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Large deviations of a velocity jump process with a Hamilton-Jacobi approach

We study a random process on R n moving in straight lines and changing randomly its velocity at random exponential times. We focus more precisely on the Kolmogorov equation in the hyperbolic scale (t, x, v) → t ε , x ε , v , with ε > 0, before proceeding to a Hopf-Cole transform, which gives a kinetic equation on a potential. We show convergence as ε → 0 of the potential towards the viscosity solution of a Hamilton-Jacobi equation ∂tϕ + H (∇xϕ) = 0 where the hamiltonian may lack C 1 regularity, which is quite unseen in this type of studies.

Résumé

Grandes déviations pour un processus à sauts de vitesse avec une approche Hamilton-Jacobi. Nous nous intéressons à un processus aléatoire sur R n qui alterne des phases de mouvements rectilignes uniformes et change de vitesse à des temps exponentiels. Nous étudions plus précisément l'équation de Kolmogorov après rééchelonnement hyperbolique (t, x, v) → t ε , x ε , v , ε > 0, puis nous effectuons une transformée de Hopf-Cole qui nous donne une équation cinétique suivie par un potentiel. Nous montrons la convergence pour ε → 0 de ce potentiel vers la solution de viscosités d'une équation de Hamilton-Jacobi ∂tϕ + H (∇xϕ) = 0 où le hamiltonien peut présenter une singularité C 1 , ce qui est assez inédit dans ce type d'études.

Version française abrégée

Nous nous donnons une densité de probabilité M ∈ L 1 (R n ) et nous notons V son support. Nous supposons que V est compact et que 0 appartient à l'intérieur de l'enveloppe convexe de V , que l'on note Conv (V ). Pour p ∈ R n , nous notons µ (p) = max {v • p | v ∈ Conv (V )}. Nous étudions le mouvement de particules dans R n suivant le processus de Markov déterministe par morceaux défini comme suit : une particule donnée se déplace de manière rectiligne uniforme avec une vitesse v ∈ V tirée aléatoirement en suivant la loi de probabilité M (v ′ ) dv ′ . À des temps exponentiels de paramètre 1, la particule change de direction en tirant une nouvelle vitesse tirée selon la loi M (v ′ ) dv ′ . Afin d'étudier des résultats de larges déviations du processus similairement aux techniques développées dans [START_REF] Bressloff | On the Hamiltonian structure of large deviations in stochastic hybrid systems[END_REF]- [START_REF] Faggionato | Averaging and large deviations principles for fully piecewise deterministic Markov Process and applications to moleular motors[END_REF], nous nous intéressons à l'équation de Chapman-Kolmogorov forward suivie par la densité de particules après un rééchelonement hyperbolique (t, x, v) → t ε , x ε , v , ε > 0 :

∂ t f ε + v • ∇ x f ε = 1 ε (M (v) ρ ε -f ε ) , (t, x, v) ∈ R + × R n × V.
Nous étudions plus particulièrement l'équation vérifiée par un potentiel ϕ ε obtenu après passage par une transformée de Hopf-Cole :

f ε (t, x, v) = M (v) e -ϕ ε (t,x,v) ε
. Nous cherchons alors une éventuelle limite pour ϕ ε . Nous procédons à un développement WKB : ϕ ε = ϕ + εη, ce qui amène, en posant p = ∇ x ϕ et H = -∂ t ϕ, à la résolution d'un problème spectral dans l'espace des mesures positives : chercher (H, Q) un couple valeur/vecteur propres associé à

l'opérateur Q → (v • p -1) Q + V M ′ Q ′ dv ′ . On obtient une équation de Hamilton-Jacobi ∂ t ϕ + H (∇ x ϕ) = 0. Pour n = 1 et M ≥ δ > 0 sur son support, le vecteur propre Q a une densité et conduit à un hamiltonien H défini par l'équation implicite V M (v) 1 + H (p) -v • p dv = 1.
La positivité de Q garantit que H (p) ≥ µ (p) -1. En dimension supérieure toutefois, et même si M ≥ δ > 0, cette équation peut ne pas avoir de solution H (p) lorsque p devient grand. Cela se manifeste pour le vecteur propre par une concentration de la mesure Q autour des valeurs v qui annulent

1 + H (p) -v • p, ce qui force H (p) = µ (p) -1.
Cette transition entraîne une singularité C 1 du hamiltonien. Nous démontrons la convergence de ϕ ε vers ϕ, où ϕ est solution de viscosité [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF] de l'équation de Hamilton-Jacobi en utilisant la méthode de la fonction test perturbée [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF].

