Pierre-Emmanuel Hladik
email: pehladik@laas.fr

Fast and Tight Analysis for AUTOSAR Schedule Tables

published or not. The documents may come

Introduction

AUTOSAR (AUTomotive Open System ARchitecture) is a consortium composed of the main actors of the automotive domain. It publishes a family of standards specifying a reference architecture for modern invehicle embedded systems. It promotes a tool-assisted model-based approach to system design. One of the tool is expected to transform a set of interconnected software components into a real-time multitask software. To achieve its duty, this tools must be able to verify the real-time behavior of a multitask software built on top of an AUTOSAR OS compliant real-time kernel.

At first sight, AUTOSAR OS is just another fixed priority preemptive real-time kernel. Thus, one can predict the real-time behavior of an AUTOSAR software by using state-of-the-art algorithms such as presented in the reference book of Giorgio Buttazo [START_REF] Buttazzo | Hard Real-time Computing Systems: Predictable Scheduling Algorithms And Applications[END_REF]. Actually, AUTOSAR OS allows to design rather complex multitask softwares. To the best of our knowledge, no algorithm has been published that allows to compute the response times of jobs in such a software without performing pessimistic over-approximations. In this paper, we build such an algorithm, and we prove its correctness. We focus on the possibility to take into account most of the features of AUTOSAR OS so as to minimize the pessimism of the results. This report extends previous work [START_REF] Hladik | Schedulability analysis of OSEK/VDX applications[END_REF][START_REF] Hladik | Schedulability analysis of OSEK/VDX applications[END_REF][START_REF] Hladik | Adequacy between AUTOSAR OS specification and real-time scheduling theory[END_REF] published with Anne-Marie Déplanche, Sébastien Faucou and Yvon Trinquet.

The paper is organized as follow: in section 2, the related works is presented; in Section 3, the scheduling services of AUTOSAR OS are described; in Section 4, the modeling framework is introduced; the Section 5 exposes how to compute upper bounds on the response time of the tasks of a system; Sections 6, 7 and 8 propose some improvements to speed up the analysis; in Section 9, the method is expremiented; in Section 10, the paper is concluded.

Related works

This report addresses the following (pragmatic) problem: how to compute reasonable bounds on the response times of jobs spawned by a complex multitask software executing on top of an AUTOSAR OS compliant kernel. Other authors did study similar problems, for instance [START_REF] Lei | Worst-case response time analysis for OSEK/VDX compliant real-time distributed control systems[END_REF], [START_REF] Bimbard | FP/FIFO feasibility conditions with kernel overheads for periodic tasks on an event driven osek system[END_REF] and [START_REF] Hladik | Schedulability analysis of OSEK/VDX applications[END_REF] expose how to analyze OSEK/VDX OS applications. OSEK/VDX OS is the ancestor of AUTOSAR OS.

Thus, the existing algorithms has to be updated to take into account the features introduced in AU-TOSAR OS. The main novelty is the introduction of schedule tables, which leads to a major update. Let us underline that in [START_REF] Bimbard | FP/FIFO feasibility conditions with kernel overheads for periodic tasks on an event driven osek system[END_REF], the overhead of kernel activities are taken into account and this dimension is not explored here.

The RTA (Response Time Analysis) approach is followed. This approach was developed in the mid 80's by Joseph and Pandya [START_REF] Joseph | Finding response times in a real-time system[END_REF] and improved by Audsley [START_REF] Audsley | Deadline-Monotonic Scheduling[END_REF]. In the following years and up to now, many extensions and improvements have been proposed. Concerning our work, the most important extensions are the concept of asynchronous transaction introduced in [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF]; the generalization of the concept of preemption threshold proposed in [START_REF] Wang | Scheduling fixed-priority tasks with preemption threshold[END_REF]; the study of systems scheduled FPP/FIFO (Fixed Priority Preemptive as a primary criterion / First In First Out policy as a secondary criterion) [START_REF] Bimbard | FP/FIFO feasibility conditions with kernel overheads for periodic tasks on an event driven osek system[END_REF].

The main difficulty of this problem comes from the complexity of the models. Two dimensions are affected. First, it is difficult to express and prove an algorithm that takes into account all the features of the target model, even if an algorithm is known for each feature on its own. Second, the complexity of the model impacts the time complexity of the algorithm. Many solutions have been proposed to alleviate this problem, based on the elimination of useless computations [START_REF] Coutinho | Response time analysis of asynchronous periodic and sporadic tasks scheduled by a fixed-priority preemptive algorithm[END_REF] and/or the trading of time complexity for pessimism.

In this paper, we put the pieces together in order to take into account the AUTOSAR scheduling policy for complex systems.

This theoretical problem was studied because of a very pragmatic concern: the AUTOSAR OS standards includes these FPP/FIFO and asynchronous transactions. Our original goal is to provide the AUTOSAR OS users with a modeling framework to capture real-time multitask software architectures and a set of algorithms to analyze these architectures. This same goal has been followed and reported in previous publications. Concerning AUTOSAR OS, early results have been reported in [START_REF] Hladik | Adequacy between AUTOSAR OS specification and real-time scheduling theory[END_REF]. However, they do not offer a satisfactory support for Schedule Tables (the name of the AUTOSAR OS concept related to asynchronous transaction). Our contribution. The main contribution of this document is the availability of a modeling framework and analysis method for AUTOSAR OS based real-time multitask software. We compile and mix the existing results and show that we can have an scheduling analysis for FPP with asynchronous transactions. Comparatively to previous work this report is focused on new implementations of the schedulability analysis to improve computation performances.

Scheduling policy of AUTOSAR OS

The AUTOSAR OS standard [START_REF]Specification of Operating System[END_REF] describes the interface and behavior of the operating system component of an AUTOSAR ECU. It is a real-time operating system providing a limited amount of services : scheduling, synchronization, IRQ handling, signaling, message passing, alarms handling and partitioning . Each service can be manipulated through a set of compile-time primitives and a set of run-time primitives. Given the aim of our work, the following of the presentation focuses on the subset of the standard that must be introduced to understand the modeling framework exposed in section 4. To be as clear as possible, this presentation uses some vocabulary from the object oriented modeling domain. Let us underline that AUTOSAR OS is not an objet oriented operating system: its interface is defined in C language. Active objects AUTOSAR OS supports two abstract classes of active objects: tasks and OsIsr (Operating system Interrupt service routine).

The task class has two specialization: BasicTask (BT) and ExtendedTask (ET). Once created, a BT instance is either in the Ready state or in the Running state (it is allocated to the CPU) until it terminates. A compile-time primitive allows to bound the number of instances of a BT existing at the same time (subsequent creation requests are dropped). An ET instance can be either in the Ready state, in the Running state, or in the Waiting state (waiting for an event to be signaled). There can be at most one instance of an ET in the system at a given date.

The OsIsr class has also two specialization: OsIsr Category 1 (OsIsr1) and OsIsr Category 2 (OsIsr2). OsIsr1 are out of control for the operating system, whereas OsIsr2 are not. Therefore, we focus on system without OsIsr1. From the point-of-view of the scheduling service, OsIsr2 instances are similar to BT instances. The difference between the two lies mainly in the source of the instance creation requests.

