure 3 highlights contrasted composition among genotypes in

Frontiers in Plant Science | www.frontiersin.org 6 January 2016 | Volume 6 | Article 1172

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Ripoll et al. Tomato Acclimation to Water Deficit Cycles

FIGURE 3 | Heat map representation of fruit composition (contents in soluble sugars, organic acids, AsA, and carotenoids expressed on a DM basis),
for the parents of the MAGIC TOM population, grown under control conditions (A) and under the WD treatment (B) applied during the fruit cell
division (WD1) and the cell expansion period (WD2; S1 fruits). The WD treatments consisted in three WD periods of increasing intensity followed by RPs. Data
are centered and scaled by parameters (n ≥ 5). Parameters are hierarchically classified according to Euclidean distances and ranged according to colors (green for
high and red for low).

the control. For instance Cervil fruits which had the highest DM
content, had the lowest content in total sugars, acids, carotenoids,
and lycopene, but the highest content in total AsA on a DM basis.
Similarly, LA1420 fruits were poor in all compounds except acids
and β-carotene. On the contrary, Stupicke fruits were the richest
in all compounds except phytoene. Similar results were observed
in control fruits of the S2 fruits (data not shown).

Variations in fruit composition in response to the WD
treatments are presented on a DM basis for S1 and S2 fruits
(Tables 3 and 4, respectively). Though not significant, the
decrease in fruit size and fresh mass was more pronounced in S2
fruits than in S1 fruits. For instance, on Levovil, the fruit fresh
mass decreased by 42.8% in S2 fruits and by 13% in S1 fruits.
Cervil S1 fruits were the less sensitive (Table 3). The number of
set fruits measured on the eight first trusses was not significantly
different between control and WD plants since inflorescences
were pruned (data not shown).

On a DM basis, the variations in fruit composition were
significant for five genotypes (Cervil, LA1420, Stupicke, LA0147,
and Levovil; Table 3, S1 fruits). In the case of Cervil fruit, an
increase in DM content (+8.9%), total soluble sugars (+20.3%),
and starch content (+56.3%) was observed. Acid contents
dropped in LA1420 fruits (–19.8% citric acid) and in LA0147

fruits (–30.6% malic acid). DM content was higher in Stupicke
fruits (+12.7%), without any change in DM composition. In
Levovil fruits, the β-carotene content was significantly reduced
(–20.4%). Interestingly the contents in lycopene and carotenoids
increased in four genotypes (Criollo, LA1420, Plovdiv, and
LA0147), whereas total AsA content decreased in all genotypes
except LA1420. However, these variations were not significant.
Consistent results were observed in S2 fruits (Table 4) except
for LA0147 whose contents in lycopene, carotenoids and total
AsA were hardly affected. The fruit DM content increased in
all genotypes (except Ferum) and to a larger extend in Cervil
(+21%), LA1420 (+22.3%), and Levovil (+33.7%). Among
soluble sugars, the sucrose content was more affected than
glucose or fructose contents (+47.7% in Cervil and +61.8% in
Stupicke).

On a fresh matter basis, sugars and quinic acid contents were
significantly higher under WD in Cervil (respectively, +31.3 and
+48.5% total sugar content in S1 and S2 fruits, and, respectively,
+36.3 and+46.9% quinic acid content in S1 and S2 fruits) and in
Levovil (+47% of total sugar and +44% of quinic acid for the S2
fruits; data not shown). In Stupicke only the quinic acid content
was higher under WD (+35.6%, S1 fruits). For the S2 fruits,
reduced and total AsA contents were higher in Cervil, LA1420,
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TABLE 3 | Relative differences in fruit metabolite contents between the WD treatments and the control.

