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Abstract

In this paper, we give a new series expansion to simulate B an fBm based on harmonic analysis
of the auto-covariance function. We prove that the convergence holds in L2 and uniformly, with
a rate-optimal decay of the norm of the rest of the series in both senses. We also give a general
framework of rate-optimal series expansion for a class of Gaussian processes. Finally we apply
this expansion to functional quantization.
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1 Introduction

Let B = (Bt)t2R be a centered Gaussian process. B is called a fractional Brownian motion (fBm)
with Hurst exponent H 2

�
0, 1
�
if it has the following covariance structure:

8t, s 2 R, EBsBt =
1

2

✓
|t|2H + |s|2H � |t� s|2H

◆

fBm is a self-similar process i.e 8c > 0, (Bct)t2R ⇠ (cHBt)t2R, and has stationary increments.
When H=1/2, it coincides with standard Brownian motion. Sample paths of fBm are Hölder-
continuous of any order strictly less than H. One of the main challenges with fBm is simulation.
The most e�cient algorithms (in particular circulant embedding method in [1]) have complexity
of
�
N logN

�
where N is the number of time-steps, to be compared with the linear complexity

for standard Brownian motion. Besides, local refinement requires all the already-simulated dates.
Alternative approximative methods involve the Karhunen-Loève expansion that we know explicitly
for some processes, such as the Brownian motion, the Brownian bridge [2] and the Orstein-Uhlenbeck
process [3]... Unfortunately, this expansion is not explicit for fBm.

In [4], Dzhaparidze and van Zanten discovered the following series expansion for fBm

Bt =
1X

n=1

sinxnt

xn
Xn +

1X

n=1

1� cos ynt

yn
Yn, t 2 [0, 1]

where (Xn)n�1 and (Yn)n�1 are i.i.d centered Gaussian random variables, (xn)n�1 the positive roots
of the Bessel function J�H , and (yn)n�1 the positive roots of the Bessel function J1�H . The variance
of the Gaussian variables is given by: V arXn = 2c2Hx�2H

n J�2
1�H(xn), V arYn = 2c2Hy�2H

n J�2
�H(yn),

where c2H = ⇡�1�(1 + 2H) sin⇡H. In their paper, they prove that this expansion is rate-optimal in
the following sense:

*This work was conducted while the author was doing internship at Bloomberg LP New York.



Definition 1. Let BH be an fBm with Hurst exponent H. The series expansion

BH =
1X

i=0

Ziei

where (Zi)i2N are independent Gaussian random variables and (ei)i2N continuous deterministic func-
tions, is said to be uniformly rate-optimal if

E sup
t2[0,T ]

�����

1X

i=N

Ziei(t)

����� ⇠
N!1

AN�H
p
logN

for some A > 0.

The rate-optimality also means that there can not be another series expansion of fBm with a
faster rate of convergence. We show further how the rate-optimality implies uniform and almost-sure
convergence of the series.

In [5], Igloi gives another rate-optimal series expansion for fBm in the case H>1/2 which is
similar to our representation in that it is based on the same frequencies. This expansion is of the
form

Bt = a0tX0 +
1X

k=1

ak

✓
sin(k⇡t)Xk + (1� cos(k⇡t))X�k

◆
, t 2 [0, 1]

where

a0 =

s
�(2� 2H)

B(H � 1
2 ,

3
2 �H)(2H � 1)

,

8k 2 N⇤, ak =

s
�(2� 2H)

B(H � 1
2 ,

3
2 �H)(2H � 1)

2<(i exp�i⇡H �(2H � 1, ik⇡))(k⇡)�H� 1
2 ,

and (Xk)k2Z are i.i.d standard Gaussian random variables.
Even if this representation is easier to evaluate than the previous one, it still requires special

functions. In this paper, we give a constructive representation of fBm for all H which is only based
on Fourier series. Our approach is inspired from the Karhunen-Loève expansion where it replaces
the eigenvalues given in this expansion by some adapted positive coe�cients. It is of the form

Bt =
p
c0tZ0 +

1X

k=1

r
�ck
2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆
, t 2 [0, T ]

where (
c0 := 0, H < 1/2

c0 := HT 2H�2, H > 1/2
(1)

and

8k � 1

(
ck := 2

T

R T

0 t2H cos k⇡t
T dt, H < 1/2

ck := � 4H(2H�1)T
(k⇡)2

R T

0 t2H�2 cos k⇡t
T dt, H > 1/2

(2)

The First section is devoted to showing some useful lemmas. In the second section, we will present
our series expansion, where we will prove both uniform convergence and rate-optimality. Finally,
we will generalize this series expansion to a class of auto-covariance functions, before applying it to
functional quantization.



