
HAL Id: hal-01273673
https://hal.science/hal-01273673

Preprint submitted on 12 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Tight Analysis for AUTOSAR Schedule Tables
Pierre-Emmanuel Hladik

To cite this version:
Pierre-Emmanuel Hladik. Fast and Tight Analysis for AUTOSAR Schedule Tables. 2016. �hal-
01273673�

https://hal.science/hal-01273673
https://hal.archives-ouvertes.fr

Fast and Tight Analysis for AUTOSAR Schedule Tables

—
Pierre-Emmanuel Hladik (pehladik@laas.fr)

—
CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
—

The main parts of this report were produced in 2010,

(re)implemented in 2014 and published the

February 12, 2016
—

Abstract

AUTOSAR is the name of a consortium that defines a set of industrial standards for the design of in-
vehicle embedded systems. The AUTOSAR consortium promotes a model-based approach, supported by
tools that are expected to automatically transform a functional design into a real-time multitask software.
Before to consider the design of such tools, one must be able to verify the real-time behavior of a
multitask software. This report presents an extension of a previous work on a mathematical modeling
framework for AUTOSAR applications and a worst-case response time analysis [7, 8, 9] published with
Anne-Marie Déplanche, Sébastien Faucou and Yvon Trinquet. Three new algorithms are proposed,
implemented and evaluated to improve performance of the analysis.

Acknowledgements

Special thanks goes to Oussama El Fatayri, who help me to implement and to experiment.

1

Contents

1 Introduction 3

2 Related works 3

3 Scheduling policy of AUTOSAR OS 4

4 Modeling AUTOSAR OS multitask software 5
4.1 Modeling framework . 5
4.2 Mapping to AUTOSAR . 6

5 A response-time analysis algorithm for AUTOSAR OS 7
5.1 Definitions . 7
5.2 Maximum response time of a task in a busy-period . 8
5.3 General results on iterated functions . 10

5.3.1 Hypothesis on iterated functions . 10
5.3.2 Results on the summation of functions . 11
5.3.3 Results on the fixed point . 11
5.3.4 Results on the fixed point of a composed function 12

5.4 Reducing set of phasing vectors . 12
5.4.1 Rewriting functions . 13
5.4.2 Set of phasing vectors . 13
5.4.3 Discussion about the complexity . 14

6 Approximate computation 15
6.1 Approximate functions of starting date . 15
6.2 Approximate functions of finishing date . 16
6.3 An approximation of worst-case response time . 16
6.4 Discussion about the complexity . 17

7 Fast response-time 17
7.1 Preliminaries . 17
7.2 Static representation . 18

8 Tight esponse-ime 19

9 Experiments 21
9.1 Task Generator . 21
9.2 Simulation Setup . 22
9.3 Evaluating Pessimism . 22
9.4 Evaluating Time Efficiency . 23

10 Conclusion 23

2

1 Introduction

AUTOSAR (AUTomotive Open System ARchitecture) is a consortium composed of the main actors of the
automotive domain. It publishes a family of standards specifying a reference architecture for modern in-
vehicle embedded systems. It promotes a tool-assisted model-based approach to system design. One of
the tool is expected to transform a set of interconnected software components into a real-time multitask
software. To achieve its duty, this tools must be able to verify the real-time behavior of a multitask software
built on top of an AUTOSAR OS compliant real-time kernel.

At first sight, AUTOSAR OS is just another fixed priority preemptive real-time kernel. Thus, one can
predict the real-time behavior of an AUTOSAR software by using state-of-the-art algorithms such as pre-
sented in the reference book of Giorgio Buttazo [5]. Actually, AUTOSAR OS allows to design rather
complex multitask softwares. To the best of our knowledge, no algorithm has been published that allows to
compute the response times of jobs in such a software without performing pessimistic over-approximations.
In this paper, we build such an algorithm, and we prove its correctness. We focus on the possibility to take
into account most of the features of AUTOSAR OS so as to minimize the pessimism of the results.

This report extends previous work [7, 8, 9] published with Anne-Marie Déplanche, Sébastien Fau-
cou and Yvon Trinquet.

The paper is organized as follow: in section 2, the related works is presented; in Section 3, the scheduling
services of AUTOSAR OS are described; in Section 4, the modeling framework is introduced; the Section 5
exposes how to compute upper bounds on the response time of the tasks of a system; Sections 6, 7 and 8 pro-
pose some improvements to speed up the analysis; in Section 9, the method is expremiented; in Section 10,
the paper is concluded.

2 Related works

This report addresses the following (pragmatic) problem: how to compute reasonable bounds on the re-
sponse times of jobs spawned by a complex multitask software executing on top of an AUTOSAR OS
compliant kernel. Other authors did study similar problems, for instance [12], [4] and [8] expose how to
analyze OSEK/VDX OS applications. OSEK/VDX OS is the ancestor of AUTOSAR OS.

Thus, the existing algorithms has to be updated to take into account the features introduced in AU-
TOSAR OS. The main novelty is the introduction of schedule tables, which leads to a major update. Let
us underline that in [4], the overhead of kernel activities are taken into account and this dimension is not
explored here.

The RTA (Response Time Analysis) approach is followed. This approach was developed in the mid
80’s by Joseph and Pandya [10] and improved by Audsley [1]. In the following years and up to now, many
extensions and improvements have been proposed. Concerning our work, the most important extensions are
the concept of asynchronous transaction introduced in [18]; the generalization of the concept of preemp-
tion threshold proposed in [19]; the study of systems scheduled FPP/FIFO (Fixed Priority Preemptive as a
primary criterion / First In First Out policy as a secondary criterion) [4].

The main difficulty of this problem comes from the complexity of the models. Two dimensions are
affected. First, it is difficult to express and prove an algorithm that takes into account all the features of the
target model, even if an algorithm is known for each feature on its own. Second, the complexity of the model
impacts the time complexity of the algorithm. Many solutions have been proposed to alleviate this problem,
based on the elimination of useless computations [6] and/or the trading of time complexity for pessimism.

3

In this paper, we put the pieces together in order to take into account the AUTOSAR scheduling policy for
complex systems.

This theoretical problem was studied because of a very pragmatic concern: the AUTOSAR OS standards
includes these FPP/FIFO and asynchronous transactions. Our original goal is to provide the AUTOSAR OS
users with a modeling framework to capture real-time multitask software architectures and a set of algo-
rithms to analyze these architectures. This same goal has been followed and reported in previous publica-
tions. Concerning AUTOSAR OS, early results have been reported in [9]. However, they do not offer a
satisfactory support for Schedule Tables (the name of the AUTOSAR OS concept related to asynchronous
transaction).
Our contribution. The main contribution of this document is the availability of a modeling framework and
analysis method for AUTOSAR OS based real-time multitask software. We compile and mix the existing
results and show that we can have an scheduling analysis for FPP with asynchronous transactions. Com-
paratively to previous work this report is focused on new implementations of the schedulability analysis to
improve computation performances.

3 Scheduling policy of AUTOSAR OS

The AUTOSAR OS standard [2] describes the interface and behavior of the operating system component of
an AUTOSAR ECU. It is a real-time operating system providing a limited amount of services : scheduling,
synchronization, IRQ handling, signaling, message passing, alarms handling and partitioning . Each service
can be manipulated through a set of compile-time primitives and a set of run-time primitives. Given the aim
of our work, the following of the presentation focuses on the subset of the standard that must be introduced
to understand the modeling framework exposed in section 4. To be as clear as possible, this presentation
uses some vocabulary from the object oriented modeling domain. Let us underline that AUTOSAR OS is
not an objet oriented operating system: its interface is defined in C language.
Active objects AUTOSAR OS supports two abstract classes of active objects: tasks and OsIsr (Operating
system Interrupt service routine).

The task class has two specialization: BasicTask (BT) and ExtendedTask (ET). Once created, a BT in-
stance is either in the Ready state or in the Running state (it is allocated to the CPU) until it terminates. A
compile-time primitive allows to bound the number of instances of a BT existing at the same time (subse-
quent creation requests are dropped). An ET instance can be either in the Ready state, in the Running state,
or in the Waiting state (waiting for an event to be signaled). There can be at most one instance of an ET in
the system at a given date.