CERVIL CRIOLLO LA1420 PLOVDIV STUPICKE FERUM LA0147 LEVOVIL

Fruit size 2.3 −4.0 −6.8 4.2 −3.5 −3.7 −1.9 −5.6

Fresh weight 7.2 −5.7 −18.9 −3.3 −10.7 −11.0 −5.2 −12.7

Dry matter content 8.9 5.4 −0.3 −1.3 12.7 5.1 2.2 4.3

Glucose 19.6 7.9 7.1 −1.2 −2.9 6.8 −2.9 5.8

Fructose 20.5 6.1 12.9 −3.7 −1.8 5.0 −1.6 3.3

Sucrose 29.7 21.6 −19.6 11.9 9.3 36.9 8.7 −24.9

Total sugar 20.3 7.2 9.4 −2.1 −2.1 6.3 −2.1 4.3

Citric acid 9.4 −10.7 –19.8 −10.1 −4.7 −5.1 −20.0 −1.8

Malic acid 26.1 −6.6 −3.9 −5.9 −18.9 1.6 –30.6 1.1

Quinic acid 24.7 4.1 16.1 1.8 19.8 8.0 −10.4 1.2

Total acid 18.3 −4.9 −7.6 −3.8 3.5 1.7 −18.1 0.1

Sugar/acid ratio 0.6 12.2 18.0 2.0 −2.6 4.6 16.3 4.1

Lutein −4.3 −6.6 45.5 −31.8 1.9 −15.2 −3.6 −14.2

Lycopene −22.8 20.1 34.3 14.6 −11.6 −10.1 16.5 −12.3

Beta-carotene −9.8 −0.2 24.5 −20.2 8.8 −6.9 1.9 –20.4

Phytoene −19.7 30.6 48.6 27.3 −21.2 −6.2 29.4 −12.3

Total carotenoids −21.4 19.9 35.3 14.4 −11.2 −9.4 17.2 −12.9

Reduced AsA −9.0 −3.0 26.0 −16.0 −7.8 −7.0 −0.4 −17.2

Total AsA −6.2 2.9 22.8 −17.3 −5.1 −1.3 −2.0 −12.1

Reduced/total AsA −2.7 −6.0 2.3 1.5 −2.6 −5.8 1.7 −4.9

Starch 56.3

Color scale:

–40 –30 –20 –10 0 10 20 30 40 50

Soluble sugars, organic acids, AsA, and carotenoids were measured on a dry mass basis for the eight MAGIC TOM parents. Relative differences were calculated as
described in the legend of Table 2. The percentages were scaled by color (green for high and red for low values). S1 fruits were harvested at RP2 after a first WD period
during cell division (WD1) and a second WD period during cell expansion (WD2). Significant differences are indicated by red bold, italic, and underlined fonts for P < 0.05
(Two-way ANOVA test or Kruskal–Wallis test).

and Plovdiv (respectively, +23.5, +31.2, and +30.3% reduced
AsA, P < 0.05). So, metabolic and concentration effects added up
for the compounds that increased both on a dry and fresh matter
basis (mainly sugars and acids), whereas the negative effects of
WD observed on a DM basis were mitigated by concentration
effects, resulting in fruit quality homeostasis.

Partial Correlation Network and
Clustering Among Leaf and Fruit Traits
for Control and WD Treatments
A partial correlation network was built based on the AUCs
calculated for the different leaf and fruit traits (Figure 4).
Interestingly no leaf trait correlated to any fruit traits under
both conditions. In control conditions, four independent leaf
clusters emerged (Figure 4A). Positive correlations existed
between leaf starch content and leaf DM content, between leaf
malic acid content and �predawn, and between leaf fructose
and glucose contents. Then PI correlated with J0RE1/JABS and
FV/FM. Concerning fruit traits, five independent clusters were
found under control conditions. Fructose, glucose, and quinic
acid contents were positively correlated one to each other, as
well as lycopene and phytoene. Finally, fruit citric acid content,
fruit malic acid content, and fruit lutein content were positively
correlated one to each other while fruit fresh mass was negatively
correlated with the fruit β-carotene content.

