
HAL Id: hal-01273689
https://hal.science/hal-01273689v1

Submitted on 12 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software assembly and open standards for driving
simulation

Nicolas Filliard, Emmanuel Icart, Jean-Luc Martinez, Sébastien Gérin,
Frédéric Merienne, Andras Kemeny

To cite this version:
Nicolas Filliard, Emmanuel Icart, Jean-Luc Martinez, Sébastien Gérin, Frédéric Merienne, et al..
Software assembly and open standards for driving simulation. Driving Simulation Conference, Sep
2010, Paris, France. pp.99-110. �hal-01273689�

https://hal.science/hal-01273689v1
https://hal.archives-ouvertes.fr

Software assembly and open
standards for driving simulation

Nicolas Filliard 1, Emmanuel Icart 2, Jean-Luc Martinez 1, Sébastien Gérin 1,
Frédéric Mérienne 1, Andras Kemeny 1,2
1 Arts et Métiers Paristech, Le2i, CNRS, Institut Image,
2 rue Thomas Dumorey - Chalon-sur-Saône, France
2 Renault, Technical Centre for Simulation
1 avenue du Golf - 78288 Guyancourt
nicolas.filliard@gmail.com, emmanuel.icart@renault.com,
jean-luc.martinez@cluny.ensam.fr, sebastien.gerin@cluny.ensam.fr,
frederic.merienne@ensam.eu, andras.kemeny@renault.com

Abstract – Driving simulation systems involve a combination of different
computation codes. Although some of these modules are application-specific,
their majority is reusable and state-of-the-art implementations are readily
available in the open source community. This study investigates whether these
open source libraries can combine to build a driving simulation application with
reasonable performance. To this end, a component-oriented architecture is
proposed, in which modules encapsulate relevant libraries behind a standard
interface and exchange simulation data through a message passing interface. By
integrating a render engine, a physics library and a simple vehicle dynamics
model, we were able to rapidly build a functional minimal simulation application
supporting distributed execution over a cluster of computers. As this architecture
allows the transparent modification of module code and simplifies the addition of
new modules, this kernel represents the foundations of an extensible and
reconfigurable open source system dedicated to driving simulation. Details on this
kernel application and ongoing development of this platform can found at
http://open-s.sourceforge.net.

Résumé - Les logiciels de simulation de conduite reposent sur une combinaison
de différents codes de calculs. Bien qu’une partie de ces modules soit
extrêmement dépendante d’un usage particulier, leur majorité est réutilisable et
certaines implémentations de pointe sont disponibles dans la communauté du
logiciel libre. Cette étude vise à déterminer s’il est possible de combiner ces
bibliothèques libres afin de construire une application de simulation de conduite
atteignant de raisonnables performances. A cette fin, nous proposons une
architecture orientée composant, selon laquelle ces bibliothèques sont
encapsulées dans des modules s’échangeant des données relatives à la
simulation au travers d’une interface d’échange de messages. En intégrant à
cette architecture un moteur graphique, une bibliothèque de simulation de

physique et un simple modèle de dynamique de véhicule, nous avons pu
rapidement mettre en place une application de simulation minimale, pouvant
s’exécuter de manière distribuée sur un cluster d’ordinateurs. Cette architecture
permettant de modifier le code d’un module de manière transparente et
simplifiant l’ajout de nouveaux modules, ce noyau constitue la base d’un logiciel
libre extensible et polymorphique dédié à la simulation de conduite dont les
détails peuvent être consultés sur le site : http://open-s.sourceforge.net.

Introduction
As suggested a decade ago by the initial authors of VRJuggler, an open-

source integration platform for virtual reality, VR developers should “concentrate
on the worlds they want to create and not the systems on which they run” [22].
The same remark applies to driving simulation. Building a driving simulation
software system implies indeed a complex interplay of different modules based
on very different technologies and requires a wide variety of technical skills to
build a complete system including image rendering, physics simulation, vehicle
dynamics modeling, acquisition of drivers’ commands, sound generation, traffic
simulation, etc.

Although applications of driving simulation may vary and require specific
functionalities, the majority of these components follows exactly the same
standardized specifications across implementations and could be reused. In
particular, state-of-the-art software libraries are available in the open source
community to handle graphics rendering, dynamics models, inter-process
communication, scenario programming, etc. [1-9]. Yet, these well-known open
source libraries have never been assembled to build a complete driving simulator.
Particularly, questions about their compatibility and the expected overall
performance remain undocumented.