2 Preliminaries

For T > 0, let us define

ck :=
2

T

Z T

0
�(t) cos

k⇡t

T
dt (3)

In this section we consider � a continuously di↵erentiable, increasing and concave function in
(0,T]. We will also assume that �0(x)⇠x!0+

A
x� for some � 2 (0, 2) and A > 0.

Lemma 1. Considering the coe�cient ck in (3), the following properties hold:

i. (ck)k�0 is well defined

ii. 8k 2 N⇤, ck < 0

iii. ck ⇠k!1
C

k2�� , C < 0

Proof. i. We first show that � is integrable. Since �0(x)⇠x!0+
A
x� , there exists M > 0 and ✏ > 0

such that

8x 2 (0, ✏), |�0(x)|  M

x�
. (4)

By integrating (4), we have �(x) = O
x!0+

�
x1��

�
. Moreover � is continuous in (0,T], it comes out

that � is integrable on (0,T]. It is then immediate that (ck)k2N⇤ is well defined.

ii. Before showing the second result, one may first notice that �0 is positive and decreasing

since � is concave and increasing. By a change of variable in (3), we get

ck =
2

T

T

k⇡

Z k⇡

0
�

✓
Tu

k⇡

◆
cos(u)du ,

and by integrating by parts we get

ck = � 2

T

✓
T

k⇡

◆2 Z k⇡

0
�0
✓
Tu

k⇡

◆
sin(u)du

= � 2

T

✓
T

k⇡

◆2 k�1X

n=0

(�1)n
Z ⇡

0
�0
✓
T (u+ n⇡)

k⇡

◆
sin(u)du .

(5)

Let us define vk,n :=
R ⇡

0 �0
✓

T (u+n⇡)
k⇡

◆
sin(u)du. It is immediate that 8k 2 N⇤, (vk,n)n<k is positive

and decreasing with n. By regrouping each pair of elements in the sum we get

ck = � 2

T

✓
T

k⇡

◆2 ✓ b k
2 c�1X

n=0

(vk,2n � vk,2n+1) +
1� (�1)k

2
vk,k�1

◆

As a consequence 8k 2 N⇤, ck < 0

iii. For the last point, it is su�cient to show that

b k
2 cX

n=0

(vk,2n � vk,2n+1) ⇠
k!1

Ck�, C > 0 , (6)

because � is di↵erentiable in T� and
����
1� (�1)k

2
vk,k�1

����  2�0
✓
T (k � 1)

k

◆
!

k!1
2�0(T ) .



Now to prove (6), we can prove that

lim
k!1

1X

n=0

(vk,2n � vk,2n+1)

k�
1(nb k

2 c)
= C, C > 0 .

Let n 2 N,

lim
k!1

vk,n
k�

= lim
k!1

Z ⇡

0

sin(u)

k�
�0
✓
T (u+ n⇡)

k⇡

◆
du

=
⇣ ⇡
T

⌘�
lim
k!1

Z ⇡

0

sin(u)

(u+ n⇡)�

✓
T (u+ n⇡)

k⇡

◆�

�0
✓
T (u+ n⇡)

k⇡

◆
du

= A
⇣ ⇡
T

⌘� Z ⇡

0

sin(u)

(u+ n⇡)�
du = (�1)nA

⇣ ⇡
T

⌘� Z (n+1)⇡

n⇡

sin(u)

u�
du

(7)

Where the last equality holds because the integrand is positive and its limit is still integrable since
� 2 (0, 2). It follows that

lim
k!1

1X

n=0

(vk,2n � vk,2n+1)

k�
1(nb k

2 c)
= A

⇣ ⇡
T

⌘� Z 1

0

sin(u)

u�
du

Remark 1. If � is only continuously di↵erentiable, increasing and concave in (0,T] then we only
have that

8k 2 N⇤, ck  0

If moreover �0 has a finite limit in 0+ (i.e � = 0), then

ck = O

✓
1

k2

◆

The last point comes from (5) since the terms in the sum are alternating signs, decreasing in norm
and uniformly bounded.

When � 2 (0, 1), � has a finite limit in 0+, we will consider then �(0) := limx!0+ �(x)

Lemma 2. If � 2 [0, 1), we have

8t 2 [�T, T ], �(|t|) = �(0) +
1X

k=1

ck

✓
cos

k⇡t

T
� 1

◆

Proof. Let g: R ! R a function such that: 8t 2 [�T, T ], g(t) = �(|t|) and let us extend g into a
2T-periodic function. Since g is an even function, its Fourier series is even and

8t 2 [�T, T ], g(t) =
1X

k=0

ck cos
k⇡t

T
(8)

where c0 = 1
T

R T

0 �(t)dt and 8k > 0, ck = 2
T

R T

0 �(t) cos k⇡t
T dt.