The OsIsr class has also two specialization: OsIsr Category 1 (OsIsr1) and OsIsr Category 2 (OsIsr2).
OsIsr1 are out of control for the operating system, whereas OsIsr2 are not. Therefore, we focus on sys-
tem without OsIsr1. From the point-of-view of the scheduling service, OsIsr2 instances are similar to BT
instances. The difference between the two lies mainly in the source of the instance creation requests.

We introduce now the concept of job. Although it is not explicitly defined in the standard, it allows us to
offer a unified view of ET, BT and OsIsr2 instances (notice that our definition is consistent with the behavior
of the timing protection service described in the standard). A job is a non-blocking activity that is performed
by the CPU. The scheduling service arbitrates the distribution of the CPU between concurrent jobs. Jobs are
generated by ET, BT and OsIsr2 instances according to the following rules:

• Each instance of a BT or OsIsr2 generates exactly one job. The job terminates with the instance.

• An instance of an ET generates a job when it is created and each time it leaves the Waiting state. The
job terminates either with the instance, or the next time it enters the Waiting state.

4

Each job is characterized by two scheduling parameters: its base priority (constant, configured at
compile-time, attached to the task or OsIsr2 generating the job) and its current priority (dynamic, attached
to the job). For the sake of simplicity, we will name from now the base priority “priority", and the current
priority “preemption threshold”. When a job is created, its preemption threshold equals its priority. The
range of priority used for OsIsr2 is above the range of priority used for tasks.

Resources AUTOSAR OS provides a Resource (abstract) class. Its instances (named resource from now)
are created at compile-time and are used to control the access to mutually exclusive critical sections in a
multitask software. Competitors for a resource can be any job generated by an ET, an BT or even an OsIsr2
instance. Each resource has a constant ceiling priority configured through a compile-time primitive. The
synchronization protocol used by AUTOSAR OS is similar to Baker’s SRP [3] in fixed priority context, with
the restriction that the capacity of each resource is 1. When a job takes a resource, its preemption threshold is
raised to the ceiling priority of the resource. When it releases a resource, its preemption threshold recovers
its previous value. The ceiling priority of the resource must be greater than or equal to the preemption
threshold of any job likely to take the resource. It must also be as small as possible to avoid undesirable
priority inversions.

The Resource class has two realizations: standard resource, the instances of which are manipulated
explicitly by the competing jobs through run-time primitives; internal resource, the instances of which are
manipulated implicitly: when the job starts its execution (enter the Running state for the first time), it takes
the resource and does not release it before it terminates.

A specific resource, named Res_Scheduler is defined by default. Its ceiling priority is the greatest
priority used for tasks. Tasks can manipulate Res_Scheduler either as a standard or as an internal resource.

Scheduling policy AUTOSAR OS standards enforce the following scheduling policy: each time the sched-
uler is invoked, it selects the job with the greatest preemption threshold for running. If two or more jobs have
the same preemption threshold, the oldest one is chosen. The scheduler is invoked when: a job is created;
the current job terminates; the preemption threshold of the current job decreases (when it releases a standard
resource).

Counters, alarms and schedule tables: AUTOSAR OS standards provides the concept of Counter to
record recurring events (including real-time clock ticks) and the concept of Alarm to link counters and
tasks. An alarm is programmed to expire when the counter reaches a specific value. When it expires, it
releases a job (either by activating the task, or signaling an event to it). It is possible to program an alarm to
expire one time or to have a cyclic behavior.

The concept of Schedule Table extends the concept of Alarm. A schedule table is programmed to expire
when the counter reaches a specific value. This expiry date is used as a reference to measure a set of time
offsets , where each offset corresponds to the release of a job. The jobs released by a schedule table can
potentially originate from different tasks. It is possible to program a schedule table to expire one time or to
have a cyclic behavior.

4 Modeling AUTOSAR OS multitask software

4.1 Modeling framework

A mathematical modeling framework suitable for a wide variety of multitask applications built on top of
an AUTOSAR OS compliant kernel is now introduced. So as to be consistent with the terms used in the
real-time scheduling literature, we will use from now the term task in its usual sense: an entity that generates
a potentially infinite sequence of jobs. We have exposed above how to map this concept onto the concepts
of extended task, basic task and OsIsr2 supported by AUTOSAR OS.

5

We consider a system 〈T,Λ, src〉 composed of a set of n tasks T = {τi}1≤i≤n, a set of m activation
sources Λ = {λj}1≤j≤m and a mapping from task indexes to activation sources indexes src : [1..n] →
[1..m].

Each task is a tuple: τi = 〈πi, oi, di, Ei〉 where:

• πi ∈ N+ is the priority of the task.

• oi ∈ N is the offset of the task, relative to an occurrence of its activation source.

• di ∈ N+ is the deadline of the task, relative to its activation date.

• Ei = {bik = 〈ei,k, γi,k〉}1≤k≤l is the set of l execution blocks composing the tasks, where each block
is characterized by its worst-case execution time (WCET), ei,k ∈ N+, and its preemption threshold,
γi,k ∈ [πi, P] with P is the greatest priority in the system. The first block is associated to the whole
task. Therefore ei,0 is the WCET of the task and γi,0 is either the priority of the task, or the ceiling
priority of an internal resource. Each other block is associated to a critical section in the code of the
task protected by a standard resource. Notice that blocks can be only nested or sequential.

Each activation source is a couple: λi = 〈pi, ωi〉 where:

• pi ∈ N+ is the minimal inter-occurrence time of the activation source.

• ωi ∈ N ∪ {⊥} is the offset of the activation source, relative to the activation date of the system (⊥ is
used when this offset is unknown at compile-time).

The mapping from tasks to activation sources described by src(i) = k means that τi releases a job oi
unit of time after an occurrence of λk.

Let call S(T,Λ, src) = {s1, s2, . . .} the (potentially infinite) set of execution scenario of a system. In
each scenario sk, each task τi generates a (potentially infinite) sequence of jobs τki,0, τ

k
i,1, . . ., where each job

τki,q is characterized by the following values:

• ai,q(sk) ∈ N is the arrival date of τki,q.

• si,q(sk) ∈ N is the starting date of τki,q (date where it enters the Running state for the first time).

• fi,q(sk) ∈ N∗ is the finishing date of τki,q.

One of the contribution of this work is the support of schedule tables. A schedule table is similar to a
transaction as defined by Tindell in [18]. We define θk = {i ∈ 1..n| src(i) = k} the set of tasks attached to
a same activation source. If |θk| = 1 then λk is an alarm. If |θk| > 1 then λk is a schedule table.

4.2 Mapping to AUTOSAR

The proposed framework can model any AUTOSAR OS multitask software meeting the following con-
straints:

• It is possible to compute the WCET (or an upper bound) of each task.

• It is possible to compute the minimal duration (or a lower bound) between the arrival of two jobs from
the same task.

• There is no precedence relationship between tasks (i.e. the arrival date of a job is independent from
the state of the other jobs).

6

• Each task has exactly one activation source1.

5 A response-time analysis algorithm for AUTOSAR OS

In this section, we propose an algorithm to compute an upper bound on the worst-case response time
(WCRT) that a task can experience in a system conform to the structure exposed in Section 4. Intuitively,
the WCRT of a task is the longest time interval delimited by the arrival date and the finishing date of a
job among all jobs generated by a task among all scenarios. Our proposal follows the “Response Time
Analysis” (RTA) approach originating in the works by Joseph and Pandya [10] and Audsley [1]. It is built
upon theoretical extensions of these works, especially: response times greater than period [11]; tasks shar-
ing resources [17, 3]; asynchronous transaction based systems [18]; preemption threshold mechanism [19];
FPP/FIFO scheduling policy [4].

We introduce the analysis in two steps. In the first step we define an algorithm that computes an upper
bound on the worst-case response time of a task in a given busy-period. In a second step we derive the set
of busy-periods that have to be explored in order to find the greatest upper bound.

We only focus on the case where priorities are all different, i.e. ∀(i, j) ∈ T, i 6= j, πi 6= πj .

5.1 Definitions

Definition 1. [11] A π-busy-period is a maximal time interval where the processing units continuously
processes jobs having a preemption threshold no lower than π.

Definition 2. The phasing vector Φ of a π-busy-period starting at t0 is a set of values 〈φ1, . . . , φm〉 such
that φk is the greatest date of occurrence of the activation source λk lower or equal than t0.