Introduction

We continue the work initiated in [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF]- [START_REF] Bouin | A kinetic eikonal equation[END_REF]. Let M ∈ L 1 (R n ) be a probability density function. We suppose that the support of M , which we denote V , is compact and that 0 belongs to the interior of Conv (V ), the convex hull of V . We denote by |•| the euclidian norm in R n and by • the canonical scalar product. For p ∈ R n , we define

µ (p) := max {v • p | v ∈ Conv (V )} , (1) 
Argµ (p) := {v ∈ Conv (V ) | v • p = µ (p)} and Sing (M ) := p ∈ R n , V M(v)
µ(p)-v•p dv ≤ 1 . We focus on the motion dynamics in R n of particles given by the following piecewise deterministic Markov process: a particle moves successively in straight lines with velocity v, chosen randomly with probability distribution M (v ′ ) dv ′ . At random exponential times (with parameter 1), the particle changes its velocity, choosing randomly a new velocity with distribution M (v ′ ) dv ′ . The Chapman-Kolmogorov forward equation associated to the probability density function f (t, x, v) of this process is given by:

∂ t f + v • ∇ x f = M ρ -f, (t, x, v) ∈ R + × R n × V, (2) 
where

ρ (t, x) = V f (t, x, v) dv.
In order to investigate large deviation principles for the process, one can study the large scale hyperbolic limit (t, x) → t ε , x ε with ε > 0. In this scale, the kinetic equation ( 2) reads:

∂ t f ε + v • ∇ x f ε = 1 ε (M ρ ε -f ε ) , (t, x, v) ∈ R + × R n × V. (3) 
Then, we perform the following Hopf-Cole transformation:

f ε (t, x, v) = M (v) e -ϕ ε (t,x,v) ε
, where we expect the potential ϕ ε to become independent of v as ε → 0. Such techniques have already been studied for a more general case of Markov process with a finite discrete set of states in [START_REF] Bressloff | On the Hamiltonian structure of large deviations in stochastic hybrid systems[END_REF] and, from a probabilistic point of view, in [START_REF] Faggionato | Averaging and large deviations principles for fully piecewise deterministic Markov Process and applications to moleular motors[END_REF]. Here, assume that the initial condition is well-prepared, i.e. it does not depend on v and ε: ϕ ε (0, x, v) = ϕ 0 (x). The equation satisfied by ϕ ε reads

∂ t ϕ ε + v • ∇ x ϕ ε = V M (v ′ ) 1 -e ϕ ε -ϕ ′ε ε dv ′ , (t, x, v) ∈ R + × R n × V. (4) 
As in [START_REF] Freidlin | Random perturbations of dynamical systems[END_REF], the limit potential satisfy a Hamilton-Jacobi equation. Surprisingly enough, our Hamiltonian may lack C 1 regularity as we will show in Proposition 2.1.

Theorem 1.1 Under the previous assumptions, ϕ ε converges locally uniformly on R + × R n × V toward ϕ, where ϕ does not depend on v. Moreover, ϕ is the viscosity solution of the following Hamilton-Jacobi equation:

∂ t ϕ (t, x) + H (∇ x ϕ (t, x)) = 0, (t, x) ∈ R + × R n , (5) 
where the hamiltonian H is given as follows: if p ∈ Sing (M ), then H (p) = µ (p) -1. Else, H (p) is uniquely determined by the following formula:

V M (v) 1 + H (p) -v • p dv = 1. ( 6 
)
2 Identification of the hamiltonian In order to identify the limit ε → 0 of the equation ( 4) we perform the formal WKB expansion: ϕ ε (t, x, v) = ϕ (t, x) + εη (t, x, v) , where ϕ and η are to be determined. Plugging this ansatz into the kinetic formulation (4), we get, taking the formal limit ε → 0:

∂ t ϕ + v • ∇ x ϕ = 1 - V M (v ′ ) e η-η ′ dv ′ .
Let us write p = ∇ x ϕ and H = -∂ t ϕ. The equation for Q = e -η is the following spectral problem:

HQ = (v • p -1) Q + V M (v ′ ) Q (v ′ ) dv ′ . The positivity of Q yields H ≥ v • p -1 for all v ∈ V hence H ≥ µ (p) -1. Suppose H > µ (p) -1. Then, 1 + H -vp > 0 for all v ∈ V and Q (v) = V M (v ′ ) Q (v ′ ) dv ′ 1 + H -v • p . Integrating against
M with respect to v, we obtain the following problem: find

H such that V M(v) 1+H-v•p dv = 1. If p ∈ Sing (M ) c , by
monotonicity, such H exists and is unique. Equation ( 6), however, does not have a solution for p ∈ Sing (M ), so we necessarily have H = µ (p) -1. Then, a possible solution of the spectral problem is the positive measure

Q = dv µ(p)-v•p +α (p) δ w where α (p) = 1-V M(v)
µ(p)-vp dv ≥ 0 and δ w is the Dirac measure centered in w ∈ Argµ (p)∩V . Here is an example where Sing (M ) = ∅:

Example 1 Let n > 1 and M = ω -1 n .1 B(0,1)
where ω n is the Lebesgue measure of the n-dimensional unit ball. Then,

Sing (M ) = B 0, n n-1 c . Indeed, for p = |p| • e 1 , we have µ (p) = |p| and v • p = |p| v 1 hence V M (v) µ (p) -v • p dv = 1 |p| ω n B(0,1) 1 1 -v 1 dv = ω n-1 |p| ω n 1 -1 1 -v 2 1 n-1 2 1 -v 1 dv 1 = 1 |p| × n n -1
. Proof Let us first notice that µ is positively 1-homogeneous. Moreover, it is convex since it is a supremum of linear functions.

By rotational invariance, we conclude that

(i) Let p, q ∈ Sing (M ) c with p = q. Since µ is convex, we have for all τ ∈ [0, 1]

I (τ ) := V M (v) µ (p) -v • p + τ (µ (q) -µ (p) -v • (q -p)) dv ≤ V M (v) µ ((1 -τ ) p + τ q) -v • ((1 -τ ) p + τ q) dv.
Moreover, I (0) , I (1) > 1 and I is differentiable on [0, 1] with

∂ τ I (τ ) = V M (v) (µ (p) -v • p + τ (µ (q) -µ (p) -v • (q -p))) 2 (µ (p) -µ (q) -v • (p -q)) dv.
It is clear that the sign of ∂ τ I does not change hence I (τ ) > 1, which proves (i).

(ii) We refer to [START_REF] Bouin | A kinetic eikonal equation[END_REF] to prove that H is C 2 and strictly convex on Sing (M ) c and that

V M (v) (1 + H (q) -v • q) 2 (∇H (q) -v) dv = 0, ∀q ∈ Sing (M ) c . (7) 
In particular, ∇H (q) ∈ Conv (V ) for all q ∈ Sing (M ) c . It is easy to see that H is continuous in the interior of Sing (M ). To show continuity of H on ∂Sing (M ), let (p m ) m converge to p ∈ ∂Sing (M ) ⊂ Sing (M ). If we can extract a subsequence (p m l ) l ⊂ Sing (M ), then

H (p m l ) = µ (p m l ) -1 -→ l→∞ µ (p) -1 = H (p). If not, then p m ∈ Sing (M ) c for m large enough and 1 = V M(v) 1+H(pm)-v•pm dv < V M(v)
µ(pm)-v•pm dv. Taking the limit, we get by dominated convergence

1 = V lim m→∞ M(v) 1+H(pm)-v•pm dv ≤ V M(v) µ(p)-v•pm dv ≤ 1 hence H (p m ) -→ m→∞ µ (p) -1 = H (p).
We now show that H is convex by proving that it is a maximum of convex functions:

H (p) = max (sup {∇H (q) • (p -q) + H (q) | q ∈ Sing (M ) c } , µ (p) -1) , ∀p ∈ R n . (8) 
In Sing (M ) c , (8) holds by convexity of H and H (p) > µ (p) -1. Let p ∈ Sing (M ) and q ∈ Sing (M ) c . By convexity of Sing (M ) c ∋ 0, there exists a unique λ ∈ (0, 1] such that λp ∈ ∂Sing (M ). For all τ ∈ [0, 1], we set ω 1 (τ ) := µ (τ p) -1 = τ µ (p) -1 and ω 2 (τ ) := ∇H (q) • (τ pq) + H (q) . By continuity of H, µ (λp) -1 = H (λp) ≥ ∇H (q) (λpq) + H (q) hence ω 1 (λ) ≥ ω 2 (λ). Moreover, ω 1 and ω 2 are both differentiable and [START_REF] Bouin | A Hamilton-Jacobi approach for front propagation in kinetic equations[END_REF], which ends the proof of (ii).

∂ τ ω 1 (τ ) = µ (p) ≥ ∇H (q) • p = ∂ τ ω 2 (τ ) since ∇H (q) ∈ Conv (V ). Hence, ω 1 (1) ≥ ω 2
(iii) Suppose Sing (M ) = ∅ and H is C 1 . Since H + 1 = µ is positive homogeneous of degree 1 on Sing (M ) and since λp ∈ Sing (M ) for all λ ≥ 1 and p ∈ Sing (M ), we know that ∇H (p) • p = H (p) + 1 = µ (p) for all p ∈ Sing (M ) ⊂ Sing (M ) hence p • (∇H (p)v) ≥ 0, for all v ∈ V , the inequality being strict on a neighborhood of 0. Then,

p • V M (v) (1 + H (p) -v • p) 2 (∇H (p) -v) dv > 0, ∀p ∈ ∂Sing (M ) . ( 9 
)
By continuity, equations ( 7) and ( 9) are contradictory.

3 Proof of Theorem 1.1

Let ϕ 0 ∈ W 1,∞ (R n ).
We refer to Proposition 2.1 in [START_REF] Bouin | A kinetic eikonal equation[END_REF] to prove that the Cauchy Problem (4) with initial condition ϕ 0 has a unique solution ϕ ε ∈ W 1,∞ which is locally (in t) uniformly (in ε, x and v) bounded in norm W 1,∞ . In particular, let us mention that

0 ≤ ϕ ε (t, •, •) ≤ ϕ 0 ∞ , ∇ v ϕ ε (t, •, •) ∞ ≤ ∇ x ϕ 0 ∞ . (10) 
Using the Arzelá-Ascoli theorem, we extract a locally uniformly converging subsequence. We denote by ϕ the limit. The function ϕ does not depend on v since V M (v) e ϕ ε -ϕ ′ε ε dv is uniformly bounded on [0, T ]× R n × V for all T > 0. We use the perturbed test function method [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF] to show that ϕ is a viscosity solution of (5). Theorem 1.1 will follow by uniqueness of the solution [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF].

Subsolution procedure

Let ψ ∈ C 1 (R + × R n ) be a test function such that ϕψ has a local strict maximum at t 0 , x 0 . We want to show that ψ is a subsolution of (5). If ∇ x ψ t 0 , x 0 ∈ Sing (M ) c , then we refer to [START_REF] Bouin | A kinetic eikonal equation[END_REF].

Suppose now that ∇ x ψ t 0 , x 0 ∈ Sing (M ). Let w ∈ Argµ ∇ x ψ t 0 , x 0 ∩ V . Then, w • ∇ x ψ t 0 , x 0 = µ ∇ x ψ t 0 , x 0 . The uniform convergence of ϕ ε toward ϕ ensures that the function (t, x) → ϕ ε (t, x, w)ψ (t, x) has a local maximum at a point (t ε , x ε ) satisfying (t ε , x ε ) → t 0 , x 0 , as ε → 0. We then have:

∂ t ψ (t ε , x ε ) + w • ∇ x ψ (t ε , x ε ) = ∂ t ϕ ε (t ε , x ε ) + w • ∇ x ϕ ε (t ε , x ε ) = 1 - V M (v ′ ) e ϕ ε (t ε ,x ε ,w)-ϕ ε (t ε ,x ε ,v ′ ) ε dv ′ ≤ 1.
Passing to the limit ε → 0, we get ∂ t ψ t 0 , x 0 + µ ∇ x ψ t 0 , x 0 ≤ 1. We conclude that ϕ is a viscosity subsolution of (5).