Since ck = Ok!1
�

1
k2��

�
with 0  � < 1, the series converges normally and therefore also

uniformly. Replacing t by 0 in (8) we get : c0 = �(0)�
P1

k=1 ck, and finally

g(t) = �(0) +
1X

k=1

ck

✓
cos

k⇡t

T
� 1

◆

The main result follows immediately.



Lemma 3. Let (�k)k2N be a sequence of real numbers, (Zk)k2N centered standard Gaussian variables,
and (ek)k2N a family of continuous functions on [0,T]. Under the conditions

• �k = O
k!1

�
1

kH+1/2

�
, for some H > 0

• 9L > 0, 8k 2 N, 8s, t 2 [0, T ], |ek(t)� ek(s)|  L |t� s|

we get that

E sup
t2[0,T ]

�����

1X

k=N

�kek

✓
k⇡t

T

◆
Zk

����� = O
N!1

⇣
N�H

p
logN

⌘

and the series
PN

k=0 �kek
�
k⇡.
T

�
Zk converges almost surely, uniformly in the space of continuous

functions on [0,T].

Proof. For the proof see Appendix A.

3 New rate-optimal series expansion

Since our approach does not hold for both cases, we will give separately the expansion for both fBm
with H < 1/2 and H > 1/2 assuming that the series converge. We will prove after the convergence
and rate-optimality of these series.

3.1 The series expansion

For the following Theorem we denote ck := 2
T

R T

0 t2H cos k⇡
T dt where H < 1/2

Theorem 1. Let H 2
�
0, 1

2

�
. B is the random process given by

8t 2 [0, T ], Bt =
1X

k=1

r
�ck

2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆
.

where (Zk)k2Z are independent standard Gaussian variables, then

8(s, t) 2 [0, T ]2, EBsBt =
1

2

�
t2H + s2H � |t� s|2H

�

.

Proof. For H 2
�
0, 1

2

�
, �(t) = |t|2H satisfies all the assumptions enumerated in the previous section.

The previous lemmas apply then, and the series is well-defined since 8k � 1, ck < 0. Because of the
orthonormality of ((Zk)k>0 [ (Zk)k<0) in the probability space, it follows immediately that

EBsBt =
1X

k=1

�ck
2

✓
sin

k⇡s

T
sin

k⇡t

T
+

✓
1� cos

k⇡s

T
)(1� cos

k⇡t

T

◆◆

=
1X

k=1

�ck
2

✓
1� cos

k⇡s

T
� cos

k⇡t

T
+ cos

k⇡(t� s)

T

◆

=
1X

k=1

ck
2

✓
(cos

k⇡s

T
� 1) + (cos

k⇡t

T
� 1)� (cos

k⇡(t� s)

T
� 1)

◆

(9)

And we can conclude using Lemma 2.



We now give a new series expansion for fBm with H > 1/2 since the previous series expansion
doesn’t hold because Fourier coe�cients in this case have alternating signs. When looking more
in detail into this change in sign we figure out that it is due to the fact that the derivative of the
auto-covariance function is not continuous on the borders -T and T which is partially due to the fact
that the initial function is not periodic. In order to deal with this problem, we are adding a parabola
that we set in order to compensate the discontinuity of the function. If we consider � a function
twice di↵erentiable such as �0(0) 6= �0(T ) and �00 integrable on (0,T), and a function f defined as
follows:

8t 2 [0, T ], f(t) = �(t)� �0(T )� �0(0)

2T

✓
t� T�0(0)

�0(T )� �0(0)

◆2

It comes directly that f 0(0) = f 0(T ) = 0. We then get that 8k 2 N⇤:

Z T

0
f(t) cos

✓
k⇡t

T

◆
dt =

T

k⇡


f(t) sin

✓
k⇡t

T

◆�T

0

� T

k⇡

Z T

0
f 0(t) sin

✓
k⇡t

T

◆
dt

=

✓
T

k⇡

◆2 
f 0(t) cos

✓
k⇡t

T

◆�T

0

�
✓

T

k⇡

◆2 Z T

0
f 00(t) cos

✓
k⇡t

T

◆
dt

= �
✓

T

k⇡

◆2 Z T

0
�00(t) cos

✓
k⇡t

T

◆
dt

(10)

where the last equality derives from the orthogonality between constants and harmonics. We can
now derive a new series expansion for fBm with H > 1/2. For the next theorem, we will denote by
ck := 2

T 2H(2H � 1)
R T

0 t2H�2 cos
�
k⇡t
T

�
dt where H > 1/2.