Remark that t0 and Φ completely define the sequence of jobs’ execution during a π-busy-period. There-
fore, 〈t0,Φ〉 will be used to denote a π-busy-period.

Definition 3. In a πi-busy-period 〈t0,Φ〉, the phasing of task τi belonging to the activation source λk is:

ϕi(φk) : R+ → [0, pk) = (oi − φk) mod pk (1)

with x mod y = x− ybx/yc. It represents the delay between t0 and the first activation of the task τi at or
after t0.

The phasing is a periodic function with a period equal to pk, i.e. ϕi(φk) = ϕi(φk + pk), so its study can
be limited to a period, here the interval (0, pk] is choosen. From now, we restrict the domain of ϕi(φk) to
(0, pk] : ϕi(φk) : (0, pk]→ [0, pk).

Definition 4. In a πi-busy-period 〈t0,Φ〉, the delay between t0 and the qth activation of τi belonging to the
activation source λk after t0 is:

ai,q(φk) = ϕi(φk) + (q − 1)pk (2)

The figure 1 illustrates the notion of phasing for a task τj and its activation source λsrc(j) relative to a
πi-busy-period which starts at t0.

Definition 5. For a task τi the set of:
1This constraint can be relaxed by differentiating jobs of a tasks for each activation sources into new tasks.

7

activation of λsrc(j) t0 activation of a job of τj ∈ θsrcj

Φsrc(j) ϕj

oj

Figure 1: Phasing of task τj relative to t0

• higher priority tasks is denoted hp(i) = {j|πj > πi},

• higher threshold priority tasks is denoted ht(i) = {j|πj > γi,0},

• higher tasks (including τi) is denoted hp∗(i) = hp(i) ∪ {i}.

5.2 Maximum response time of a task in a busy-period

In this section, an expression of the maximum response time of a task in a busy-period is produced. In a first
time, different workload functions are introduced.

Definition 6. For a task τi belonging to the activation source λk, the right-closed-bounded-workload func-
tion wi(φk, t) : (0, pk]× R→ R is:

wi(φk, t) =

(
1 +

⌊
t− ϕi(φk)

pk

⌋)
ei0

and the right-open-bounded-workload function wi(φk, t) : (0, pk]× R→ R is:

wi(φk, t) =

(⌈
t− ϕi(φk)

pk

⌉)
ei0

Lemma 1. For a fixed t, the argument of the maximum for the functions wi and wi is:

φ∗k = argmax
φk

wi(φk, t) = argmax
φk

wi(φk, t) =

{
oi mod pk if oi is not a multiple of pk
pk otherwise

and the functions are monotonic increasing for the intervals (0, φ∗k] and (φ∗k, pk].

Proof. Figure 2 shows the graph of the ϕi function. It is clear that ϕi is minimal for φ∗k and decreases on
intervals [0, φ∗k] and (φ∗k, psrc(j)). Hence, by definition of the ceil and floor functions, for a given t, wi and
wi are maximal for φ∗k and increase on the intervals (0, φ∗k] and (φ∗k, pk].

Definition 7. The workload of a task τi in a π-busy-period is the time needed to execute the task τi during
this π-busy-period.

Lemma 2. For a π-busy-period 〈t0,Φ〉, the workload generated in [t0, t0 + t] by the task τi belonging to
the activation source λk is bounded by wi(φk, t).

Proof. By definition (see def. 3), the first job of τi arrived in the π-busy-period 〈t0,Φ〉 at t0 + ϕi(φk) and
the next job earliest arrived pk later. Thus, the number of jobs of τi activated in [t0, t0 + t] is bounded by
1 + b(t− ϕi(φk))/pkc. Moreover, the workload of a job is maximal when it consumes all its WCET, i.e.
ej0.

8

(]

Figure 2: Graph of the function ϕi(φk, t) for a fixed t

Notice that the bound is tight when τi produces jobs at its maximal rate.

Lemma 3. For a π-busy-period 〈t0,Φ〉, the workload generated in [t0, t0 + t) by the task τi belonging to
the activation source λk is bounded by wi(φk, t).

Proof. Same reasoning as lemma 2, except that an activation happens at t is not taken into account.

Once again, the bound is tight when τi produces jobs at its maximal rate.

Lemma 4. In a πi-busy-period 〈t0,Φ〉, an upper bound on the starting date of the qth job of τi belonging
to the activation source λk activated at or after t0 is the smallest solution of the following equation:

si,q(Φ) = Bi︸︷︷︸
(1)

+ (q − 1)ei0︸ ︷︷ ︸
(2)

+
∑

j∈hp(i)

wj(φsrc(j), si,q(Φ))

︸ ︷︷ ︸
(3)

(3)

with
Bi = max{ejk|πj < πi ≤ γjk} (4)

Proof. The qth job of τi can start its execution early after:

(1) the jobs with priority lower than πi finish to execute a block which has a preemption threshold greater
than πi. The priority manager ensures that there is at most one such job, and that this job will be
preempted as soon as it recovers its base priority. Therefore, Bi bounds the interference caused by
this job on τi (see [17] for explanation of maximum blocking time for priority ceiling protocol).

(2) the previous jobs of τi activated in the busy-period finish their execution. The maximum interference
from these jobs is (q − 1)ei0.

(3) the jobs with priority greater than πi, i.e. belonging to hp(i), activated in [t0, t0 + si,q(Φ)] finish their
execution. The maximum interference from these jobs is given by wj(φsrc(j), t) (see lemma 2).

There is no other source that can delay the start of the job in the πi-busy-period.

Lemma 5. In a πi-busy-period 〈t0,Φ〉, an upper bound on the finishing date of the qth job of τi relative to
t0 is given by the smallest solution of the following equation:

fi,q(Φ) = Bi + qei0 +
∑

j∈ht(i)

wj
(
φsrc(j), fi,q(Φ)

)
+

∑
j∈hp(i)\ht(i)

wj(φsrc(j), si,q(Φ))

9

Proof. Once started and before to finish, the qth job of τi is only delayed by its WCET and by workloads of
jobs having a priority greater than γi0, i.e. belonging to ht(i), and activated in (t0 + si,q(Φ), t0 + fi,q(Φ)),
so:

fi,q(Φ) = si,q(Φ) + ei0 +
∑

j∈ht(i)

wj
(
φsrc(j), fi,q(Φ)

)
−
∑

j∈ht(i)

wj
(
φsrc(j), si,q(Φ)

)
Equation (5) is obtained by joining equation (3) to previous one and by using ht(i) ⊆ hp(i).

Definition 8. For a πi-busy-period 〈t0,Φ〉, the response time of the qth job of τi is:

ri,q(Φ) = fi,q(Φ)− ai,q(Φk) (5)

Lemma 6. The length of a πi-busy-period 〈t0,Φ〉 is bounded by the smallest solution of the following
equation:

Li(Φ) = Bi +
∑

j∈hp∗(i)

wj(φsrc(j), Li(Φ)) (6)

Proof. The πi-busy-period finish when the worst-case blocking time from a lower priority tasks, i.e. Bi, and
all tasks of hp∗(i) activated in [t0, t0 + Li(Φ)) are finished.

Lemma 7. The maximum number of activations of a task τi in a πi-busy-period 〈t0,Φ〉 is

Qi(Φ) =

⌈
Li(Φ)− ϕi(φk)

pk

⌉
(7)

Proof. It is immediate from Lemma 6.

Definition 9. For a πi-busy-period 〈t0,Φ〉, the maximum response time of task τi belonging to the activation
source λk is:

Ri(Φ) = max
q∈Qi(Φ)

ri,q(Φ) (8)

where

Qi(Φ) =

⌈
Li(Φ)− ϕi(φk)

pk

⌉
(9)

5.3 General results on iterated functions

In this part, some general results on iterated functions are given.

5.3.1 Hypothesis on iterated functions

Consider a set of n functions fi : Xi × R → R where Xi = (ai, bi] is left-open and right-closed interval,
and all fi respect the following properties:

P1 fi is a monotonic increasing function for t : ∀x ∈ Xi,∀(t1, t2) ∈ R2 such that t1 ≤ t2 one has
fi(x, t1) ≤ fi(x, t2),

P2 ∀x ∈ Xi, fi(x, t) ≤ αi + βit with αi > 0, βi > 0 and
∑

i∈[1..n] βi < 1,

P3 ∀x ∈ Xi, fi(x, 0) ≥ 0,

P4 fi is a monotonic increasing function for x: ∀t ∈ R, ∀(x1, x2) ∈ X2
i such that x1 ≤ x2 one has

fi(x1, t) ≤ fi(x2, t).