We introduce now the concept of job. Although it is not explicitly defined in the standard, it allows us to offer a unified view of ET, BT and OsIsr2 instances (notice that our definition is consistent with the behavior of the timing protection service described in the standard). A job is a non-blocking activity that is performed by the CPU. The scheduling service arbitrates the distribution of the CPU between concurrent jobs. Jobs are generated by ET, BT and OsIsr2 instances according to the following rules:

• Each instance of a BT or OsIsr2 generates exactly one job. The job terminates with the instance.

• An instance of an ET generates a job when it is created and each time it leaves the Waiting state. The job terminates either with the instance, or the next time it enters the Waiting state.

Each job is characterized by two scheduling parameters: its base priority (constant, configured at compile-time, attached to the task or OsIsr2 generating the job) and its current priority (dynamic, attached to the job). For the sake of simplicity, we will name from now the base priority "priority", and the current priority "preemption threshold". When a job is created, its preemption threshold equals its priority. The range of priority used for OsIsr2 is above the range of priority used for tasks.

Resources AUTOSAR OS provides a Resource (abstract) class. Its instances (named resource from now) are created at compile-time and are used to control the access to mutually exclusive critical sections in a multitask software. Competitors for a resource can be any job generated by an ET, an BT or even an OsIsr2 instance. Each resource has a constant ceiling priority configured through a compile-time primitive. The synchronization protocol used by AUTOSAR OS is similar to Baker's SRP [START_REF] Baker | A stack-based resource allocation policy for realtime processes[END_REF] in fixed priority context, with the restriction that the capacity of each resource is 1. When a job takes a resource, its preemption threshold is raised to the ceiling priority of the resource. When it releases a resource, its preemption threshold recovers its previous value. The ceiling priority of the resource must be greater than or equal to the preemption threshold of any job likely to take the resource. It must also be as small as possible to avoid undesirable priority inversions.

The Resource class has two realizations: standard resource, the instances of which are manipulated explicitly by the competing jobs through run-time primitives; internal resource, the instances of which are manipulated implicitly: when the job starts its execution (enter the Running state for the first time), it takes the resource and does not release it before it terminates.

A specific resource, named Res_Scheduler is defined by default. Its ceiling priority is the greatest priority used for tasks. Tasks can manipulate Res_Scheduler either as a standard or as an internal resource.

Scheduling policy AUTOSAR OS standards enforce the following scheduling policy: each time the scheduler is invoked, it selects the job with the greatest preemption threshold for running. If two or more jobs have the same preemption threshold, the oldest one is chosen. The scheduler is invoked when: a job is created; the current job terminates; the preemption threshold of the current job decreases (when it releases a standard resource).

Counters, alarms and schedule tables: AUTOSAR OS standards provides the concept of Counter to record recurring events (including real-time clock ticks) and the concept of Alarm to link counters and tasks. An alarm is programmed to expire when the counter reaches a specific value. When it expires, it releases a job (either by activating the task, or signaling an event to it). It is possible to program an alarm to expire one time or to have a cyclic behavior.

The concept of Schedule A mathematical modeling framework suitable for a wide variety of multitask applications built on top of an AUTOSAR OS compliant kernel is now introduced. So as to be consistent with the terms used in the real-time scheduling literature, we will use from now the term task in its usual sense: an entity that generates a potentially infinite sequence of jobs. We have exposed above how to map this concept onto the concepts of extended task, basic task and OsIsr2 supported by AUTOSAR OS. We consider a system T, Λ, src composed of a set of n tasks T = {τ i } 1≤i≤n , a set of m activation sources Λ = {λ j } 1≤j≤m and a mapping from task indexes to activation sources indexes src :

[1..n] → [1..m].
Each task is a tuple: τ i = π i , o i , d i , E i where:

• π i ∈ N + is the priority of the task.

• o i ∈ N is the offset of the task, relative to an occurrence of its activation source.

• d i ∈ N + is the deadline of the task, relative to its activation date.

• E i = {b ik = e i,k , γ i,k } 1≤k≤l is the set of l execution blocks composing the tasks, where each block is characterized by its worst-case execution time (WCET), e i,k ∈ N + , and its preemption threshold, γ i,k ∈ [π i , P] with P is the greatest priority in the system. The first block is associated to the whole task. Therefore e i,0 is the WCET of the task and γ i,0 is either the priority of the task, or the ceiling priority of an internal resource. Each other block is associated to a critical section in the code of the task protected by a standard resource. Notice that blocks can be only nested or sequential.

Each activation source is a couple: λ i = p i , ω i where:

• p i ∈ N + is the minimal inter-occurrence time of the activation source.

• ω i ∈ N ∪ {⊥} is the offset of the activation source, relative to the activation date of the system (⊥ is used when this offset is unknown at compile-time).

The mapping from tasks to activation sources described by src(i) = k means that τ i releases a job o i unit of time after an occurrence of λ k .

Let call S(T, Λ, src) = {s 1 , s 2 , . . .} the (potentially infinite) set of execution scenario of a system. In each scenario s k , each task τ i generates a (potentially infinite) sequence of jobs τ k i,0 , τ k i,1 , . . ., where each job τ k i,q is characterized by the following values:

• a i,q (s k) ∈ N is the arrival date of τ k i,q .

• s i,q (s k) ∈ N is the starting date of τ k i,q (date where it enters the Running state for the first time).

• f i,q (s k) ∈ N * is the finishing date of τ k i,q . One of the contribution of this work is the support of schedule tables. A schedule table is similar to a transaction as defined by Tindell in [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF]. We define θ k = {i ∈ 1..n| src(i) = k} the set of tasks attached to a same activation source. If

|θ k | = 1 then λ k is an alarm. If |θ k | > 1 then λ k is a schedule table.

Mapping to AUTOSAR

The proposed framework can model any AUTOSAR OS multitask software meeting the following constraints:

• It is possible to compute the WCET (or an upper bound) of each task.

• It is possible to compute the minimal duration (or a lower bound) between the arrival of two jobs from the same task.

• There is no precedence relationship between tasks (i.e. the arrival date of a job is independent from the state of the other jobs).

• Each task has exactly one activation source1 .

A response-time analysis algorithm for AUTOSAR OS

In this section, we propose an algorithm to compute an upper bound on the worst-case response time (WCRT) that a task can experience in a system conform to the structure exposed in Section 4. Intuitively, the WCRT of a task is the longest time interval delimited by the arrival date and the finishing date of a job among all jobs generated by a task among all scenarios. Our proposal follows the "Response Time Analysis" (RTA) approach originating in the works by Joseph and Pandya [START_REF] Joseph | Finding response times in a real-time system[END_REF] and Audsley [START_REF] Audsley | Deadline-Monotonic Scheduling[END_REF]. It is built upon theoretical extensions of these works, especially: response times greater than period [START_REF] Lehoczky | Fixed priority scheduling of periodic task sets with arbitrary deadlines[END_REF]; tasks sharing resources [START_REF] Sha | Priority inheritance protocols: An approach to real-time synchronization[END_REF][START_REF] Baker | A stack-based resource allocation policy for realtime processes[END_REF]; asynchronous transaction based systems [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF]; preemption threshold mechanism [START_REF] Wang | Scheduling fixed-priority tasks with preemption threshold[END_REF]; FPP/FIFO scheduling policy [START_REF] Bimbard | FP/FIFO feasibility conditions with kernel overheads for periodic tasks on an event driven osek system[END_REF].