A major interest of studying these solutions is to reduce development costs by
taking advantage of mature, often cross-platform, open source projects, which
benefit from evolutions required in connected communities (e.g. the game
industry for visual rendering). Therefore, this approach enables developers of
driving simulators to concentrate their efforts on advanced features or specific to
industrial applications. Notably, a number of licenses under which open source
libraries are distributed like LGPL (Lesser GNU Public License) [11] allow their
use in proprietary products. Moreover, using open source software for driving
simulation is particularly adapted to experimental research studies which often
require specific adaptation to fit the particular needs of their protocols.

Purpose of the current work
After a brief overview of relevant open-source libraries, we intend to show in

this article how these elements can combine to produce a driving simulation
application with advanced performance. We present in this article a functioning
simulator constructed from a selection of libraries encapsulated into elementary
modules. The execution of this application can be distributed over a cluster for

higher performance. The underlying architecture facilitates the addition of new
modules and transparent code modification. Inter-module communication layer is
based on message passing implemented using a MPI-23 standard compliant
library. This kernel includes a state-of-the-art real-time image generator used in
game design displaying a high quality environment imported from ordinary
authoring tools (in our case, Autodesk® Maya®, www.autodesk.com), and a
control module to drive a car through the environment.

Software tools for driving simulation and
virtual reality

Proprietary simulation products exist such as Oktal’s SCANeRtm simulation
engine (http://www.scanersimulation.com/), but an alternative open-source
equivalent is lacking. Open-source racing games, like TORCS [16], potentially
contain all the elementary features required to build a driving simulator, but are
hardly re-usable or customizable. Moreover, such systems are often missing
support of standard file formats for importing data from usual 3D authoring tools.

Recent surveys have shown the existence of several lower levels for the
development of general VR applications which were classified as application
programming interfaces (API), frameworks or platforms [18]. APIs are libraries of
methods that abstract lower-level resources. Relevant APIs for driving simulation
include primarily graphics render engines and/or scene graph management
libraries otherwise used in scientific visualization application or game
development such as OGRE [1], Irrlicht [2], OpenSceneGraph [3] or OpenSG [4],
this latter being additionally able to transparently manage parallel rendering for
multi-channel displays. Physics engines handle collisions and are an underlying
layer of car dynamics model. ODE [7] and Bullet [8] are two widely supported
engines. Proprietary products are also available for free development like nVidia®
PhysX® [15] library which enable GPU-accelerated physics simulation.
Concerning sound generation OpenAL is a major open source reference [6].
Scripting language such as LUA [9] can also be used for dynamic addition of logic
and scenarii in the scenes. Eventually, communication APIs are used to bind
together these modules and distribute their execution over computer clusters. MPI
standard compliant libraries are suited for this task, such as MPICH [5].

VR development frameworks such as VRJuggler, Delta3D, OpenMASK,
OpenSpace3D or FlowVR [18][19] integrate a selection of such APIs and provide
a unified development interface. Only low level functionalities are provided and
building a driving simulation application would require to program additional
custom features, like acquisition of data from steering-wheels or car dynamics
model. Moreover, using these integrated frameworks implies to accept the
underlying selection of APIs and may have several drawbacks. For instance,
FlowVR is not cross-platform, Delta3D does not support cluster management and
VRJuggler does not support Microsoft Direct3D rendering. Nevertheless, they
guarantee the interoperability between heterogeneous libraries with a controlled

3 MPI: Message Passing Interface. MPI is a normalized interface for managing message exchanges
between processes, initially developed for high performance parallel computing [17].

level of performance. These frameworks will not be use in this study in order to
concentrate on selection and testing of open source APIs. Yet, the possibility of
importing our application in one of these frameworks in the future is not excluded.

In conclusion, open source libraries provide a set of elementary tools that
could enter in the composition of a driving simulation application. However, they
are rarely integrated in such a finished product. They are mainly currently used in
basic immersive visualization platform or integrated games. Building a useable
driving simulator from these elements requires an extensive study of their
compatibility, of their overall performance when combined and of their ability to
import data from most 3D authoring tools. The modularity and the possibility to
modify each part of the simulator is also a crucial point.