10

5.3.2 Results on the summation of functions

We define κ(x, t) :
∏
i∈[1..n]Xi × R→ R =

∑
i fi(xi, t) with x = (x1, ..., xn).

Lemma 8. For an interval Xi = (ai, bi], for a given t ∈ R, the maximum of fi is fi(b, t):

∀t ∈ R,maxx∈(ai,bi] fi(x, t) = fi(bi, t)

Proof. The result is immediate by considering the proposition P4.

Lemma 9. For a given t ∈ R, the maximum of κ(x, t) is κ(x̄, t) where x̄ = (b1, ..., bn) :

∀t ∈ R,maxx∈
∏

i∈[1..n]Xi
κ(x, t) = κ(x̄, t)

Proof. The functions fi are independent, so, for a given t we have

max
x∈

∏
i∈[1..n]Xi

∑
i∈[1..n]

fi(xi, t) =
∑

i∈[1..n]

max
xi∈Xi

fi(xi, t)

Lemma 8 gives immediatly maxx∈
∏

i∈[1..n]Xi

∑
i∈[1..n] fi(xi, t) =

∑
i∈[1..n] fi(bi, t) = κ(x̄, t).

5.3.3 Results on the fixed point

Consider the iterated function uκ(x):{
u0
κ(x) = κ(x, 0)

un+1
κ (x) = κ(x, unκ(x))

and denote fixκ(x) the fixed point of the iterative sequence uκ(x). Properties P1, P2 and P3 assure that this
fixed point exists and is equal to the least fixed point.

Lemma 10. The function fixκ(x) is a monotone increasing function for each variable xi.

Proof. From lemma 9, ∀x ∈ ∏i∈[1..n]Xi with xi + δi < bi, δi ≥ 0, we have κ(x, 0) ≤ κ(x+δ, 0) with
δ = (δ1, ..., δn) and so u0

κ(x) ≤ u0
κ(x+δ). Now, suppose that for a rank n, ∀x ∈ ∏i∈[1..n]Xi, u

n
κ(x) ≤

unκ(x+δ), because of property P1 (fi increases with t) un+1
κ (x) ≤ un+1

κ (x+δ). Thus, fixκ(x) ≤ fixκ(x+δ).

Lemma 11.
maxx∈

∏
i∈[1..n]Xi

fixκ(x) = fixκ(x̄)

Proof. From lemma 9, ∀x ∈ ∏i∈[1..n]Xi, κ(x, 0) ≤ κ(x̄, 0) and so u0
κ(x) ≤ u0

κ(x̄). Now, suppose that
for a rank n, ∀x ∈ ∏i∈[1..n]Xi, u

n
κ(x) ≤ unκ(x̄), because of property P1 (fi increases with t) un+1

κ (x) ≤
un+1
κ (x̄). Thus, fixκ(x) ≤ fixκ(x̄).

Lemma 12. Consider two functions f1(x, t) and f2(x, t) with properties P1 such ∀(x, t), f1(x, t) ≤ f2(x, t),
then fixf1(x) ≤ fixf2(x).

Proof. By definition with have u0
f1

(x) ≤ u0
f2

(x). Suppose that unf1(x) ≤ unf2(x) is true for the rank n, then
by using P1 un+1

f1
(x) = f1(x, unf1(x)) ≤ f1(x, unf2(x)) ≤ f2(x, unf2(x)) = un+1

f2
(x).

11

5.3.4 Results on the fixed point of a composed function

Consider a set of functions F = {fi(x, t) : Xi × R → R} and a function g(x) :
∏
iXi → R such all

functions fi respect properties P1, P2, P3 and P4 and g increases for all variables, i.e. ∀(x1,x2) ∈ (
∏
iXi)

2

with x1,i ≤ x2,i we have g(x1) ≤ g(x2).
The function λ is defined as:

λ(x, t) :
∏

i∈[1..n]

Xi × R→ R = g(x) +
∑

i∈[1..n]

fi(xi, t)

the iterated function uλ(x): {
u0
λ(x) = λ(x, 0)

un+1
λ (x) = λ(x, unλ(x))

and fixλ(x) the fixed point of the iterative sequence uλ(x).

Lemma 13.
maxx∈

∏
i∈[1..n]Xi

fixλ(x) = fixλ(x̄)

Proof. By definition ∀x ∈∏iXi, g(x) ≤ g(x̄). Thus, from lemma 9, ∀x ∈∏i∈[1..n]Xi, λ(x, 0) ≤ λ(x̄, 0)

and so u0
λ(x) ≤ u0

λ(x̄). Now, suppose that for a rank n, ∀x ∈ ∏i∈[1..n]Xi, u
n
λ(x) ≤ unλ(x̄), because of

property P1 (fi increases with t) un+1
λ (x) ≤ un+1

λ (x̄). Thus, fixλ(x) ≤ fixλ(x̄).

Now, X̄i = {xi,j |j ≥ 0}, xi,0 = 0 denotes an totally ordered set of positive values such that on each
interval Xi,j = (xi,j , xi,j+1], fi is defined and respects properties P1, P2, P3 and P4.

Lemma 14. The maxima of fixκ(x) and fixλ(x) are found in
∏
i∈[1..n] X̄i:

maxx∈
∏

i∈[1..n]

⋃
j Xi,j

fixκ(x) = maxx∈
∏

i∈[1..n] X̄i
fixκ(x)

maxx∈
∏

i∈[1..n]

⋃
j Xi,j

fixλ(x) = maxx∈
∏

i∈[1..n] X̄i
fixλ(x)

Proof. The proof is immediate by considering the lemma 11 and 13.

5.4 Reducing set of phasing vectors

To find the worst-case response time of a task, it is necessary to compute the maximum response time of
this task for all busy-periods for all execution of (T,Λ, src). From previous sections, we can remark that
the response time of a task in a busy-period depends only on Φ. Thus, if Γ denotes the set of all possible
values of Φ for all busy-periods, we have :

Ri = max
Φ∈Γ

Ri(Φ) (10)

In this section we prove that it is not necessary to explore all Γ, but only πi-busy-periods 〈t0,Φ〉 such
that for each activation sources, at least one task of priority greater or equal to πi generates a job at t0.

12

5.4.1 Rewriting functions

The end and start of a task τi in a πi-busy-period were defined by

si,q(Φ) = min{si,q(Φ, t) = t|t > 0}
fi,q(Φ) = min{fi,q(Φ, t) = t|t > 0}

with

si,q(Φ, t) = Bi + (q − 1)ei0 +
∑

j∈hp(i)

wj(φsrc(j), t) (11)

fi,q(Φ, t) = Bi + qei0 +
∑

j∈ht(i)

wj
(
φsrc(j), t

)
+

∑
j∈hp(i)\ht(i)

wj
(
φsrc(j), si,q(Φ)

)
(12)

These can be solve by the computation of fixed points of{
u0
s(Φ) = si,q(Φ, 0)

un+1
s (Φ) = si,q(Φ, u

n
s (Φ)){

u0
f (Φ) = fi,q(Φ, 0)

un+1
f (Φ) = fi,q(Φ, u

n
f (Φ))

Let Fk,i, Gk,i and Hi,q the sums of workload from an activation source on a πi-busy-period at t defined
as:

Fk,i(x, t) : (0, pk]× R→ R =
∑

j∈hp(i)∩θk

wj(x, t) (13)

Gk,i(x, t) : (0, pk]× R→ R =
∑

j∈ht(i)∩θk

wj(x, t) (14)

Hi,q(Φ) : Γ→ R =
∑

j∈hp(i)\ht(i)

wj(φsrc(j), si,q(Φ)) (15)

By definition hp(i) =
⋃
k∈[1..m](hp(i) ∩ θk) and ht(i) =

⋃
k∈[1..m](ht(i) ∩ θk), thus:

si,q(Φ, t) = Bi + (q − 1)ei0 +
∑

k∈[1..m]

Fk,i(φk, t) (16)

fi,q(Φ, t) = Bi + qei0 +Hi,q(Φ) +
∑

k∈[1..m]

Gk,i(φk, t) (17)

5.4.2 Set of phasing vectors

Let X̄k,i denotes for an activation source λk and a task τi the ordered set of phasing values φk such X̄k,i =
{0} ∪ {x|x = oj mod pk,∀j ∈ hp(i) ∩ θk} ∪ {pk}. This set is the set of phase values such that for each
activation source a task of hp(i) is synchronous with the start of the busy-period.