We introduce the analysis in two steps. In the first step we define an algorithm that computes an upper bound on the worst-case response time of a task in a given busy-period. In a second step we derive the set of busy-periods that have to be explored in order to find the greatest upper bound.

We only focus on the case where priorities are all different, i.e. ∀(i, j) ∈ T, i = j, π i = π j .

Definitions Definition 1. [11]

A π-busy-period is a maximal time interval where the processing units continuously processes jobs having a preemption threshold no lower than π. Definition 2. The phasing vector Φ of a π-busy-period starting at t 0 is a set of values φ 1 , . . . , φ m such that φ k is the greatest date of occurrence of the activation source λ k lower or equal than t 0 .

Remark that t 0 and Φ completely define the sequence of jobs' execution during a π-busy-period. Therefore, t 0 , Φ will be used to denote a π-busy-period. Definition 3. In a π i -busy-period t 0 , Φ , the phasing of task τ i belonging to the activation source λ k is:

ϕ i (φ k) : R + → [0, p k) = (o i -φ k) mod p k (1)
with x mod y = xy x/y . It represents the delay between t 0 and the first activation of the task τ i at or after t 0 .

The phasing is a periodic function with a period equal to p k , i.e. ϕ i (φ k) = ϕ i (φ k + p k), so its study can be limited to a period, here the interval (0, p k] is choosen. From now, we restrict the domain of

ϕ i (φ k) to (0, p k] : ϕ i (φ k) : (0, p k] → [0, p k).
Definition 4. In a π i -busy-period t 0 , Φ , the delay between t 0 and the qth activation of τ i belonging to the activation source λ k after t 0 is:

a i,q (φ k) = ϕ i (φ k) + (q -1)p k (2)
The figure 1 illustrates the notion of phasing for a task τ j and its activation source λ src(j) relative to a π i -busy-period which starts at t 0 . Definition 5. For a task τ i the set of:

activation of λ src(j) t 0 activation of a job of τ j ∈ θ src j Φ src(j) ϕ j o j
Figure 1: Phasing of task τ j relative to t 0

• higher priority tasks is denoted hp(i) = {j|π j > π i },

• higher threshold priority tasks is denoted ht(i) = {j|π j > γ i,0 },

• higher tasks (including τ i) is denoted hp * (i) = hp(i) ∪ {i}.

Maximum response time of a task in a busy-period

In this section, an expression of the maximum response time of a task in a busy-period is produced. In a first time, different workload functions are introduced.

Definition 6. For a task τ i belonging to the activation source λ k , the right-closed-bounded-workload function

w i (φ k , t) : (0, p k] × R → R is: w i (φ k , t) = 1 + t -ϕ i (φ k) p k e i0
and the right-open-bounded-workload function w i (φ k , t) : (0, p k] × R → R is:

w i (φ k , t) = t -ϕ i (φ k) p k e i0
Lemma 1. For a fixed t, the argument of the maximum for the functions w i and w i is: Definition 7. The workload of a task τ i in a π-busy-period is the time needed to execute the task τ i during this π-busy-period.

φ * k = argmax φ k w i (φ k , t) = argmax φ k w i (φ k , t) = o i mod p k if o i is
Lemma 2. For a π-busy-period t 0 , Φ , the workload generated in [t 0 , t 0 + t] by the task τ i belonging to the activation source λ k is bounded by w i (φ k , t).

Proof. By definition (see def. 3), the first job of τ i arrived in the π-busy-period t 0 , Φ at t 0 + ϕ i (φ k) and the next job earliest arrived p k later. Thus, the number of jobs of τ i activated in [t 0 , t 0 + t] is bounded by 1 + (tϕ i (φ k))/p k . Moreover, the workload of a job is maximal when it consumes all its WCET, i.e. e j0 . Notice that the bound is tight when τ i produces jobs at its maximal rate.

Lemma 3. For a π-busy-period t 0 , Φ , the workload generated in [t 0 , t 0 + t) by the task τ i belonging to the activation source λ k is bounded by w i (φ k , t).

Proof. Same reasoning as lemma 2, except that an activation happens at t is not taken into account.

Once again, the bound is tight when τ i produces jobs at its maximal rate.

Lemma 4. In a π i -busy-period t 0 , Φ , an upper bound on the starting date of the qth job of τ i belonging to the activation source λ k activated at or after t 0 is the smallest solution of the following equation:

s i,q (Φ) = B i (1)
+ (q -1)e i0

+ j∈hp(i)

w j (φ src(j) , s i,q (Φ))

(3)

with B i = max{e jk |π j < π i ≤ γ jk } (4)
Proof. The qth job of τ i can start its execution early after:

(1) the jobs with priority lower than π i finish to execute a block which has a preemption threshold greater than π i . The priority manager ensures that there is at most one such job, and that this job will be preempted as soon as it recovers its base priority. Therefore, B i bounds the interference caused by this job on τ i (see [START_REF] Sha | Priority inheritance protocols: An approach to real-time synchronization[END_REF] for explanation of maximum blocking time for priority ceiling protocol).

(2) the previous jobs of τ i activated in the busy-period finish their execution. The maximum interference from these jobs is (q -1)e i0 .

(3) the jobs with priority greater than π i , i.e. belonging to hp(i), activated in [t 0 , t 0 + s i,q (Φ)] finish their execution. The maximum interference from these jobs is given by w j (φ src(j) , t) (see lemma 2).

There is no other source that can delay the start of the job in the π i -busy-period.

Lemma 5. In a π i -busy-period t 0 , Φ , an upper bound on the finishing date of the qth job of τ i relative to t 0 is given by the smallest solution of the following equation:

f i,q (Φ) = B i + qe i0 + j∈ht(i) w j φ src(j) , f i,q (Φ) + j∈hp(i)\ht(i)
w j (φ src(j) , s i,q (Φ))

Proof. Once started and before to finish, the qth job of τ i is only delayed by its WCET and by workloads of jobs having a priority greater than γ i0 , i.e. belonging to ht(i), and activated in (t 0 + s i,q (Φ), t 0 + f i,q (Φ)), so:

f i,q (Φ) = s i,q (Φ) + e i0 + j∈ht(i) w j φ src(j) , f i,q (Φ) - j∈ht(i)
w j φ src(j) , s i,q (Φ)

Equation (5) is obtained by joining equation (3) to previous one and by using ht(i) ⊆ hp(i).