A different network was observed under the WD treatments
when compared to the control (Figure 4B) suggesting that
physiological acclimation processes were at play. At the leaf
level, J0RE1/JABS did not correlate any more with PI and FV/FM
indexes. This observation suggests a regulation of the functioning
of the photosynthetic machinery (Table 2). Leaf sugars (starch,
fructose, and glucose) constituted an independent cluster. Leaf
malic acid did not correlate anymore with �predawn but with
leaf citric acid, due to the increase in organic acid contents
(Table 2). Leaf DM content was positively correlated to leaf
sucrose content instead of starch content. At the fruit level,
the fruit DM content negatively correlated with the total ASA
content, while the phytoene content was positively correlated
with the lycopene content, as well as the lutein and β-carotene
contents, the citric and quinic acid contents, and the glucose and
fructose contents.

Clustering of the leaf and fruit traits measured in the
experiment was realized for control (Figure 5A) and WD
(Figure 5B) plants. Four clusters emerged for the control plants.
LA1420 and Criollo were clustered according to their high fruit
citric acid content and low leaf chlorophyll content. Levovil,
Stupicke, and LA0147 stand out due to their similar malic acid
and phytoene contents in fruits and by their low leaf glucose
content. Ferum and Plovdiv were clustered due to their high PI
index value and their low fruit AsA content. The cherry tomato
Cervil constituted its own cluster due to its high starch, glucose,
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TABLE 4 | Relative differences in fruit metabolite contents between the WD treatments and the control.

CERVIL CRIOLLO LA1420 PLOVDIV STUPICKE FERUM LA0147 LEVOVIL

Fruit size −1.5 −9.7 −7.4 −9.1 −6.7 −1.0 −7.0 −14.7

Fresh weight −0.2 −21.0 −20.2 −23.7 −16.1 −0.4 −18.6 −42.8

Dry matter content 21.0 14.0 22.3 9.0 8.7 −9.5 3.6 33.7

Glucose 23.9 −2.7 5.4 3.7 16.4 0.8 −1.8 10.3

Fructose 21.6 −1.5 0.9 3.5 12.3 5.9 −1.6 8.0

Sucrose 47.7 102.2 42.3 −4.7 61.8 −14.5 15.0 64.1

Total sugar 23.6 −0.7 3.7 3.3 15.2 3.0 −1.2 9.9

Citric acid −4.0 1.4 –27.0 −4.6 −6.4 5.2 2.1 −21.5

Malic acid −4.7 −4.3 14.6 4.0 −4.1 −13.1 0.3 –33.4

Quinic acid 22.2 −3.2 −6.7 5.0 −0.1 10.7 −0.3 7.6

Total acid 7.5 −0.8 −17.6 1.1 −3.5 5.7 1.0 −11.5

Sugar/acid ratio 15.0 −1.1 24.5 1.8 20.8 −2.3 −2.7 23.3

Lutein −3.3 8.8 −20.9 28.8 10.8 29.4 32.9 −7.9

Lycopene −30.0 −11.8 −4.1 1.2 −11.8 41.3 8.8 −9.9

Beta-carotene −15.8 3.8 −26.1 −2.5 −7.7 8.6 6.4 –24.6

Phytoene −18.3 −11.5 1.1 −9.2 −3.1 44.2 3.8 −0.3

Total carotenoids −27.5 −11.2 −4.6 −0.4 −10.7 40.9 8.6 −9.8

Reduced AsA 7.7 −10.9 11.7 31.8 −7.2 11.8 5.8 −9.1

Total AsA 2.6 −7.4 10.4 19.8 −9.8 9.9 4.3 −15.8

Reduced/total AsA 4.8 −3.6 −0.1 11.0 3.3 1.4 0.9 8.0

Starch 86.7

Color scale:

–40 –30 –20 –10 0 10 20 30 40 50

Soluble sugars, organic acids, AsA, and carotenoids were measured on a dry mass basis for the eight MAGIC TOM parents. Relative differences were calculated as
described in the legend of Table 2. The percentages were scaled by color (green for high and red for low values). S2 fruits were harvested at WD3 (Cervil, Criollo, Plovdiv,
and Stupicke) and RP3 (Levovil, LA1420, LA0147, and Ferum) after the first WD period during cell division (WD2) and a second WD period during cell expansion and
ripening (WD3). Significant differences are indicated by red bold, italic, and underlined fonts for P < 0.05 (Two-way ANOVA test or Kruskal–Wallis test).

fructose, and malic acid contents in leaves and its high DM and
low quinic acid contents in fruits. Similarly, four clusters emerged
for the WD plants. Clustered genotypes did not necessarily
respond to the WD treatments in the same way (Table 2). The
first cluster includes Levovil, Stupicke, and Criollo, which have
high fruit β-carotene content. LA1420, LA0147 and Ferum were
clustered due to similar Euclidean distances without emergent
traits. Plovdiv and Cervil constituted their own single cluster
due to high glucose and low citric acid contents in leaves for
Plovdiv, and to high DM content in fruits, high sucrose and
fructose contents in leaves, and low �predawn and �midday values
for Cervil.

DISCUSSION

Leaf Responses to the WD Treatments
Involved Osmotic and Photosynthetic
Regulations
Current responses of plants submitted to WD encompass a
decrease in plant water status and in water loss (as evidenced
by a decrease in �midday, in stomatal conductance and in
transpiration rate), a reduction of leaf growth, and osmotic
regulations (Tardieu et al., 2006). In the present study, osmotic
adjustment and photosynthetic adaptation seem to have prevailed
in the response to the WD treatments, as evidenced by the

changes in leaf composition (increase in concentrations of soluble
sugars and organic acids) and the relative stability of �midday
except in Criollo and Ferum (Table 2). The absence of significant
decrease in �midday may be explained by an increase in turgor.
Indeed, when the elasticity modulus decreases, reflecting a
decrease in cell wall rigidity, the decrease in turgor is mitigated
during dehydration (Hsiao et al., 1976; Zimmermann, 1978),
what probably happened in the present trial, although data are
missing to substantiate this idea. Furthermore, the water status
was not substantially affected, on the contrary to the carbon
metabolism which was affected as reported in other studies
(Chaves, 1991).

The parameters derived from analysis of the induction curve
of maximum fluorescence of chlorophyll a are consistent with
these ideas. A general decrease in FV/FM and to a larger extend in
PI was observed in response to the WD treatments, as expected
due to the sensitivity of PSII to WD conditions (Maxwell and
Johnson, 2000). PI is a global index of performance (expressed
in analogy to the Nernst potential) which is composed of three
components: the force due to the concentration of active reaction
centers, the force of the light reactions which is related to
the quantum yield of primary photochemistry and the force
related to the dark reactions (Živčák et al., 2008). PI has been
defined as a “drought factor index” by Goltsev et al. (2012)
during desiccation of beans Phaseolus vulgaris L., which is in
accordance with the present observations on tomato. Moreover,
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FIGURE 4 | Partial correlation network for plant and fruit composition [DM content, fruit fresh weight (FW), soluble sugars, organic acids,
carotenoids, and AsA contents] and physiological parameters (the maximum quantum efficiency of PSII (FV/FM), the PI of Strasser and the quantum
yield of the electron transport flow until PSI acceptors (J0

RE1/JABS). Partial correlations were calculated on AUCs for plant measurements and for S2 fruits
(n = 5, 80 plants) under (A) control and (B) WD conditions. The network was built using GGMselect, GeneNet, and igraph packages on R. Solid lines indicate
positive correlations between parameters whereas dotted lines indicate negative correlations (P < 0.001).