Architecture
Component-oriented design

The proposed architecture follows a component-based approach, which is
suited to integrating heterogeneous modules handling parallel computations.
Every specific library is encapsulated in a module providing a standard interface
that abstracts its functioning. Although this approach adds several communication
steps between modules, practical use in the development of other VR platforms
has shown that the additional computation overhead remains negligible.
Moreover, this design reduces code coupling between modules, favors code
reuse and keeps evolution of the code localized, which are critical requirements in
the design phase of such composite application. Therefore, the system can easily
evolve with newer technologies due its minimal dependency on particular
libraries. Notably, modules based on open source libraries can be transparently
replaced by in-house developments or proprietary libraries, provided that a SDK
(Software Development Kit) is available.

In the proposed version of the software, modules consist in standalone
operating system processes, coordinated using MPICH2 [5], a message passing
interface following the MPI-2 standard (see footnote 1). The use of an MPI-based
inter-module communication layer enables the transparent execution of the
simulation software on a variety of hardware architecture ranging from Ethernet-
based computer clusters to multi-CPU computers. MPICH2 benefits from an
optimized communication channel called Nemesis which accelerates
communication between processes executed on a single computing node and
which supports efficient shared-memory communication. Moreover, MPICH2 has
a widely portable implementation and supports different operating systems
including Linux and Microsoft® Windows®.

Kernel-based architecture
The different modules are organized according to a star-shaped design

pattern (Figure 1): every module is connected to a central kernel, which manages
a database containing all simulation data (e.g. car position, viewpoint, steering
wheel angle). Modules can update these data or receive their last value upon
request. This architecture is intended to reduce inter-module execution coupling

and to allow the use of heterogeneous module execution frequencies. It also
minimizes consequences of module execution failures and facilitates subsequent
recovery. This loose coupling enable isolated evolution of modules
communication interface, the only constraint being that each module updates and
reads the correct shared variables. Moreover, such a centralized data
management ensures the coherency of simulation in the whole application and
simplifies the implementation of a monitoring tool for message exchanges and
data accesses on the server (e.g. for debugging purpose).

This architecture has been preferred over point-to-point architecture which
arranges modules as a data pipeline, as proposed for instance in FlowVR.
Although this latter approach would have optimized inter-module communication
speed and simplified inter-module synchronization, the resulting software would
have been less robust to a sudden communication loss and a more rigid
normalization of messages would have been necessary implying constraints in
the evolution of modules.

However, the kernel-based architecture has two main inconveniences that
impose constraints on the server dimensioning. First, the central server must be
the fastest running process to ensure a correct overall performance. Secondly,
central server being busy to handle each incoming messages, its best execution
frequencies might drop when the number of modules increases.

Current state of the software
A basic functional version of this software has been implemented, including

four main modules, integrated using a communication layer based on MPICH-2 to
enable distributed execution over a computer cluster:

− the visualization module that requests the position and orientation of the
camera to display the virtual scene from the driver’s viewpoint,

− the vehicle dynamics module that also handles keyboard inputs which
generates the car trajectory from the driving commands,

− a camera manager which transforms car position data into camera
position,

− the central server which stores and distributes to the different modules
the car and camera positions.

The resulting application consists in a simple functioning driving simulator.

Interfacing modules and the central server using
message passing

The central simulation is primarily a database management system. It stores
and distributes upon request the current state of a set of variables. Currently, the
central server handles only three types of messages. Modules can order the
server to overwrite the current value of some simulation data using “update”
messages. “data request” messages are used by modules to fetch the current
value of simulation data, in response of which the server releases “send data”
messages. Every message used in the application is tagged by a unique identifier
which must be declared at the beginning of the application on the server and in

the corresponding modules. This identifier is processed in server-side mechanism
to decode the simulation data embedded in the message and trigger the expected
behavior.

Visual rendering
The visual module displays in a graphical window a view of the virtual

environment, as seen from the driver’s current viewpoint which is fetched before
the rendering of each frame using a “data request” message.

Figure 1. General module Figure 2. Virtual view of Guyancourt
organization rendered with our open source
 simulation software

The visual scene is rendered using OGRE [1], an object-oriented open-source
3D render engine written in C++, customizable and extensible through the freely
available plugins, enabling for instance OpenGL and DirectX support or bindings
to multiple physics engines. Moreover, OGRE benefits from an active community.
As currently configured, our visual module supports vertex lighting used to render
for instance static ambient occlusion. Advanced projected shadows were also
implemented using Parallel Split Shadow Mapping method (PSSM) and rendered
using Variance Shadow Mapping technique (VSM) implemented in a pixel shader
written in HLSL language (Figure 2). More generally, other visual effects can be
implemented depending on the application, the performance of the computers
and the features provided by the render engine.