Definition 8. For a π i -busy-period t 0 , Φ , the response time of the qth job of τ i is:

r i,q (Φ) = f i,q (Φ) -a i,q (Φ k) (5)
Lemma 6. The length of a π i -busy-period t 0 , Φ is bounded by the smallest solution of the following equation:

L i (Φ) = B i + j∈hp * (i) w j (φ src(j) , L i (Φ)) (6)
Proof. The π i -busy-period finish when the worst-case blocking time from a lower priority tasks, i.e. B i , and all tasks of hp * (i) activated in [t 0 , t 0 + L i (Φ)) are finished.

Lemma 7. The maximum number of activations of a task τ i in a π i -busy-period t 0 , Φ is

Q i (Φ) = L i (Φ) -ϕ i (φ k) p k (7)
Proof. It is immediate from Lemma 6.

Definition 9. For a π i -busy-period t 0 , Φ , the maximum response time of task τ i belonging to the activation source λ k is:

R i (Φ) = max q∈Q i (Φ) r i,q (Φ) (8)
where

Q i (Φ) = L i (Φ) -ϕ i (φ k) p k (9)

General results on iterated functions

In this part, some general results on iterated functions are given.

Hypothesis on iterated functions

Consider a set of n functions f i :

X i × R → R where X i = (a i , b i]
is left-open and right-closed interval, and all f i respect the following properties:

P1 f i is a monotonic increasing function for t : ∀x ∈ X i , ∀(t 1 , t 2) ∈ R 2 such that t 1 ≤ t 2 one has f i (x, t 1) ≤ f i (x, t 2), P2 ∀x ∈ X i , f i (x, t) ≤ α i + β i t with α i > 0, β i > 0 and i∈[1..n] β i < 1, P3 ∀x ∈ X i , f i (x, 0) ≥ 0, P4 f i is a monotonic increasing function for x: ∀t ∈ R, ∀(x 1 , x 2) ∈ X 2 i such that x 1 ≤ x 2 one has f i (x 1 , t) ≤ f i (x 2 , t).

Results on the summation of functions

We define κ(x, t) : i∈

[1..n] X i × R → R = i f i (x i , t) with x = (x 1 , ..., x n). Lemma 8. For an interval X i = (a i , b i], for a given t ∈ R, the maximum of f i is f i (b, t): ∀t ∈ R, max x∈(a i ,b i] f i (x, t) = f i (b i , t)
Proof. The result is immediate by considering the proposition P4.

Lemma 9. For a given t ∈ R, the maximum of κ(x, t) is κ(x, t) where x = (b 1 , ..., b n) :

∀t ∈ R, max x∈ i∈[1..n] X i κ(x, t) = κ(x, t)
Proof. The functions f i are independent, so, for a given t we have

max x∈ i∈[1..n] X i i∈[1..n] f i (x i , t) = i∈[1..n] max x i ∈X i f i (x i , t) Lemma 8 gives immediatly max x∈ i∈[1..n] X i i∈[1..n] f i (x i , t) = i∈[1..n] f i (b i , t) = κ(x, t).

Results on the fixed point

Consider the iterated function u κ (x):

u 0 κ (x) = κ(x, 0) u n+1 κ (x) = κ(x, u n κ (x))
and denote fix κ (x) the fixed point of the iterative sequence u κ (x). Properties P1, P2 and P3 assure that this fixed point exists and is equal to the least fixed point.

Lemma 10. The function fix κ (x) is a monotone increasing function for each variable x i .

Proof. From lemma 9, ∀x ∈ i∈[1.

.n] X i with

x i + δ i < b i , δ i ≥ 0, we have κ(x, 0) ≤ κ(x+δ, 0) with δ = (δ 1 , ..., δ n) and so u 0 κ (x) ≤ u 0 κ (x+δ). Now, suppose that for a rank n, ∀x ∈ i∈[1..n] X i , u n κ (x) ≤ u n κ (x+δ), because of property P1 (f i increases with t) u n+1 κ (x) ≤ u n+1 κ (x+δ). Thus, fix κ (x) ≤ fix κ (x+δ). Lemma 11. max x∈ i∈[1..n] X i fix κ (x) = fix κ (x) Proof. From lemma 9, ∀x ∈ i∈[1..n] X i , κ(x, 0) ≤ κ(x, 0) and so u 0 κ (x) ≤ u 0 κ (x). Now, suppose that for a rank n, ∀x ∈ i∈[1..n] X i , u n κ (x) ≤ u n κ (x), because of property P1 (f i increases with t) u n+1 κ (x) ≤ u n+1 κ (x). Thus, fix κ (x) ≤ fix κ (x).
Lemma 12. Consider two functions f 1 (x, t) and f 2 (x, t) with properties P1 such ∀(x, t),

f 1 (x, t) ≤ f 2 (x, t), then fix f 1 (x) ≤ fix f 2 (x).
Proof. By definition with have u 0

f 1 (x) ≤ u 0 f 2 (x). Suppose that u n f 1 (x) ≤ u n f 2 (x) is true for the rank n, then by using P1 u n+1 f 1 (x) = f 1 (x, u n f 1 (x)) ≤ f 1 (x, u n f 2 (x)) ≤ f 2 (x, u n f 2 (x)) = u n+1 f 2 (x).

Results on the fixed point of a composed function

Consider a set of functions F = {f i (x, t) : X i × R → R} and a function g(x) : i X i → R such all functions f i respect properties P1, P2, P3 and P4 and g increases for all variables, i.e. ∀(x 1 , x 2) ∈ (i X i) 2 with x 1,i ≤ x 2,i we have g(x 1) ≤ g(x 2). The function λ is defined as:

λ(x, t) : i∈[1..n] X i × R → R = g(x) + i∈[1..n] f i (x i , t)
the iterated function u λ (x):

u 0 λ (x) = λ(x, 0) u n+1 λ (x) = λ(x, u n λ (x))
and fix λ (x) the fixed point of the iterative sequence u λ (x).

Lemma 13.

max x∈ i∈[1..n] X i fix λ (x) = fix λ (x)
Proof. By definition ∀x ∈ i X i , g(x) ≤ g(x). Thus, from lemma 9, ∀x ∈ i∈[1.

.n] X i , λ(x, 0) ≤ λ(x, 0) and so u 0 λ (x) ≤ u 0 λ (x). Now, suppose that for a rank n, ∀x ∈ i∈[1.

.n] X i , u n λ (x) ≤ u n λ (x), because of property P1 (f i increases with t) u n+1 λ (x) ≤ u n+1 λ (x). Thus, fix λ (x) ≤ fix λ (x). Now, Xi = {x i,j |j ≥ 0}, x i,0 = 0 denotes an totally ordered set of positive values such that on each interval X i,j = (x i,j , x i,j+1], f i is defined and respects properties P1, P2, P3 and P4. Lemma 14. The maxima of fix κ (x) and fix λ (x) are found in i∈ [1..n] Xi :

max x∈ i∈[1..n] j X i,j fix κ (x) = max x∈ i∈[1..n] Xi fix κ (x) max x∈ i∈[1..n] j X i,j fix λ (x) = max x∈ i∈[1..n] Xi fix λ (x)
Proof. The proof is immediate by considering the lemma 11 and 13.