FIGURE 5 | Clustering of genotypes according to the AUCs for leaf and fruit traits for (A) control and (B) WD plants. AUCs were calculated according to
the trapezoidal rule for each variable measured at the end of each WD or RP (except RP3 which was not included in the area because of leaf senescence). AUCs are
the integrals of the parameters over time computed for control and WD plants. The WD treatments consisted in three WD of increasing intensity followed by RPs.
Clusters were realized depending on Euclidean distances (vertical bars in the graph) and inertia gains.

the increase in the quantum yield of the electron transport
flux until PSI acceptors (J0RE1/JABS) could be explained by a
return of electrons from PSI to PSII named the cyclic electron
flow (Johnson, 2011), which is described as an orchestrator
of the chloroplast energy budget, that increases in response
to environmental stressors such as high light, WD simulated
by low CO2 supply, or extreme temperatures in higher plants

(Livingston et al., 2010; Johnson, 2011; Walker et al., 2014).
The significant increase in quinic acid which was observed
in all accessions in response to the WD treatments could be
related to the increase in J0RE1/JABS. Indeed quinic acid has been
described as a potential accelerator of the electron transport due
to its capacity to act as a non-classical uncoupling factor on
photophosphorylation (Barba-Behrens et al., 1993). Finally, the
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increase in chlorophyll content in some genotypes, which is not
compatible with photodamage in leaves, contributes to the idea
that there was an efficient acclimation to maintain photosynthetic
activity under WD.

In summary, the shifts in energy fluxes around PSII, the
accumulation of starch in leaves and the decrease in the specific
leaf surface area, which is a recognized if not specific consequence
of WD, are all potent indicators that plants submitted to WD
were indeed stressed (Chaves, 1991; Zgallaï et al., 2005). They
are also indicators of acclimation processes aiming at relieving
the photosynthetic machinery from overheating, arguably as a
consequence of decreased translocation to active growth areas.
Finally, it appears that osmotic and photosynthetic regulations
were highly involved in plant acclimation to successive episodes
of WD. Such acclimation effects were observed in almost all
accessions, but more clearly in Criollo, LA1420, and Stupicke.
Overall, Cervil exhibited the weakest responses, suggesting that
this genotype is poorly sensitive to WD as recently suggested by
Albert et al. (2015).

The WD Treatments Reduced Fruit
Growth Proportionally to the Increase in
Stress Intensity and to Cumulative
Effects of WD
Depending on its intensity, WD is expected to decrease fruit
size and fruit water content, thus increasing the metabolite
contents through a concentration effect. WD may also stimulate
the accumulation of osmotic and antioxidant compounds (Ripoll
et al., 2014). Despite the absence of a significant response,
fruit size and weight were mainly reduced in S2 fruits by the
WD treatments (except in the cherry tomato Cervil). These
observations are not in accordance with others studies, where
WD was reported to have positive effects on fruit growth, due
to a negative regulation of fruit setting and to an increase of
carbon supply to the remaining fruits (Li et al., 1989; Vallverdu
et al., 2012). In the present study, the plant fruit load was
regulated at similar level in control and WD plants, thus the
maintenance of fruit growth arguably resulted from osmotic
regulations and/or sugar compartmentation in the fruit (Ripoll
et al., 2015). The reduction of fruit size and weight in S2
fruits is consistent with the idea that fruit yield decreases
proportionally to the intensity of WD (Wang and Gartung,
2010). Competition for carbon was likely higher during the
development of S2 fruits compared to S1 fruits, due to the
cumulative effects of the three WD periods on the plant carbon
budget. Moreover fruit growth of large fruit genotypes was
more impacted by the WD treatments than fruits of small
fruit genotypes, arguably due to higher carbon demand for
large fruit growth. Indeed, in WD conditions, sink organ
growth was suggested to be reduced mainly through carbon
dependent mechanisms (Muller et al., 2011). However, water
fluxes are indirectly linked to carbon metabolism through
osmotic and turgor regulations, as discussed below. So, the
genotypic differences observed in response to theWD treatments
were arguably driven by the additive effects of differences in
water flux on fruit expansion, of source-related differences

in carbon supply and of sink-related differences in carbon
demand.