Supersolution procedure

Let ψ ∈ C 1 (R + × R n ) be a test function such that ϕψ has a local strict minimum at t 0 , x 0 . We want to show that ψ is a supersolution of [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF]. If ∇ x ψ t 0 , x 0 ∈ Sing (M )

c , then we refer to [START_REF] Bouin | A kinetic eikonal equation[END_REF].

Suppose now that ∇ x ψ t 0 , x 0 ∈ Sing (M ). Then, ∇ x ψ t 0 , x 0 = 0 because 0 ∈ Sing (M ) c . We suppose without loss of generality that the minimum of ϕ-ψ is global and that ϕ t 0 , x 0 -ψ t 0 , x 0 = 0. Let ψ ε := ψ-C tt 0 2 +εη with C > 0 yet to be determined and

η (v) := ln µ ∇ x ψ t 0 , x 0 -v • ∇ x ψ t 0 , x 0 .
Then, η is a continuous function on D (η) = V \ Argµ ∇ x ψ t 0 , x 0 and, for all w ∈ Argµ ∇ x ψ t 0 , x 0 ∩ V , we have lim v→w η (v) = -∞. Moreover, η is bounded from below on all compact sets yielding the uniform convergence

ψ ε → ψ on all compact sets of D (η). Finally, V M (v ′ ) e -η(v ′ ) dv ′ ≤ 1 since ∇ x ψ t 0 , x 0 ∈ Sing (M ).
The function ϕψ -C tt 0 2 has a global strict minimum at t 0 , x 0 . The first inequality (10) ensures that the function ϕ εψ ε has a local minimum at a point (t ε , x ε , v ε ) ∈ R + × R n × D (η). As V compact, we can extract a subsequence (v ε ) ε , without relabelling, such that v ε → v 0 , as ε → 0.

If v 0 ∈ V \ Argµ (p), then there exists a compact A ⊂ D (η) such that v 0 ∈ A and the uniform convergence of ψ ε towards ψ on A guarantees that (t ε , x ε ) → t 0 , x 0 , as ε → 0. We then get at point (t ε , x ε , v ε ),

∂ t ψ -2C t ε -t 0 + v ε • ∇ x ψ = ∂ t ψ ε + v ε • ∇ x ψ ε = ∂ t ϕ ε + v ε • ∇ x ϕ ε = 1 - V M ′ e ϕ ε -ϕ ′ε ε dv ′ ≥ 1 - V M (v ′ ) e η(v ε )-η(v ′ ) dv ′ .
We take the limit ε → 0:

∂ t ψ t 0 , x 0 + v 0 • ∇ x ψ t 0 , x 0 ≥ 1 -e η(v 0 ) V M (v ′ ) e -η(v ′ ) dv ′ ≥ 1 -e η(v 0 ) . By construction, for all v, v ′ ∈ D (η), we have e η(v) -e η(v ′ ) = (v ′ -v) • ∇ x ψ t 0 , x 0 hence, for all v ∈ D (η),we have ∂ t ψ t 0 , x 0 + v • ∇ x ψ t 0 , x 0 ≥ 1 -e η(v) . Let w ∈ V ∩ Argµ ∇ x ψ t 0 , x 0 . Since Argµ ∇ x ψ t 0 , x 0 is a null-set, V is dense in Argµ ∇ x ψ t 0 , x 0 . Taking the limit v → w, we get: ∂ t ψ t 0 , x 0 + µ ∇ x ψ t 0 , x 0 ≥ 1. If v 0 ∈ V ∩ Argµ (p)
, we still have (t ε , x ε ) -→ ε→0 t 0 , x 0 thanks to the following lemma:

Lemma 3.1 For C = 4 ϕ 0 ∞ , we have lim ε→0 εη (v ε ) = 0.
Proof of Lemma 3.1 We have ϕ ε (t, x, v)ϕ (t, x) ≥ -2 ϕ 0 ∞ by (10) and ϕ (t, x)ψ (t, x) ≥ 0 hence

ϕ ε (t, x, v) -ψ ε (t, x, v) ≥ -2 ϕ 0 ∞ + C t -t 0 2 -εη (v) , ∀ε > 0.
Moreover,

ϕ ε t 0 , x 0 , v -ψ ε t 0 , x 0 , v = ϕ ε t 0 , x 0 , v -ϕ t 0 , x 0 -εη (v) ≤ 2 ϕ 0 ∞ -εη (v) . Since C = 4 ϕ 0 ∞ , we have ϕ ε (t, x, v) -ψ ε (t, x, v) > ϕ ε t 0 , x 0 
, vψ ε t 0 , x 0 , v for all t > t 0 + 1 and, thus, the minimum of ϕ εψ ε cannot be attained for t > t 0 + 1 hence t ε ≤ t 0 + 1 for all ε > 0. At point (t ε , x ε , v ε ) we have:

∇ v ϕ ε (t ε , x ε , v ε ) = ∇ v ψ ε (t ε , x ε , v ε ) = ε∇ v η (v ε ) = - ε∇ x ψ t 0 , x 0 µ (∇ x ψ (t 0 , x 0 )) -v ε • ∇ x ψ (t 0 , x 0 )
.

The second estimation (10) yields

∇ v ϕ ε (t ε , •, •) ∞ ≤ t ε ∇ x ϕ 0 ∞ ≤ t 0 + 1 ∇ x ϕ 0 ∞ hence ε (t 0 + 1) ∇ x ϕ 0 ∞
∇ x ψ t 0 , x 0 ≤ µ ∇ x ψ t 0 , x 0v ε • ∇ x ψ t 0 , x 0 , =⇒ εK ≥ εη (v ε ) ≥ εln ε (t 0 + 1) ∇ x ϕ 0 ∞ ∇ x ψ t 0 , x 0 , and εη (v ε ) → 0 as ε → 0.

Thanks to Lemma 3.1, the function (t, x) → ψ ε (t, x, v ε ) = ψ (t, x) -4 ϕ 0 ∞ tt 0 2 + εη (v ε ) converges uniformly towards (t, x) → ψ (t, x) -4 ϕ 0 ∞ tt 0 2 and has a local minimum at (t ε , x ε ) satisfying (t ε , x ε ) → t 0 , x 0 , as ε → 0. At point (t ε , x ε , v ε ), we have:

∂ t ψ ε + v ε • ∇ x ψ ε = ∂ t ϕ ε + v ε • ∇ x ϕ ε = 1 - V M (v ′ ) e ϕ ε (t ε ,x ε ,v ε )-ϕ ε (t ε ,x ε ,v ′ ) ε dv ′ .
The minimal property of (t ε , x ε , v ε ) implies at this point:

∂ t ψ (t ε , x ε ) -8 ϕ 0 ∞ t ε -t 0 + v ε • ∇ x ψ (t ε , x ε ) = ∂ t ψ ε + v ε • ∇ x ψ ε ≥ 1 - V M (v ′ ) e η(v ε )-η(v ′ ) dv ′ ≥ 1 -e η(v ε ) .
Passing to the limit ε → 0, we get ∂ t ψ t 0 , x 0 +µ ∇ x ψ t 0 , x 0 ≥ 1. We conclude that ϕ is a viscosity supersolution of (5).
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 1 Sing (M ) = B 0, n n-The Figure1gives illustrations of the hamiltonian and µ as functions of the radius of p, in the cases n = 1 and n = 3. In the cases n = 3 we can see the C 1 singularity where |p| =3 2 .
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 121 Figure 1 -Blue plain lines : Hamiltonian for n = 1, 3 and M = ω -1 n .1 B(0,1) . Black dotted lines : |p| → µ (p) -1. Lignes pleines bleues : Hamiltonien pour n = 1, 3 et M = ω -1 n .1 B(0,1) . Lignes noires en pointillés : |p| → µ (p) -1.
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