Reducing set of phasing vectors

To find the worst-case response time of a task, it is necessary to compute the maximum response time of this task for all busy-periods for all execution of (T, Λ, src). From previous sections, we can remark that the response time of a task in a busy-period depends only on Φ. Thus, if Γ denotes the set of all possible values of Φ for all busy-periods, we have :

R i = max Φ∈Γ R i (Φ) (10)
In this section we prove that it is not necessary to explore all Γ, but only π i -busy-periods t 0 , Φ such that for each activation sources, at least one task of priority greater or equal to π i generates a job at t 0 .

Rewriting functions

The end and start of a task τ i in a π i -busy-period were defined by

s i,q (Φ) = min{s i,q (Φ, t) = t|t > 0} f i,q (Φ) = min{f i,q (Φ, t) = t|t > 0} with s i,q (Φ, t) = B i + (q -1)e i0 + j∈hp(i) w j (φ src(j) , t) (11)
f i,q (Φ, t) = B i + qe i0 + j∈ht(i) w j φ src(j) , t + j∈hp(i)\ht(i) w j φ src(j) , s i,q (Φ) (12)
These can be solve by the computation of fixed points of

u 0 s (Φ) = s i,q (Φ, 0) u n+1 s (Φ) = s i,q (Φ, u n s (Φ)) u 0 f (Φ) = f i,q (Φ, 0) u n+1 f (Φ) = f i,q (Φ, u n f (Φ))
Let F k,i , G k,i and H i,q the sums of workload from an activation source on a π i -busy-period at t defined as:

F k,i (x, t) : (0, p k] × R → R = j∈hp(i)∩θ k w j (x, t) (13)
G k,i (x, t) : (0,

p k] × R → R = j∈ht(i)∩θ k w j (x, t) (14)
H i,q (Φ) : Γ → R = j∈hp(i)\ht(i) w j (φ src(j) , s i,q (Φ)) (15)
By definition hp(i

) = k∈[1..m] (hp(i) ∩ θ k) and ht(i) = k∈[1.
.m] (ht(i) ∩ θ k), thus:

s i,q (Φ, t) = B i + (q -1)e i0 + k∈[1..m] F k,i (φ k , t) (16)
f i,q (Φ, t) = B i + qe i0 + H i,q (Φ) + k∈[1..m] G k,i (φ k , t) (17)

Set of phasing vectors

Let Xk,i denotes for an activation source λ k and a task τ i the ordered set of phasing values

φ k such Xk,i = {0} ∪ {x|x = o j mod p k , ∀j ∈ hp(i) ∩ θ k } ∪ {p k }.
This set is the set of phase values such that for each activation source a task of hp(i) is synchronous with the start of the busy-period.

Lemma 15. The functions F k,i and G k,i respect properties P1, P2, P3 and P4 on each interval (x 1 , x 2] where x 1 and x 2 are two consecutive values of Xk,i .

Proof. Consider x 1 and x 2 two consecutive values of Xk,i , from the lemma 1 :

∀x ∈ (x 1 , x 2], ∀t ∈ R, ∀j ∈ θ k , w j (x 2 , t) ≥ w j (x, t) =⇒ F k,i (x 2 , t) ≥ F k,i (x, t) ∀x ∈ (x 1 , x 2], ∀t ∈ R, ∀j ∈ θ k , w j (x 2 , t) ≥ w j (x, t) =⇒ G k,i (x 2 , t) ≥ G k,i (x, t)
Lemma 16. The function H i,q is monotone increasing on each interval k∈[1..m] (x k,1 , x k,2] where x k,1 and x k,2 are two consecutive values of Xk,i .

Proof. The functions F k,i respect properties P1, P2, P3 and P4, so, from lemma 10, the function s i,q (Φ) (that is the fixed point of the sum of F k,i) is a monotonic increasing function for each φ k . Thus, if all φ k increases in each (x k,1 , x k,2] then the functions w j (φ src(j) , s i,q (Φ)) increase, and so H i,q (Φ) is an monotone increasing fonction.

Lemma 17. The maximum of f i,q (Φ) is fond for a phasing vectors Φ in the set k∈[1..m] Xk,i .

Proof. The value s i,q (Φ) is the fixed point of an iterative function which is the sum of functions F k,i that respect properties P1, P2, P3 and P4 so s i,q (Φ) is a monotonic increasing function for each φ k (Lemma 14).

From Lemma 14 and the rewriting of f i,q (Φ), we alse show that

max Φ∈Γ f i,q (Φ) = max Φ∈ k∈[1..m] Xk,i f i,q (Φ) Q.E.D.
Lemma 18. The maximum of r i,q (Φ) is fond for a phasing vectors Φ in the set k∈[1..m] Xk,i .

Proof. By definition (eq. 2) a i,q (φ k) = ϕ i (φ k) + (q -1)p k , so for x 1 and x 2 two consecutive values of Xk,i , ∀x ∈ (x 1 , x 2], a i,q (x) > a i,q (x 2) (ϕ i is decreasing in (x 1 , x 2], see fig. 2). Moreover, by definition (eq. 5) r i,q (Φ) = f i,q (Φ)a i,q (Φ k) and lemma 17, r i,q is maximal for a value in k∈[1..m] Xk,i .

Discussion about the complexity

The complexity to compute the worst-case response time comes from the size of k | Xk,i |. This set represents all possible combination of candidates for the beginning of the busy-period among all schedule table in the system. This could be become computationally intractable even fo small task sets.

In the literature, two approaches exit to solve this problem. The first one consists to exhibit some approximate functions with a lower computational complexity. However, these approximations increases the pessimism of the analysis. In [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF], Tindell provided an approximate function that still gives good results but uses a single approximation function for each table. Palencia Gutierrez et al. [START_REF] Palencia | Schedulability analysis for tasks with static and dynamic offsets[END_REF] formalized and generalized Tindell's work. In [START_REF] Mäki | Tighter response-times for tasks with offsets[END_REF], an improvement of Tindell and Palencia et al. is presented to reduce the overestimation of the worst-case response time, i.e to reduce the pessimism.

The second approach consists to optimize the algorithm to increase time efficiency. In [START_REF] Mäki | Efficient response-time analysis for tasks with offsets[END_REF], a static representation of cyclic functions is pre-computed and used to speed up the computation. The advantage is to reduce drastically the number of computation during the solution search. However, sometimes, the pre-computation could be heavy time costly .

In [START_REF] Mäki | Tighter response-times for tasks with offsets[END_REF], Mäki et al. done a synthesis of the approximate approach with static function representation. For the moment, we do not study this approach.

All this works [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF][START_REF] Palencia | Schedulability analysis for tasks with static and dynamic offsets[END_REF][START_REF] Mäki | Tighter response-times for tasks with offsets[END_REF][START_REF] Mäki | Efficient response-time analysis for tasks with offsets[END_REF] do not use the same model than AUTOSAR one. They use the usual Response Time Analysis (RTA) model of preemptive transactions, i.e schedule tables, under fixed-priority scheduler. They do not consider mixed preemption. Next Sections expose how to extend these works to the AUTOSAR model.