Lemma 15. The functions Fk,i and Gk,i respect properties P1, P2, P3 and P4 on each interval (x1, x2]
where x1 and x2 are two consecutive values of X̄k,i.

13

Proof. Consider x1 and x2 two consecutive values of X̄k,i , from the lemma 1 :

∀x ∈ (x1, x2],∀t ∈ R, ∀j ∈ θk, wj(x2, t) ≥ wj(x, t) =⇒ Fk,i(x2, t) ≥ Fk,i(x, t)
∀x ∈ (x1, x2],∀t ∈ R, ∀j ∈ θk, wj(x2, t) ≥ wj(x, t) =⇒ Gk,i(x2, t) ≥ Gk,i(x, t)

Lemma 16. The functionHi,q is monotone increasing on each interval
∏
k∈[1..m](xk,1, xk,2] where xk,1 and

xk,2 are two consecutive values of X̄k,i.

Proof. The functions Fk,i respect properties P1, P2, P3 and P4, so, from lemma 10, the function si,q(Φ)
(that is the fixed point of the sum of Fk,i) is a monotonic increasing function for each φk.

Thus, if all φk increases in each (xk,1, xk,2] then the functions wj(φsrc(j), si,q(Φ)) increase, and so
Hi,q(Φ) is an monotone increasing fonction.

Lemma 17. The maximum of fi,q(Φ) is fond for a phasing vectors Φ in the set
∏
k∈[1..m] X̄k,i.

Proof. The value si,q(Φ) is the fixed point of an iterative function which is the sum of functions Fk,i that
respect properties P1, P2, P3 and P4 so si,q(Φ) is a monotonic increasing function for each φk (Lemma 14).

From Lemma 14 and the rewriting of fi,q(Φ), we alse show that

maxΦ∈Γ fi,q(Φ) = maxΦ∈
∏

k∈[1..m] X̄k,i
fi,q(Φ)

Q.E.D.

Lemma 18. The maximum of ri,q(Φ) is fond for a phasing vectors Φ in the set
∏
k∈[1..m] X̄k,i.

Proof. By definition (eq. 2) ai,q(φk) = ϕi(φk)+(q−1)pk, so for x1 and x2 two consecutive values of X̄k,i,
∀x ∈ (x1, x2], ai,q(x) > ai,q(x2) (ϕi is decreasing in (x1, x2], see fig. 2). Moreover, by definition (eq. 5)
ri,q(Φ) = fi,q(Φ)− ai,q(Φk) and lemma 17, ri,q is maximal for a value in

∏
k∈[1..m] X̄k,i.

5.4.3 Discussion about the complexity

The complexity to compute the worst-case response time comes from the size of
∏
k |X̄k,i|. This set repre-

sents all possible combination of candidates for the beginning of the busy-period among all schedule table
in the system. This could be become computationally intractable even fo small task sets.

In the literature, two approaches exit to solve this problem. The first one consists to exhibit some
approximate functions with a lower computational complexity. However, these approximations increases the
pessimism of the analysis. In [18], Tindell provided an approximate function that still gives good results but
uses a single approximation function for each table. Palencia Gutierrez et al. [16] formalized and generalized
Tindell’s work. In [14], an improvement of Tindell and Palencia et al. is presented to reduce the over-
estimation of the worst-case response time, i.e to reduce the pessimism.

The second approach consists to optimize the algorithm to increase time efficiency. In [13], a static
representation of cyclic functions is pre-computed and used to speed up the computation. The advantage
is to reduce drastically the number of computation during the solution search. However, sometimes, the
pre-computation could be heavy time costly .

In [14], Mäki et al. done a synthesis of the approximate approach with static function representation.
For the moment, we do not study this approach.

All this works [18, 16, 14, 13] do not use the same model than AUTOSAR one. They use the usual
Response Time Analysis (RTA) model of preemptive transactions, i.e schedule tables, under fixed-priority
scheduler. They do not consider mixed preemption. Next Sections expose how to extend these works to the
AUTOSAR model.

14

6 Approximate computation

The computational complexity of the AUTOSAR worst-case analysis comes from every possible combina-
tion of phases among all schedule tables in the system. An identical problem appears for RTA of real-time
transactions [18]. A transaction is exactly the same object than a schedule table. The main difference with
the present model is the scheduling policy. In [18], the fixed-priority scheduler is only take into account.

Tindell provided an approximate RTA that still gives good results. To reduce the number of combina-
tion, an approximation function of the interference is used for each transaction and not for each task. A
formalization and generalization of Tindell’s work is done by Palencia Gutierrez et al. in [16].

In this section, we extend the Tindell’s approach to our model.

6.1 Approximate functions of starting date

We have:

si,q(Φ) = min{si,q(Φ, t) = t|t > 0} = fixsi,q(Φ)

si,q(Φ, t) = Bi + (q − 1)ei0 +
∑

k∈[1..m]

Fk,i(φk, t)

with Fk,i(φk, t) =
∑

j∈hp(i)∩θk wj(φk, t)

We introduce now:

F̂k,i(t) : R→ R = max
φk∈X̄k,i

∑
j∈hp(i)∩θk

wj(φk, t) = max
x∈X̄k,i

Fk,i(φk, t)

and we define a new approximation function:

ŝi,q(Φ, t) = Bi + (q − 1)ei0 + Fsrc(i),i(φsrc(i), t) +
∑

k 6=src(i)

F̂k,i(t)

Lemma 19.
∀Φ ∈∏k∈[1..m] X̄k,i, fixsi,q(Φ) ≤ fixŝi,q(Φ)

Proof. By definition we have ∀x ∈ X̄k,i, ∀t > 0, 0 ≤ Fk,i ≤ F̂k,i and so ∀(Φ, t), si,q(Φ, t) ≤ ŝi,q(Φ, t).
From Lemma 12 we have fixsi,q(Φ) ≤ fixŝi,q(Φ).

Definition 10. We denote the maximum of ŝ(Φ) as

ŝi,q = max
Φ∈

∏
k∈[1..m] X̄k,i

fixŝi,q(Φ) = max
φsrc(i)∈X̄i,i

fixŝi,q(0, ..., φsrc(i), ..., 0)

(remark that ŝi,q(Φ) do not depend to φk, k 6= src(i)).

Lemma 20.
∀Φ ∈ Γ, si,q(Φ) ≤ ŝi,q

Proof. From Lemma 17, ∀Φ ∈ Γ, si,q(Φ) ≤ maxΦ∈
∏

k∈[1..m] X̄k,i
si,q(Φ) Q.E.D.

15

6.2 Approximate functions of finishing date

We have

fi,q(Φ) = min{fi,q(Φ, t) = t|t > 0}
fi,q(Φ, t) = Bi + qei0 +

∑
k∈[1..m]

Gk,i(φk, t) +
∑

j∈hp(i)\ht(i)

wj(φsrc(j), si,q(Φ))

and we introduce

Ik,i(x, t) : (0, pk]× R→ R = Gk,i(x, t) +
∑

j∈hp(i)\ht(i)∩θk

wj(x, ŝi,q)

Îk,i(t) : R→ R = max
φk∈X̄k,i

Ik,i(φk, t)

and we define a new approximation function:

f̂i,q(Φ, t) = Bi + qei0 + Isrc(i),i(φsrc(i), t) +
∑

k 6=src(i)

Îk,i(t)

Lemma 21.
∀Φ ∈ Γ, fi,q(Φ) = fixf (Φ) ≤ fixf̂ (Φ) = f̂i,q(Φ)

Proof. From the definition of Îk,i, we have ∀(Φ, t) ∈ (
∏
k∈[1..m] X̄k,i,R), fi,q(Φ, t) ≤ f̂i,q(Φ, t) and so

from Lemma 12 we have fixf (Φ) ≤ fixf̂ (Φ). Q.E.D.