Selecting a particular rendering library also implies constraints on the possible
readable database description file formats. OGRE only supports its own native
binary format, but a number of conversion plugins and exporters exist for main 3D
authoring tools, including open source software like Blender. For the purpose of
our study, a visual database modeled in Autodesk® Maya® used in typical
simulation scenarii at Renault has been exported using one of these plugins.

Eventually, a particularly important aspect visual rendering for driving
simulation is the management of multiple visual channels for multi-screens
displays. The proposed solution in the current implementation is to launch as
many visual processes as rendering channels that are connected to the server.

Vehicle dynamics module
Vehicle dynamics module takes as input driver commands and calculates the

car trajectory using a physics engine. This module sends messages at its own
frequency to the central server to update the car position and orientation data.
The current implementation uses ODE open-source physics engine and uses the
predefined car dynamics model included in the OGREODE open-source library,
initially developed for the purpose of binding ODE with OGRE render engine.
Therefore, terrain data and car geometry used for calculation must be provided in
the OGRE native geometry description format. In this early version, this module is
also responsible for drivers’ command acquisition through the keyboard.
Implementation of this acquisition operation in a separated module and interfacing
with more convenient devices like steering wheels is ongoing.

Defining a new module: the example of the camera
manager

Each module essentially consists in an infinite loop sending messages to the
central server either to update some simulation data or request their last available
value. The camera manager is a very simple module that illustrates this basic
mechanism. It transforms the car position and orientation data computed by the
car dynamics model into the position and orientation of the viewpoint in the car
expressed in the world frame of reference. The following pseudo-code describes
this procedure:

while not terminate message received from kernel
request last car position
perform viewpoint position calculations
send ‘update viewpoint position’ message
loop frequency regulation instructions

end while loop

In addition, server-side mechanisms that listen to these messages should also
be programmed. However, due to the limited number of types of messages and
their stereotyped processing on the server, server-side message management
can be easily standardized and declaration at runtime of both new messages and
new simulation data should be possible. Therefore, opening a communication
channel between the server and a module will require a few additional function
calls at the module initialization to register the messages on the server.

This procedure shows that the code of the simulation server and modules can
evolve separately with minor interactions, provided that the structure of the
simulation database is not modified. Therefore, this architecture eases the
management of version between modules.

Execution and practical evaluation
Modules are executed as distinct operating system processes, coordinated

using MPICH2 utilities including daemons which ensure message delivery.
Modules can be executed on any remote computing node on which this daemon
is installed.

Correct execution of the application requires that the central server loops at

least faster than the fastest module. MPI being a conservative interface,
messages are indeed processed respectively to their reception order. Therefore,
a too slow execution frequency of the central server loop results in a lag in the
updating of simulation data on the server. Moreover, filling up the incoming
message stack of the server blocks the execution of the message sender and
eventually results in an overall slow down of the application.

Although experimental evaluation of the performance of the described
implementation cannot be precisely documented at this level, this implementation
allowed a real-time driving in a typical driving simulation environment (~ 300.000
polygons) on a single desktop computer (Intel Xeon 3GHz, 1Go RAM, nVidia
Quadro FX 4800). The generation of two synchronized displays (1280x1024) has
also been observed with the same level of performance, using two distinct
computers connected through Ethernet network.

Discussion
The functional kernel described in the article validates that open source APIs

can be used to build a driving simulation application. The component oriented
approach and the kernel based architecture allow reducing the interdependency
between the codes of modules and imposing only minimal constraints on
message format definition. Therefore, the code of the application can be updated
by locally modifying part or integrality of a module, without major influences on the
rest of the application. This modular architecture is therefore particularly useful for
experimenting different assembly of libraries with the objective of finding an
optimal combination. It also provides the foundations of a highly reconfigurable
system.