Approximate computation

The computational complexity of the AUTOSAR worst-case analysis comes from every possible combination of phases among all schedule tables in the system. An identical problem appears for RTA of real-time transactions [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF]. A transaction is exactly the same object than a schedule table. The main difference with the present model is the scheduling policy. In [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF], the fixed-priority scheduler is only take into account.

Tindell provided an approximate RTA that still gives good results. To reduce the number of combination, an approximation function of the interference is used for each transaction and not for each task. A formalization and generalization of Tindell's work is done by Palencia Gutierrez et al. in [START_REF] Palencia | Schedulability analysis for tasks with static and dynamic offsets[END_REF].

In this section, we extend the Tindell's approach to our model.

Approximate functions of starting date

We have:

s i,q (Φ) = min{s i,q (Φ, t) = t|t > 0} = fix s i,q (Φ) s i,q (Φ, t) = B i + (q -1)e i0 + k∈[1..m] F k,i (φ k , t) with F k,i (φ k , t) = j∈hp(i)∩θ k w j (φ k , t)
We introduce now:

Fk,i (t) : R → R = max φ k ∈ Xk,i j∈hp(i)∩θ k w j (φ k , t) = max x∈ Xk,i F k,i (φ k , t)
and we define a new approximation function:

ŝi,q (Φ, t) = B i + (q -1)e i0 + F src(i),i (φ src(i) , t)

+ k =src(i) Fk,i (t) Lemma 19. ∀Φ ∈ k∈[1..m] Xk,i , fix s i,q (Φ) ≤ fix ŝi,q (Φ)
Proof. By definition we have ∀x ∈ Xk,i , ∀t > 0, 0 ≤ F k,i ≤ Fk,i and so ∀(Φ, t), s i,q (Φ, t) ≤ ŝi,q (Φ, t).

From Lemma 12 we have fix s i,q (Φ) ≤ fix ŝi,q (Φ).

Definition 10. We denote the maximum of ŝ(Φ) as

ŝi,q = max Φ∈ k∈[1..m] Xk,i fix ŝi,q (Φ) = max φ src(i) ∈ Xi,i
fix ŝi,q (0, ..., φ src(i) , ..., 0)

(remark that ŝi,q (Φ) do not depend to φ k , k = src(i)). Lemma 20. ∀Φ ∈ Γ, s i,q (Φ) ≤ ŝi,q Proof. From Lemma 17, ∀Φ ∈ Γ, s i,q (Φ) ≤ max Φ∈ k∈[1..m] Xk,i s i,q (Φ) Q.E.D. Proof. We have R i = max Φ∈Γ max q∈[1..Q i (Φ)] r i,q (Φ) and by definition ∀Φ ∈ Γ, Qi > Q i (Φ), so R i ≤ max Φ∈Γ max q∈[1.. Qi] r i,q (Φ) = max q∈[1.
. Qi] max Φ∈Γ r i,q (Φ). By Lemma 22, we have R i ≤ max q∈[1.. Qi] ri,q = Ri .

Discussion about the complexity

It is necessar to evaluate ŝi,q and fi,q with a fixed point iterative function for each value of Xi,i to compute Ri . Moreover for each iteration, the maxima of Fk,i , Ĝk,i and Ĥk,i have to be found in the set Xk,i . These

can be done in O(| Xk,i |).
Remark that the number of iterations can be bound by γ (see appendix) and thus the complexity if

O(γ| Xi,i | k =src(i) | Xk,i |).

Fast response-time

In this Section, the fast response-time analysis of Mäki-Turja et al. [START_REF] Mäki | Efficient response-time analysis for tasks with offsets[END_REF] is extended to the AUTOSAR model. This method is based on a pre-computed table to make a static representation of F and Î and thus speed the computation of ri,q . The key to done this representation is to recognize a cyclic pattern that repeats itself every p k .

Preliminaries

Lemma 24.

∀φ k , ∀t = a.p k + t , a ∈ N, w i (φ k , t) = a.e i0 + w i (φ k , t) ∀φ k , ∀t = a.p k + t , a ∈ N, w i (φ k , t) = a.e i0 + w i (φ k , t)
Proof.

w i (φ k , t) = 1 + t -ϕ i (φ k) p k e i0 = 1 + a.p k + t -ϕ i (φ k) p k e i0 = 1 + a.p k p k + t -ϕ i (φ k) p k e i0 = 1 + a + t -ϕ i (φ k) p k e i0 = a.e i0 + 1 + t -ϕ i (φ k) p k e i0 = a.e i0 + w i (φ k , t)
The reasoning is exactly the same for w i (φ k , t).

Lemma 25. ∀k ∈ [1..m], ∀t = a.p k + t , a ∈ N, Fk,i (t) = a.F k,i + Fk,i (t) ∀k ∈ [1..m], ∀t = a.p k + t , a ∈ N, Îk,i (t) = a.I k,i + Îk,i (t)
with F k,i = j∈hp(i)∩θ k e j,0 and I k,i = j∈hp(i)∩θ k e j,0 .

Proof. It is immediate from Lemma 24.

Previous lemmata show that Fk,i and Îk,i have a periodic behavior, and so a statically pre-computed representation of these functions in a period interval can be used to speed up the response-time calculation.

Static representation

To pre-compute Fk,i and Ĝk,i in the interval [0,p k), their convex corners (the function lies bellow the straight line segment connecting two consecutive points) is used. For instance, these corners are represented in Figure 3 with crosses for w i (φ k , t) and w i (φ k , t) functions.

The representation of Fk,i , respectively Îk,i , uses an array A k,i , resp. B k,i and C k,i , of points that represent their convex corners and F k,i , resp. I k,i .

A point is an object which has an x (representing time) and a y (representing workload) coordinate. We denote X[j].x, respectively X[j].y, the x, resp. y, value of the jth point in X. Using these objects, we have:

Fk,i (t) = a.F k,i + A k,i [k A].y Îk,i (t) = a.I k,i + B k,i [k B].y + C k,i [k C].y a = t div p k t = t rem p k k A = max{l : A k,i [l].x ≤ t } k B = max{l : B k,i [l].x < t } k C = max{l : C k,i [l].x ≤ t } time time time time p k p k p k p k w i (k , t) w i (k , t) w i (k , t) w i (k , t)
Figure 3: Representaion of the convex cornes for w i (φ k , t) and w i (φ k , t) for a given φ k .

The set of points A k,i is computed by evaluating w j (φ k , t) for each j ∈ hp(i)∩θ k and for each φ k ∈ Xk,i and then by extracting the maximum.