6.3 An approximation of worst-case response time

We define a first over-approximation of the response time of the qth job in an πi-busy period as:

r̂i,q(Φ) = f̂i,q(Φ)− ai,q(φsrc(i))

Definition 11. We denote the maximum of r̂i,q(Φ) as

r̂i,q = max
Φ∈

∏
k∈[1..m] X̄k,i

(f̂i,q(Φ)− ai,q(φsrc(i))) = max
φsrc(i)∈X̄i,i

(f̂i,q(Φ)− ai,q(φsrc(i)))

Lemma 22.
∀Φ ∈ Γ, ri,q(Φ) ≤ r̂i,q

Proof. We have ∀Φ ∈ Γ, ri,q(Φ) = fi,q(Φ)− ai,q(φsrc(i)) ≤ f̂i,q(Φ)− ai,q(φsrc(i)) = r̂i,q(Φ). Moreover
∀Φ ∈ Γ, ri,q(Φ) ≤ maxΦ∈

∏
k∈[1..m] X̄k,i

ri,q(Φ). Q.E.D by definition of r̂i,q.

Lemma 23. The worst-case response time Ri of a task τi is over-approximated by R̂i computed by

R̂i = max
q∈Q̂i

r̂i,q

with
Q̂i =

⌈
L̂i

psrc(i)

⌉
and L̂i = min{Bi +

∑
j∈hp∗(i)wj(0, t) = t | t > 0}

16

Proof. We have Ri = maxΦ∈Γ maxq∈[1..Qi(Φ)] ri,q(Φ) and by definition ∀Φ ∈ Γ, Q̂i > Qi(Φ), so
Ri ≤ maxΦ∈Γ maxq∈[1..Q̂i]

ri,q(Φ) = maxq∈[1..Q̂i]
maxΦ∈Γ ri,q(Φ). By Lemma 22, we have Ri ≤

maxq∈[1..Q̂i]
r̂i,q = R̂i.

6.4 Discussion about the complexity

It is necessar to evaluate ŝi,q and f̂i,q with a fixed point iterative function for each value of X̄i,i to compute
R̂i . Moreover for each iteration, the maxima of F̂k,i, Ĝk,i and Ĥk,i have to be found in the set X̄k,i. These
can be done in O(|X̄k,i|).

Remark that the number of iterations can be bound by γ (see appendix) and thus the complexity if
O(γ|X̄i,i|

∑
k 6=src(i) |X̄k,i|).

7 Fast response-time

In this Section, the fast response-time analysis of Mäki-Turja et al. [13] is extended to the AUTOSAR model.
This method is based on a pre-computed table to make a static representation of F̂ and Î and thus speed the
computation of r̂i,q. The key to done this representation is to recognize a cyclic pattern that repeats itself
every pk.

7.1 Preliminaries

Lemma 24.
∀φk, ∀t = a.pk + t′, a ∈ N, wi(φk, t) = a.ei0 + wi(φk, t

′)

∀φk, ∀t = a.pk + t′, a ∈ N, wi(φk, t) = a.ei0 + wi(φk, t
′)

Proof.

wi(φk, t) =

(
1 +

⌊
t− ϕi(φk)

pk

⌋)
ei0 =

(
1 +

⌊
a.pk + t′ − ϕi(φk)

pk

⌋)
ei0

=

(
1 +

⌊
a.pk
pk

+
t′ − ϕi(φk)

pk

⌋)
ei0 =

(
1 + a+

⌊
t′ − ϕi(φk)

pk

⌋)
ei0

= a.ei0 +

(
1 +

⌊
t′ − ϕi(φk)

pk

⌋)
ei0 = a.ei0 + wi(φk, t

′)

The reasoning is exactly the same for wi(φk, t).

Lemma 25.
∀k ∈ [1..m], ∀t = a.pk + t′, a ∈ N, F̂k,i(t) = a.Fk,i + F̂k,i(t′)
∀k ∈ [1..m], ∀t = a.pk + t′, a ∈ N, Îk,i(t) = a.Ik,i + Îk,i(t′)

with Fk,i =
∑

j∈hp(i)∩θk ej,0 and Ik,i =
∑

j∈hp(i)∩θk ej,0.

Proof. It is immediate from Lemma 24.

Previous lemmata show that F̂k,i and Îk,i have a periodic behavior, and so a statically pre-computed
representation of these functions in a period interval can be used to speed up the response-time calculation.

17

7.2 Static representation

To pre-compute F̂k,i and Ĝk,i in the interval [0,pk), their convex corners (the function lies bellow the straight
line segment connecting two consecutive points) is used. For instance, these corners are represented in
Figure 3 with crosses for wi(φk, t) and wi(φk, t) functions.

The representation of F̂k,i, respectively Îk,i, uses an array Ak,i, resp. Bk,i and Ck,i, of points that
represent their convex corners and Fk,i, resp. Ik,i.

A point is an object which has an x (representing time) and a y (representing workload) coordinate. We
denoteX[j].x, respectivelyX[j].y, the x, resp. y, value of the jth point inX . Using these objects, we have:

F̂k,i(t) = a.Fk,i +Ak,i[kA].y

Îk,i(t) = a.Ik,i +Bk,i[kB].y + Ck,i[kC].y

a = t div pk
t′ = t rem pk

kA = max{l : Ak,i[l].x ≤ t′}
kB = max{l : Bk,i[l].x < t′}
kC = max{l : Ck,i[l].x ≤ t′}

timetime timetimepkpkpkpk

wi(�k, t)wi(�k, t) wi(�k, t)wi(�k, t)

Figure 3: Representaion of the convex cornes for wi(φk, t) and wi(φk, t) for a given φk.

The set of pointsAk,i is computed by evaluatingwj(φk, t) for each j ∈ hp(i)∩θk and for each φk ∈ X̄k,i

and then by extracting the maximum.
For each value φα of X̄k,i, a set Cα of |hp(i) ∩ θk| 2-uplets < ϕ, e > is computed, such that {<

Cα[l].ϕ = ϕj(φ), Cα[l].e = ej,0 >: j ∈ hp(i) ∩ θk}. We assume that the 2-uplets of Cα are ordered
according to increasing values of ϕ, i.e. for l1 < l2 then Cα[l1].ϕ ≤ Cα[l2].ϕ. The set Cα represents for a
given phase φα ∈ X̄k,i, the activation dates of all tasks τj : j ∈ hp(i) ∩ θk.

The convex corner of the workload function induced by the set of tasks {τj : j ∈ hp(i)∩ θk} for a given
phase φα is simply represented by {

Wα[1].x = Cα[1].ϕ
Wα[1].y = Cα[1].e

l ∈ 2...|hp(i) ∩ θk|
{
Wα[l].x = Cα[l].ϕ
Wα[l].y = Wα[l − 1].y + Cα[l].e

The Wα represents the convex corner of Fk,i(φα, t). To compute the convex corner of F̂k,i(t) we need
to compare all Wα : α ∈ X̄k,i for all t and to keep only the maximum value.Then, the set Ak,i is computed
by keeping all points p ∈ ⋃α∈X̄k,i

Wα such ∀p′ 6= p ∈ A if p′.x ≤ p.x then p′.y ≤ p.y.

18

The algorithm to compute Bk,i is exactly the same with the set of tasks ht(i) ∩ θk and the set (hp(i) \
ht(i)) ∩ θk for Ck,i.

8 Tight esponse-ime

Mäki et al. propose in [14] an improvement to the approximation response-time analysis presented by Tin-
dell [18], and Palencia et al. [16]. The improvement tightens the analysis, i.e. makes it less pessimistic, by
removing unnecessary overestimation of the interference a task can impose on other tasks.