The WD Treatments Maintain Fruit Sugar
and Acid Contents
As for fruit fresh weight, the increase in DM content was higher
in S2 fruits than in S1 fruits, suggesting that S2 fruits were
submitted to higher stress intensity than S1 fruits. An important
increase in S2 fruits DM content was observed in response to
the WD treatments in the large-fruit genotype Levovil as well
as in the cherry tomato type Cervil. On the contrary, changes
in DM composition were more pronounced in S1 fruits than
in S2 fruits and responses were highly dependent on genotypes.
Variations in fruit composition in response to WD may result
either from dilution/concentration effects (Guichard et al., 2001;
Etienne et al., 2013), from active solute accumulation (Lo Bianco
et al., 2000; Hummel et al., 2010), or from starch breakdown,
as observed in tomatoes under salinity-induced WD (Balibrea
et al., 2003). Soluble sugars and organic acids (primarily malic
and citric acids) are major osmotic compounds that accumulate
in fleshy fruits and determine fruit taste. Previous studies on
tomatoes showed an increase in fruit sugar content under WD
depending on cultivars and timing of stress (Veit-Köhler et al.,
1999; Bertin et al., 2000; Chen et al., 2014). In the present study,
the total content in soluble sugars on a DM basis was not strongly
affected by the WD treatments except in Cervil fruits which
also accumulated large amounts of starch and acids. Thus, in
cherry tomato the accumulation of starch, soluble sugars, and
acids may be an adaptive strategy to maintain the phloem-to-
fruit gradient of sugars and regulate cell turgor, sustaining fruit
growth in WD conditions. Sucrose content on a DM basis was
the most affected by the WD treatments among soluble sugars,
but it represents only a minor part (<3%) of total soluble sugars
in these genotypes. On a fresh weight basis, the increase in fruit
sugar content in response to WD was observed only in Cervil
and Levovil, which questions the idea that WD has a positive
impact on fruit taste (Ripoll et al., 2014) and suggests that such
effect strongly depends on genotype and WD intensity. The
effects of WD on fruit acidity are more conflicting (Etienne et al.,
2013). In many species (peach, clementine Citrus clementina
Hort ex. Tan, mandarin Citrus reticulata B., pear Pyrus L.,
tomato), water supply has been shown to negatively correlate with
organic acid content in ripe fruits, but in grapes Vitis vinifera
L., nectarines Prunus persica var. nucipersica L. (Etienne et al.,
2013) and tomatoes (Mitchell et al., 1991; Veit-Köhler et al.,
1999; Bertin et al., 2000), this correlation has been shown to be
positive.