For each value φ α of Xk,i , a set

C α of |hp(i) ∩ θ k | 2-uplets < ϕ, e > is computed, such that {< C α [l].ϕ = ϕ j (φ), C α [l]
.e = e j,0 >: j ∈ hp(i) ∩ θ k }. We assume that the 2-uplets of C α are ordered according to increasing values of ϕ, i.e. for l

1 < l 2 then C α [l 1].ϕ ≤ C α [l 2].ϕ.
The set C α represents for a given phase φ α ∈ Xk,i , the activation dates of all tasks τ j : j ∈ hp(i) ∩ θ k .

The convex corner of the workload function induced by the set of tasks {τ j : j ∈ hp(i) ∩ θ k } for a given phase φ α is simply represented by

W α [1].x = C α [1].ϕ W α [1].y = C α [1].e l ∈ 2...|hp(i) ∩ θ k | W α [l].x = C α [l].ϕ W α [l].y = W α [l -1].y + C α [l].e
The W α represents the convex corner of F k,i (φ α , t). To compute the convex corner of Fk,i (t) we need to compare all W α : α ∈ Xk,i for all t and to keep only the maximum value.Then, the set A k,i is computed by keeping all points p ∈ α∈ Xk,i W α such ∀p = p ∈ A if p .x ≤ p.x then p .y ≤ p.y.

The algorithm to compute B k,i is exactly the same with the set of tasks ht(i) ∩ θ k and the set (hp(i) \ ht(i)) ∩ θ k for C k,i .

8 Tight esponse-ime Mäki et al. propose in [START_REF] Mäki | Tighter response-times for tasks with offsets[END_REF] an improvement to the approximation response-time analysis presented by Tindell [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF], and Palencia et al. [START_REF] Palencia | Schedulability analysis for tasks with static and dynamic offsets[END_REF]. The improvement tightens the analysis, i.e. makes it less pessimistic, by removing unnecessary overestimation of the interference a task can impose on other tasks.

The fix-point iteration to compute s i,q and f i,q terminates when the sum of all workload functions meets the line from origin with slope 1 (see figure 4). In [START_REF] Mäki | Tighter response-times for tasks with offsets[END_REF], the authors replace stepped stairs function with slanted stairs (with slope 1) because they not contribute to earlier fix-point convergence. However, in [START_REF] Mäki | Tighter response-times for tasks with offsets[END_REF] they just consider ceil functions, as w i , to compute the response time. Here, the same thing is done with a new slanted stair function to replace floor function, w i , to avoid earlier fix-point convergence (see figure 4 to have an example of convergence problem). We define two slanted stairs functions:

W i (φ k , t) = 1 + t * p k e i0 + x i (φ k , t) t * = t -ϕ i (φ k) x i (φ k , t) =    0 t * < 0 0 t * mod p k ≥ e i0 -1 (t * mod p k) + 1 -e i0 otherwise W i (φ k , t) = t * p k e i0 + x i (φ k , t) t * = t -ϕ i (φ k) x i (φ k , t) =        0 t * ≤ 0 0 t * mod p k = 0 0 t * mod p k ≥ e i0 (t * mod p k) -e i0 otherwise
We redefine s i,q (Φ) and f i,q (Φ) as the smallest solution in N + of the following fixed-point equation:

s i,q (Φ, t) = B i + (q -1)e i0 + k∈[1..m] F k,i (φ k , t) f i,q (Φ, t) = B i + qe i0 + H i,q (Φ) + k∈[1..m] G k,i (φ k , t) with F k,i (x, t) : (0, p k] × R → R = j∈hp(i)∩θ k W j (x, t) (18)
G k,i (x, t) : (0,

p k] × R → R = j∈ht(i)∩θ k W j (x, t) (19)
H i,q (Φ) : Γ → R = j∈hp(i)\ht(i) W j (φ src(j) , s i,q (Φ)) (20)
Lemma 26. ∀Φ ∈ Γ i , s i,q (Φ) = s i,q (Φ)

∀Φ ∈ Γ i , f i,q (Φ) = f i,q (Φ)
Proof. See [START_REF] Mäki | Tighter response-times for tasks with offsets[END_REF].

In the same manner than for s i,q (Φ) and f i,q (Φ), it is possible to propose an approximation computation of s i,q (Φ) and f i,q (Φ) that conduct to the definition of the following approximation functions: si,q (Φ, t) = B i + (q -1)e i0 + F src(i),i (φ src(i) , t)

+ k =src(i) Fk,i (t) with Fk,i (t) : R → R = max x∈ Xk,i F k,i (φ k , t) and fi,q (Φ, t) = B i + qe i0 + G src(i),i (φ src(i) , t) + k =src(i) (Hk,i + Gk,i (t)) with Gk,i (t) : R → R = max x∈ Xk,i G k,i (φ k , t)
Hk,i = max

φ k ∈ Xk,i j∈hp(i)\ht(i)∩θ k W j (φ k , s i,q)
9 Experiments

The response-time computation techniques described in the previous sections were implemented in Python in order to evaluate there efficiency. We compared the results of the RTA algorithm described in section 5 to three other RTA methods:

• Approximate Computation: Presented in section 6, this technique guaranty pessimistic results and a slow computation time.

• Fast Response-Time: This technique provide a very fast analysis speed for a much more pessimistic results. It is presented in section 7.

• Tighter Response-Time: Presented in section 8, the aim of this method is the tightness of the results.

Using the implemented techniques and a task generator, we performed a set of simulations in order to support the theory behind the analysis methods.

Task Generator

We used a task generator in order to generate a set of tasks using the following three elements as parameters: total system load ; number of activation sources ; number of tasks per activation source.

The task generator automatically generates a set of tasks with the following properties:

1. The total system load is proportionally distributed over all the activation sources.

2. Activation sources periods are uniform-randomly distributed in the range 1000 to 1000000.

3. Each offset is uniform-randomly distributed within the associated activation source period.

4. The priority of a task is assigned according to the period of the associated activation source. The lower the period is, the higher the priority will be. If in a task group, more than one task have the same offset, the one with the lower offset will have the higher priority.

5. The execution time is computed by the UUniFast function.

6. The preemption threshold of a task is equal to the task priority.

7. All the tasks are generated with only one execution block.

Simulation Setup

The simulation setup followed is divided into three operations:

1. Generating 100 task sets using the task generator described in the section above while varying the input parameters (number of activation sources and the number of tasks per activation source). The value of the total system load is fixed to 80%.

2. Calculating the worst case response-time (r i) of each task (t i) in the set using the implemented techniques (exact, approximate, fast and tight).

3. Comparing the obtained values and the efficiency of the different techniques.

In order to accurately compare the different techniques, we used the following methods:

1. Evaluating pessimism:

• %RTA (Response Time approximation): For each task in a task set, we calculated the average increase over the exact computation. For a task t i , an improvement is defined as

r approx i r exact i - 1
(same equation applies to the fast and tight techniques). • %task (Number of tasks with overestimated response-time) : For each task set, the percentage of tasks in the set with an overestimated response-time compared to the exact computation technique is computed. The results are displayed for the approximate, fast and tight techniques. • %WRTA (Response Time approximation for pessimistic results): We calculated the average increase in response-time only the for tasks that meet increase over the exact technique.

time (Evaluating time efficiency):

For each task set, we estimated the computation time of the three approximation methods (approx, fast and tight).