The fix-point iteration to compute si,q and fi,q terminates when the sum of all workload functions meets
the line from origin with slope 1 (see figure 4). In [14], the authors replace stepped stairs function with
slanted stairs (with slope 1) because they not contribute to earlier fix-point convergence. However, in [14]
they just consider ceil functions, as wi, to compute the response time. Here, the same thing is done with a
new slanted stair function to replace floor function, wi, to avoid earlier fix-point convergence (see figure 4
to have an example of convergence problem).

time

ceil

fix-point

time

floor

fix-point

time

slanted
ceil

fix-point

time

slanted
floor

fix-point

Figure 4: Stepped stairs vs. slanted stairs

19

We define two slanted stairs functions:

W i(φk, t) =

(
1 +

⌊
t∗

pk

⌋)
ei0 + xi(φk, t)

t∗ = t− ϕi(φk)

xi(φk, t) =


0 t∗ < 0
0 t∗ mod pk ≥ ei0 − 1
(t∗ mod pk) + 1− ei0 otherwise

W i(φk, t) =

⌈
t∗

pk

⌉
ei0 + xi(φk, t)

t∗ = t− ϕi(φk)

xi(φk, t) =


0 t∗ ≤ 0
0 t∗ mod pk = 0
0 t∗ mod pk ≥ ei0
(t∗ mod pk)− ei0 otherwise

We redefine s̃i,q(Φ) and f̃i,q(Φ) as the smallest solution in N+ of the following fixed-point equation:

s̃i,q(Φ, t) = Bi + (q − 1)ei0 +
∑

k∈[1..m]

F̃k,i(φk, t)

f̃i,q(Φ, t) = Bi + qei0 + H̃i,q(Φ) +
∑

k∈[1..m]

G̃k,i(φk, t)

with

F̃k,i(x, t) : (0, pk]× R→ R =
∑

j∈hp(i)∩θk

Wj(x, t) (18)

G̃k,i(x, t) : (0, pk]× R→ R =
∑

j∈ht(i)∩θk

Wj(x, t) (19)

H̃i,q(Φ) : Γ→ R =
∑

j∈hp(i)\ht(i)

Wj(φsrc(j), s̃i,q(Φ)) (20)

Lemma 26.
∀Φ ∈ Γi, si,q(Φ) = s̃i,q(Φ)

∀Φ ∈ Γi, fi,q(Φ) = f̃i,q(Φ)

Proof. See [14].

In the same manner than for si,q(Φ) and fi,q(Φ), it is possible to propose an approximation computation
of s̃i,q(Φ) and f̃i,q(Φ) that conduct to the definition of the following approximation functions:

s̆i,q(Φ, t) = Bi + (q − 1)ei0 + F̃src(i),i(φsrc(i), t) +
∑

k 6=src(i)

F̆k,i(t)

with
F̆k,i(t) : R→ R = max

x∈X̄k,i

F̃k,i(φk, t)

20

and
f̆i,q(Φ, t) = Bi + qei0 + G̃src(i),i(φsrc(i), t) +

∑
k 6=src(i)

(H̆k,i + Ğk,i(t))

with
Ğk,i(t) : R→ R = max

x∈X̄k,i

G̃k,i(φk, t)

H̆k,i = max
φk∈X̄k,i

∑
j∈hp(i)\ht(i)∩θk

W̃ j(φk, ŝi,q)

9 Experiments

The response-time computation techniques described in the previous sections were implemented in Python
in order to evaluate there efficiency. We compared the results of the RTA algorithm described in section 5 to
three other RTA methods:

• Approximate Computation: Presented in section 6, this technique guaranty pessimistic results and a
slow computation time.

• Fast Response-Time: This technique provide a very fast analysis speed for a much more pessimistic
results. It is presented in section 7.

• Tighter Response-Time: Presented in section 8, the aim of this method is the tightness of the results.

Using the implemented techniques and a task generator, we performed a set of simulations in order to
support the theory behind the analysis methods.

9.1 Task Generator

We used a task generator in order to generate a set of tasks using the following three elements as parameters:
total system load ; number of activation sources ; number of tasks per activation source.

The task generator automatically generates a set of tasks with the following properties:

1. The total system load is proportionally distributed over all the activation sources.

2. Activation sources periods are uniform-randomly distributed in the range 1000 to 1000000.

3. Each offset is uniform-randomly distributed within the associated activation source period.

4. The priority of a task is assigned according to the period of the associated activation source. The
lower the period is, the higher the priority will be. If in a task group, more than one task have the
same offset, the one with the lower offset will have the higher priority.

5. The execution time is computed by the UUniFast function.

6. The preemption threshold of a task is equal to the task priority.

7. All the tasks are generated with only one execution block.

21

9.2 Simulation Setup

The simulation setup followed is divided into three operations:

1. Generating 100 task sets using the task generator described in the section above while varying the
input parameters (number of activation sources and the number of tasks per activation source). The
value of the total system load is fixed to 80%.

2. Calculating the worst case response-time (ri) of each task (ti) in the set using the implemented tech-
niques (exact, approximate, fast and tight).

3. Comparing the obtained values and the efficiency of the different techniques.

In order to accurately compare the different techniques, we used the following methods:

1. Evaluating pessimism:

• %RTA (Response Time approximation): For each task in a task set, we calculated the average
increase over the exact computation. For a task ti, an improvement is defined as rapproxi

rexacti
− 1

(same equation applies to the fast and tight techniques).

• %task (Number of tasks with overestimated response-time) : For each task set, the percent-
age of tasks in the set with an overestimated response-time compared to the exact computation
technique is computed. The results are displayed for the approximate, fast and tight techniques.

• %WRTA (Response Time approximation for pessimistic results): We calculated the average
increase in response-time only the for tasks that meet increase over the exact technique.

2. time (Evaluating time efficiency): For each task set, we estimated the computation time of the three
approximation methods (approx, fast and tight).

9.3 Evaluating Pessimism

The pessimism of each computation technique is evaluted by varying the parameters of the task generator.
In the first simulation setup (Table 1), the number of tasks per activation source varies from 2 tasks to 13,
while maintaining the total system load at 80% and the total number of activation sources at 3.

As expected, the results shows that the tight computation technique is the less pessimistic method. The
approximation technique is more pessimistic than the tight approach but less than the fast computation. In a
matter of fact, the fast approach can reach a high level of overestimation with 60% of tasks with improvement
over the exact analysis, and with an average overestimation of 30%. We can also note that the overestimation
of all of the three approximate methods increases remarkably when the number of tasks per activation source
is increased. For example, if we take a look at the results for the fast computation technique, the average
overestimation increases from 6.6% to 36% when the number of tasks vraies from 2 to only 9 tasks per
activation source. As for the computation time, the fast computation maintain a steady and fast computation
time around 0.1 seconds. The approx and tight computation time increases slowly to reach 11.1 seconds for
the approx technique and 24.4 seconds for the tight technique.

In the second simulation setup (Table 2), the number of activation sources varies from 2 activation
sources to 13. An 80% total system load and 3 tasks per activation source are fixed.

Unlike the previous results, these numbers indicates that varying the number of activation sources does
not affect the approximation methods pessimism in a noteworthy way. In fact, the average overestimation of
the approximation approach for 3 tasks per activation sources evolves around 6%. For the fast approach, the
average overestimation is steady at a value of approximately 19%. And for the tight approach, the average

22

Number of Tasks Per Activation Source
2 3 4 5 6 7 8 9

%RTA
Approx 0.4 1.3 1.9 1.9 2.7 2.5 3.22 3

Fast 2 5.4 8.1 9.4 12.6 15.9 19.9 22.6
Tight 0.04 0.2 0.6 0.5 0.8 0.7 1.2 1.1

%task
Approx 4.2 13.6 14.8 18.8 24.8 25.1 30.3 32.6

Fast 15.5 31 35.1 41.4 49.5 54.52 57.7 60.3
Tight 0.7 2.2 5.7 7.3 10.1 9.1 14.4 15.8

%WRTA
Approx 1.3 4.9 7.6 6.2 9 8.6 9.9 8.1

Fast 6.6 12 19.7 19.5 22.6 27.1 32.5 36
Tight 0.1 1.2 3.5 3.1 4.6 4.2 6.6 5.6

time (s)
Approx 0.01 0.06 0.2 0.5 0.9 1.8 3.5 11.1

Fast 0.01 0.02 0.04 0.05 0.06 0.08 0.1 0.2
Tight 0.4 0.7 0.8 1.5 2.3 5.8 8.3 24.4

Table 1: Response-Time computation for 80% utilization and 3 activations sources.

overestimation is approximately at 3%. As for the computation time, the most time efficient technique is still
the fast approach, followed by the approx approach and then the tight technique. We can also note that this
time, the computation time for the approx and tight techniques increases very rapidly to reach 90 seconds
for the approx method, and 222 seconds for the tight method. These results are explained by the fact that
the number of combination for the phasing vector Φ increases exponentially when the number of activation
sources increases.