Moreover, the proposed application is scalable thanks to the possible
transparent distributed execution over a cluster of computers, and includes
strategy for efficient use of memory when running on a single machine, enabled
by the use of an MPI-2 compliant library as the communication layer. Preliminary
test of the current implementation with low end computers allowed indeed
interactive driving. The precise assessment of real-time performance of the
application should be addressed in a future study.

Finally, concerning the importation of geometrical information for the visual
environment, 3D vehicle models and physics calculation (e.g. collisions, car
animation), the application is expecting data in the OGRE native geometry format,
for which main 3D modelers have exporters. Yet, an improvement of this
importation procedure would be to fully support ColladaTM, a widely used open
standard for 3D information exchange [21]. More generally, as the application
may encapsulate heterogeneous libraries, each module may require data in its
own format, resulting in a potential multiplication of input file formats necessary to
run the simulation, which is a drawback. An advanced implementation of the
software should also support emerging open standards for driving simulation data
description such as OpenDRIVE® [13] and RoadXML© [14].

Future directions
Future work will focus on further integration of modules particularly input

devices, sound management, and more advanced functionalities like a scenario
building interface and traffic management. This latter topic will necessitate to
study and select formats for road network specifications, among which new open
standards, OpenDRIVE® and RoadXML©, are of particular interest.

Conclusion
This article presented an ongoing work on the design of an extensible, highly

configurable and scalable open-source driving simulation software system. The
proposed architecture allows an easy interfacing of third-party libraries to take
advantage of existing state-of-the-art functionalities of open-source or commercial
products. The implementation also allows efficient distributed execution over
multiple computation nodes for higher performance.

This software is currently being written but a running version including
communication layer and a few fundamental modules necessary to drive a car in
a virtual environment is already being published as Open-S project, licensed
under LGPL, available for downloading and testing as of end of June 2010 on
http://open-s.sourceforge.net.

Acknowledgements
The virtual environment displayed in the figures of this abstract representing

the city of Guyancourt was designed and realized by Jean-François Rivière
(Renault, Technical Centre for Simulation).

Keywords: Simulation design; open-source software; software engineering;
component-based architecture; distributed applications

Bibliography
[1] OGRE – Open Source 3D Graphics Engine, http://www.ogre3d.org

[2] Irrlicht Engine - A free open source 3d engine,
http://irrlicht.sourceforge.net

[3] OpenSceneGraph, http://www.openscenegraph.org

[4] OpenSG, http://www.opensg.org

[5] MPICH2: High-performance and Widely Portable Message-Passing
Interface (MPI), http://www.mcs.anl.gov/research/projects/mpich2

[6] OpenAL: cross-platform 3D audio API,
http://connect.creativelabs.com/openal

[7] ODE – Open Dynamics Engine, http://www.ode.org

[8] Bullet Physics, http://bulletphysics.org

[9] The programming language LUA, http://www.lua.org

[10] FlowVR, http://flowvr.sf.net

[11] GNU Lesser General Public License,
http://www.gnu.org/licenses/lgpl.html

[12] COLLADA – Digital Asset and FX Exchange Schema,
https://collada.org

[13] OpenDRIVE – managing the road ahead, http://www.opendrive.org

[14] RoadXML – The open format road network, http://www.road-xml.org

[15] nVidia PhysX Physics simulation for developers,
http://developer.nvidia.com/object/physx.html

[16] TORCS Driver Simulator. http://torcs.sourceforge.net.

[17] MPI specification, http://www.mpi-forum/docs

[18] Wright T.E. and Madey G.�, A Survey of Technologies for Building
Collaborative Virtual Environments, The International Journal of Virtual
Reality, 2009, 8(1):53-66

[19] Soares L.P., Raffin B. and Jorge J.A., PC Clusters for Virtual Reality,
The International Journal of Virtual Reality, 2008, 7(1):67-80

[20] Morillo P., Bierbaum A., Hartling P., Fernandez M., Cruz-Neira C.,
Analyzing the performance of a cluster-based architecture for
immersive visualization systems, Journal of Parallel and Distributed
Computing, 2008, 68(2):221-234

[21] Arnaud R., Parisi T., Developing Web Applications with COLLADA and
X3D, White paper, 2007, khronos.org

[22] Bierbaum A., Just C., Hartling P., Meinert K., Baker A., Cruz-Neira C.,
VR Juggler: A Virtual Platform for Virtual Reality Application
Development, IEEE Virtual Reality Conference 2001 (VR 2001), 2001,
pp 89-96