Evaluating Pessimism

The pessimism of each computation technique is evaluted by varying the parameters of the task generator.

In the first simulation setup (Table 1), the number of tasks per activation source varies from 2 tasks to 13, while maintaining the total system load at 80% and the total number of activation sources at 3. As expected, the results shows that the tight computation technique is the less pessimistic method. The approximation technique is more pessimistic than the tight approach but less than the fast computation. In a matter of fact, the fast approach can reach a high level of overestimation with 60% of tasks with improvement over the exact analysis, and with an average overestimation of 30%. We can also note that the overestimation of all of the three approximate methods increases remarkably when the number of tasks per activation source is increased. For example, if we take a look at the results for the fast computation technique, the average overestimation increases from 6.6% to 36% when the number of tasks vraies from 2 to only 9 tasks per activation source. As for the computation time, the fast computation maintain a steady and fast computation time around 0.1 seconds. The approx and tight computation time increases slowly to reach 11.1 seconds for the approx technique and 24.4 seconds for the tight technique.

In the second simulation setup (Table 2), the number of activation sources varies from 2 activation sources to 13. An 80% total system load and 3 tasks per activation source are fixed.

Unlike the previous results, these numbers indicates that varying the number of activation sources does not affect the approximation methods pessimism in a noteworthy way. In fact, the average overestimation of the approximation approach for 3 tasks per activation sources evolves around 6%. For the fast approach, the average overestimation is steady at a value of approximately 19%. And for the tight approach, the average overestimation is approximately at 3%. As for the computation time, the most time efficient technique is still the fast approach, followed by the approx approach and then the tight technique. We can also note that this time, the computation time for the approx and tight techniques increases very rapidly to reach 90 seconds for the approx method, and 222 seconds for the tight method. These results are explained by the fact that the number of combination for the phasing vector Φ increases exponentially when the number of activation sources increases.

Evaluating Time Efficiency

In order to evaluate the time efficiency of the three approximation techniques, a third simulation setup (Table 3) is executed. In this setup, the number of tasks per activation source varies while maintaining the total system load at 80% and the number of activation sources at 10. As we can see in the Table 3, the fast computation method delivers a very fast computation time. As for the tight and approx method, the execution time increases rapidly to reach approximately 100 seconds for the approx technique and 200 seconds for the tight technique.

Conclusion

In this paper, we have studied the problem of computing the response times of real-time jobs in multitask softwares built on top of AUTOSAR OS compliant kernels. By doing so, we have obtained a rather complex model of multitask softwares and we have developed, proven and prototyped adequate algorithms.

We have studied the possibility to trade tightness against computation time by using approximation techniques [START_REF] Tindell | Adding time-offsets to scheduling analysis[END_REF][START_REF] Palencia | Schedulability analysis for tasks with static and dynamic offsets[END_REF][START_REF] Mäki | Efficient implementation of tight response-times for tasks with offsets[END_REF]. Without surprise, the different techniques have their advantages and drawbacks. Next study will be on set of tasks with same priority. The same kind of techniques have to be developed and experimented.

Number of Activation

Figure 2 :

 2 Figure 2: Graph of the function ϕ i (φ k , t) for a fixed t

Figure 4 :

 4 Figure 4: Stepped stairs vs. slanted stairs

 Table extends the concept of Alarm. A schedule table is programmed to expire when the counter reaches a specific value. This expiry date is used as a reference to measure a set of time offsets , where each offset corresponds to the release of a job. The jobs released by a schedule table can potentially originate from different tasks. It is possible to program a schedule table to expire one time or to have a cyclic behavior.

 Figure 2 shows the graph of the ϕ i function. It is clear that ϕ i is minimal for φ * k and decreases on intervals [0, φ * k] and (φ * k , p src(j)). Hence, by definition of the ceil and floor functions, for a given t, w i and w i are maximal for φ * k and increase on the intervals (0, φ *

not a multiple of p k p k otherwise and the functions are monotonic increasing for the intervals (0, φ * k] and (φ * k , p k]. Proof. k] and (φ * k , p k].

Table 1 :

 1 Response-Time computation for 80% utilization and 3 activations sources.

				Number of Tasks Per Activation Source
			2	3	4	5	6	7	8	9
		Approx 0.4	1.3	1.9	1.9	2.7	2.5	3.22	3
	%RTA	Fast	2	5.4	8.1	9.4 12.6 15.9 19.9 22.6
		Tight	0.04 0.2	0.6	0.5	0.8	0.7	1.2	1.1
		Approx 4.2 13.6 14.8 18.8 24.8 25.1 30.3 32.6
	%task	Fast	15.5	31	35.1 41.4 49.5 54.52 57.7 60.3
		Tight	0.7	2.2	5.7	7.3 10.1	9.1	14.4 15.8
		Approx 1.3	4.9	7.6	6.2	9	8.6	9.9	8.1
	%WRTA	Fast	6.6	12	19.7 19.5 22.6 27.1 32.5	36
		Tight	0.1	1.2	3.5	3.1	4.6	4.2	6.6	5.6
		Approx 0.01 0.06 0.2	0.5	0.9	1.8	3.5 11.1
	time (s)	Fast	0.01 0.02 0.04 0.05 0.06 0.08	0.1	0.2
		Tight	0.4	0.7	0.8	1.5	2.3	5.8	8.3 24.4

Table 2 :

 2 Response-Time computation for 80% utilization and 3 tasks per activations sources.

	Source

Table 3 :

 3 Response-Time computation for 80% utilization and 10 activations sources.

This constraint can be relaxed by differentiating jobs of a tasks for each activation sources into new tasks.

Acknowledgements

Special thanks goes to Oussama El Fatayri, who help me to implement and to experiment.

Approximate functions of finishing date

We have f i,q (Φ) = min{f i,q (Φ, t) = t|t > 0} f i,q (Φ, t) = B i + qe i0 + k∈ [1..m] G k,i (φ k , t) + j∈hp(i)\ht(i) w j (φ src(j) , s i,q (Φ))

and we introduce

and we define a new approximation function:

An approximation of worst-case response time

We define a first over-approximation of the response time of the qth job in an π i -busy period as:

ri,q (Φ) = fi,q (Φ)a i,q (φ src(i))

Definition 11. We denote the maximum of ri,q (Φ) as

Proof. We have ∀Φ ∈ Γ, r i,q (Φ) = f i,q (Φ)a i,q (φ src(i)) ≤ fi,q (Φ)a i,q (φ src(i)) = ri,q (Φ). Moreover ∀Φ ∈ Γ, r i,q (Φ) ≤ max Φ∈ k∈[1..m] Xk,i r i,q (Φ). Q.E.D by definition of ri,q .

Lemma 23. The worst-case response time R i of a task τ i is over-approximated by Ri computed by

The solution f * = min{t = f (t) | t > 0} is the fixed point computed by:

Remark that :

• values of the series u belong to N,