Effects of the WD Treatments on Fruit
Carotenoid and Ascorbic Acid Contents
Ranged From Negative to Nil to Positive
Fruits supply a large range of health-promoting phytochemicals,
of which secondary metabolites, primarily terpenoids
(carotenoids, ABA, and others), and phenolic compounds, are the
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largest group along with AsA. Of all of the environmental factors
that play a stimulating role in the synthesis and accumulation
of useful phytochemicals in fruits, moderate stress, and more
specifically, controlled drought may influence the metabolism of
these phytochemicals via at least two major mechanisms that
are not mutually exclusive and that may even interact (Nora
et al., 2012; Poiroux-Gonord et al., 2013; Fanciullino et al., 2014).
Firstly, drought typically induces a decrease in net photosynthesis
which reduces the supply of primary metabolites to the fruits
that are the major source of precursors for the biosynthesis of
phenolic compounds, carotenoids, and AsA. Secondly, drought
may exacerbate oxidative stress and signaling which is known
to directly and indirectly influence the biosynthetic pathways
of these compounds in leaves (Fanciullino et al., 2014). In
the present study, the effects of the WD treatments on fruit
carotenoid content ranged on a DM basis from negative, to
nil to positive depending on genotype and stress intensity (S1
and S2 fruits). This is in complete agreement with divergent
responses reported in the litterature (reviewed by Ripoll et al.,
2014). Similarly, total AsAwas reduced in S1 fruits of all genotype
but one (LA1420), whereas more variable effects were observed
in S2 fruits. Many studies reported positive effects of WD on AsA
(Zushi and Matsuzoe, 1998; Veit-Köhler et al., 1999; Favati et al.,
2009; Murshed et al., 2013), but also indicated variable effects
depending on genetic and seasonal factors or the intensity and
duration of the treatment. In S1 fruits, carotenoid accumulation
(on a DM basis) was increased in four genotypes and reduced
in four other genotypes including cherry tomato and large-fruit
genotypes. Taken together, our observations confirm previous
observations (Poiroux-Gonord et al., 2013) that tend to refute
the hypothesis that the supply of carbon to fruit determines
carotenoid synthesis. In tomato fruits, the absence of correlation
between sugars and reduced AsA content also suggests that
fruit AsA content is not limited by leaf photosynthesis or sugar
availability (Gautier et al., 2009). Variations in carotenoids and
AsA content would therefore result from stress-induced cellular
redox changes (Fanciullino et al., 2014). In tomato plants, AsA
content has been suggested to correlate with resistance to WD
(Zhang et al., 2011; Garchery et al., 2013). However in the
present study, only one genotype (LA1420) exhibited an adaptive
response at the fruit level through an increase in both carotenoid
and AsA contents. On a fresh matter basis, the fruit content
in phytonutrients was improved by the WD treatments only in
the cherry tomato Cervil and in the small fruit size genotypes
(LA1420 and Plovdiv) through an increase in reduced AsA. This
increase resulted mainly from concentration effects than from
metabolic stimulation, in agreement with recent findings (Ripoll
et al., 2015).

CONCLUSION

In the present study, the WD treatments, which consisted in
three successive cycles of moderate WD and recovery during the
plant reproductive period, resulted in independent responses at
the leaf and fruit levels. Considering parameters derived from

chlorophyll a fluorescence measurements and leaf composition,
we may hypothesize that for some genotypes the cyclic electron
flow (extrapolated from J0RE1/JABS) and quinic acid content
were involved in energy dissipation and regulation of oxidative
stress during the WD treatments. Negative effects on fruit fresh
weight were dependent on stress intensity, while beneficial effects
on fruit taste (sugars and acids) and nutritional value were
weak or even negative. Interestingly, high starch accumulation
in fruit could be a potential asset to sustain fruit growth under
WD. Considering a large range of plant and fruit traits, our
observations clearly show that responses to drought are highly
variable and that they strongly depend on genotypic effects and
on the stage of development at the time WD is applied. On
their whole, the present results demonstrate that drought could
be exploited positively, and that repeated cycles of WD and
recovery may be used to improve fruit taste and at the same time
minimize fruit size reduction. A strategy for breeding would be
to stack in one single genotype adaptive traits at the leaf and fruit
levels. To this end, small-fruit genotypes, in particular LA1420
and Criollo, represent an interesting potential source of traits of
interest, as far as acclimation is concerned. However, our capacity
to take full advantage of drought events or controlled WD is
clearly conditioned by a shift in our way of thinking. We need
to explore the full variability of genotypic responses by taking
into account a much broader range of crop performance criteria
than the ones that are usually considered and by systematically
including observations made at different stages of development.
The complexity revealed by our observations clearly suggests
that exploring the variability of genotypic responses represents
a difficult task, but then it is our belief that this is how the issue of
drought on crop performance should be addressed from now on,
and that the reward will come up to the challenge.
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