9.4 Evaluating Time Efficiency

In order to evaluate the time efficiency of the three approximation techniques, a third simulation setup (Table
3) is executed. In this setup, the number of tasks per activation source varies while maintaining the total
system load at 80% and the number of activation sources at 10.

As we can see in the Table 3, the fast computation method delivers a very fast computation time. As for
the tight and approx method, the execution time increases rapidly to reach approximately 100 seconds for
the approx technique and 200 seconds for the tight technique.

10 Conclusion

In this paper, we have studied the problem of computing the response times of real-time jobs in multitask
softwares built on top of AUTOSAR OS compliant kernels. By doing so, we have obtained a rather complex
model of multitask softwares and we have developed, proven and prototyped adequate algorithms.

We have studied the possibility to trade tightness against computation time by using approximation
techniques [18, 16, 15]. Without surprise, the different techniques have their advantages and drawbacks.
Next study will be on set of tasks with same priority. The same kind of techniques have to be developed and
experimented.

23

Number of Activation Source
2 3 4 5 6 7 8 9

%RTA
Approx 1.4 1.7 1.6 1.5 1.6 1.2 1.3 1.7

Fast 4.2 8.33 10.1 13 14 14.4 15.6 16
Tight 0.03 0.3 0.3 0.3 0.3 0.3 0.4 0.5

%task.
Approx 9.8 13.5 15.4 19 20.3 21.1 22.6 28.5

Fast 18.2 37 50.6 63.9 68.8 74.1 78.9 83.1
Tight 0.8 3.4 4.7 5.1 7.4 7.2 8.8 10.9

%WRTA
Approx 5.1 6.6 7.3 6.6 6.4 5.1 5.3 5.7

Fast 12.8 18.8 19.7 20 19.8 19 19.4 20
Tight 0.1 1.3 2.4 2.3 2.5 2.7 3.3 3.5

time (s)
Approx 0.01 0.02 0.2 0.4 1.36 8.2 38.8 90.6

Fast 0.01 0.01 0.04 0.02 0.03 0.08 0.1 0.2
Tight 0.02 0.04 0.7 1 2.8 18.7 79.6 222.1

Table 2: Response-Time computation for 80% utilization and 3 tasks per activations sources.

Number of Tasks Per Activation Source
1 2 3 4 5

time (s)
Approx 0.01 0.2 4 38.4 107.4

Fast 0.01 0.04 0.1 0.2 0.3
Tight 0.02 0.5 10.4 87.7 222.7

Table 3: Response-Time computation for 80% utilization and 10 activations sources.

References

[1] N. C. Audsley. Deadline-Monotonic Scheduling. Technical Report YCS 146, Departement of Com-
puter Science, University of York, 1990.

[2] AUTOSAR. Specification of Operating System. Technical Report v3.0.1, AUTOSAR GbR, 2008.

[3] Theodor P. Baker. A stack-based resource allocation policy for realtime processes. In IEEE Real-Time
Systems Symposium (RTSS), Lake Buena Vista, FL, USA, December 1990. IEEE Computer Society.

[4] F. Bimbard and L. George. FP/FIFO feasibility conditions with kernel overheads for periodic tasks on
an event driven osek system. In International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC), pages 566–574. IEEE Computer Society, 2006.

[5] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling Algorithms And
Applications (Real-Time Systems Series), 3rd ed. Springer, 2011.

24

[6] Manuel Coutinho, José Rufino, and Carlos Almeida. Response time analysis of asynchronous periodic
and sporadic tasks scheduled by a fixed-priority preemptive algorithm. In Euromicro Conference on
Real-Time Systems (ECRTS), Prague, Czech Republic, July 2008. IEEE Computer Society.

[7] P. E. Hladik, A. M. Déplanche, S. Faucou, and Y. Trinquet. Schedulability analysis of OSEK/VDX
applications. In International Conference on Real-Time and Network Systems (RTNS), pages 131–140,
Nancy, France, March 2007.

[8] P.-E. Hladik, A.-M. Déplanche, S. Faucou, and Y. Trinquet. Schedulability analysis of OSEK/VDX
applications. In International Conference on Real-Time and Network Systems (RTNS), pages 131–140,
Nancy, France, March 2007.

[9] P.-E. Hladik, S. Faucou, A.-M. Déplanche, and Y. Trinquet. Adequacy between AUTOSAR OS speci-
fication and real-time scheduling theory. In IEEE Symposium on Industrial Embedded Systems (SIES),
pages 225–233, Lisbon, Portugal, July 2007.

[10] M. Joseph and P. Pandya. Finding response times in a real-time system. The Computer Journal, 29(5),
1986.

[11] John P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In IEEE
Real-Time Systems Symposium (RTSS), Lake Buena Vista, FL, USA, December 1990. IEEE Computer
Society.

[12] Wang Lei, Zhaohui Wu, and Mingde Zhao. Worst-case response time analysis for OSEK/VDX com-
pliant real-time distributed control systems. In Annual IEEE International Computer Software and
Applications Conference (COMPSAC), pages 148–153, Hong Kong, September 2004. IEEE Computer
Society.

[13] Jukka Mäki-Turja and Mikael Nolin. Efficient response-time analysis for tasks with offsets. volume 0,
page 462, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[14] Jukka Mäki-turja and Mikael Nolin. Tighter response-times for tasks with offsets. In In Proc. of the
10 th International conference on Real-Time Computing Systems and Applications (RTCSA’04), 2004.

[15] Jukka Mäki-Turja and Mikael Nolin. Efficient implementation of tight response-times for tasks with
offsets. Real-Time Systems, 40(1):77–116, 2008.

[16] J. C. Palencia and M. González Harbour. Schedulability analysis for tasks with static and dynamic
offsets. In IEEE Real-time Systems Symposium (RTSS), pages 26–37, Madrid, Spain, December 1998.
IEEE Computer Society.

[17] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers, 39(9):1175–1185, 1990.

[18] Ken Tindell. Adding time-offsets to scheduling analysis. Technical Report YCS 221, Department of
Computer Science, University of York, 1994.

[19] Y. Wang and M. Saksena. Scheduling fixed-priority tasks with preemption threshold. In IEEE Interna-
tional Conference on Real-Time Computing Systems and Applications (RTCSA), pages 328–337, Hong
Kong, December 1999. IEEE Computer Society.

25

Appendix: Complexity

Consider a set N = [1...n] and a function f(t) = a+
∑

i∈N

⌈
t
bi

⌉
ci with

∑
i∈N

ci
bi
< 1 and (a, ci) ∈ Nn+1.

We have f(t) < a +
∑

i∈N ci +
∑

i∈N
t
bi
ci. We denote α = a +

∑
i∈N ci and β =

∑
i∈N

ci
bi

, thus
f(t) < α+ βt.

The solution f∗ = min{t = f(t) | t > 0} is the fixed point computed by:{
u0 = α

un+1 = f(un)

Remark that :

• values of the series u belong to N,

• un+1 ≥ un,

• f∗ ≤ α
1−β ,

thus the f∗ can be found in [α, λ] with λ = α
1−β .

Moreover the function f is a step function with a number of values on a interval of size l bounded by∑
i∈N

⌈
l
bi

⌉
. So, the number of iterations of f∗ is bound by γ =

∑
i∈N

⌈
λ−α
bi

⌉
=
∑

i∈N

⌈
αβ

(1−β)bi

⌉
.

26

	Introduction
	Related works
	Scheduling policy of AUTOSAR OS
	Modeling AUTOSAR OS multitask software
	Modeling framework
	Mapping to AUTOSAR

	A response-time analysis algorithm for AUTOSAR OS
	Definitions
	Maximum response time of a task in a busy-period
	General results on iterated functions
	Hypothesis on iterated functions
	Results on the summation of functions
	Results on the fixed point
	Results on the fixed point of a composed function

	Reducing set of phasing vectors
	Rewriting functions
	Set of phasing vectors
	Discussion about the complexity

	Approximate computation
	Approximate functions of starting date
	Approximate functions of finishing date
	An approximation of worst-case response time
	Discussion about the complexity

	Fast response-time
	Preliminaries
	Static representation

	Tight esponse-ime
	Experiments
	Task Generator
	Simulation Setup
	Evaluating Pessimism
	Evaluating Time Efficiency

	Conclusion