Theorem 2. Let H2
�
1
2 , 1
�
. (Bt)t2[0,T ] is a stochastic process defined by the series expansion:

8t 2 [0, T ], Bt =
p
HT 2H�2tZ0 +

1X

k=1

T

k⇡

r
ck
2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆

where (Zk)k2Z independent standard Gaussian variables. We have

8(s, t) 2 [0, T ]2, EBsBt =
1

2

�
t2H + s2H � |t� s|2H

�

Proof. By considering �(t) = t2H , we have that � is convex and decreasing on (0,T), and moreover
�0(t) ⇠

t!0+
�A

t3�2H for some A > 0. Since 3 � 2H < 2 we get using Lemma 1. that 8k � 1, ck > 0

and ck ⇠
k!1

C
k2H�1 for some C > 0. Using (10) we get that

2

T

Z T

0

�
t2H �HT 2H�2t2

�
cos

✓
k⇡t

T

◆
dt = �

✓
T

k⇡

◆2

ck

Since ck
k2 ⇠

k!1
C

k2H+1 the Fourier series converges uniformly and we can then use Lemma 2. and

obtain

8t 2 [�T, T ], |t|2H = HT 2h�2t2 �
1X

k=1

✓
T

k⇡

◆2

ck

✓
cos

k⇡t

T
� 1

◆



Since ck > 0 the series is well defined and

EBtBs = HT 2H�2ts+
1

2

1X

k=1

✓
T

k⇡

◆2

ck

✓
sin

k⇡t

T
sin

k⇡s

T
+

✓
1� cos

k⇡t

T

◆✓
1� cos

k⇡s

T

◆◆

= HT 2H�2ts+
1

2

1X

k=1

✓
T

k⇡

◆2

ck

✓
1� cos

k⇡t

T
� cos

k⇡s

T
+ cos

k⇡(t� s)

T

◆

=
1

2

 
HT 2H�2(t2 + s2 � (t� s)2)�

1X

k=1

✓
T

k⇡

◆2

ck

✓
cos

k⇡t

T
+ cos

k⇡s

T
� cos

k⇡(t� s)

T
� 1

◆!

=
|t|2H + |s|2H � |t� s|2H

2
(11)

3.2 Convergence and rate-optimality

After giving an explicit representation of fBm, we will prove that it converges uniformly and in the
mean square sense. We will also show its uniform rate-optimality. We now denote more precisely

(
c0 := 0, H < 1/2

c0 := HT 2H�2, H > 1/2
(12)

and

8k � 1

(
ck := 2

T

R T

0 t2H cos k⇡t
T dt, H < 1/2

ck := � 4H(2H�1)T
(k⇡)2

R T

0 t2H�2 cos k⇡t
T dt, H > 1/2

(13)

One may first notice that ck ⇠
k!1

CH

k2H+1 . We will now consider the series expansion of the last

section

8t 2 [0, T ], Bt =
p
c0tZ0 +

1X

k=1

r
�ck

2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆

The following theorems show the uniform convergence of the series in mean square and almost surely.
In this section we define the truncated series of B as follows:

BN
t =

p
c0tZ0 +

NX

k=1

r
�ck

2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆

Theorem 3. BN
t converges in mean square, and the rate of convergence is given by

sup
t2[0,T ]

q
E
�
Bt �BN

t

�2
= O

N!1

�
N�H

�

Proof. As we did previously, we will use the orthonormality of the Gaussian random variables (Zk),
it comes that 8 t 2 [0, T ]

E
�
Bt �BN

t

�2
=
X

k>N

�ck
2

✓
(sin

k⇡t

T
)2 + (1� cos

k⇡t

T
)2
◆

=
X

k>N

�ck

✓
1� cos

k⇡t

T

◆

then

sup
t2[0,T ]

q
E
�
Bt �BN

t

�2 
sX

k>N

�ck



Since for some C > 0

�ck ⇠
k!1

C

k2H+1
⇠

k!1
2HC

✓
1

k2H
� 1

(k + 1)2H

◆

It comes by the comparison of the residuals of positive convergent series that
sX

k>N

�ck ⇠
N!1

p
2HC

NH
.

Theorem 4. Almost surely, BN
t converges uniformly, and the rate of convergence is given by

E sup
t2[0,T ]

��Bt �BN
t

�� ⇠
N!1

AN�H
p
log(N), A > 0

Proof. We will only need to prove that the rate of convergence of the series given here is faster than
the second part since the later is the optimal rate for fBm as shown in [6]. By truncating the series,
we have

Bt �BN
t =

1X

k=N+1

r
�ck

2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆

Since
p

� ck
2 = O

k!1

�
1

kH+1/2

�
and the fact that t ! sin(t) and t ! 1 � cos(t) are both 1-Lipschitz

functions we can directly use Lemma 3. to conclude the proof.

The last theorem gives the rate-optimality of our expansion

4 Generalization to a class of Gaussian processes

In this section we give an optimal-rate series expansion for a class of Gaussian processes. We will
denote ck = 2

T

R T

0 �(t) cos k⇡t
T dt. We will first need a proposition given in [7]. Since the trigonometric

sequence we use in our expansion is admissible in the sense given by the author, then according to
Proposition 4. in [7] if

|ck| ⇠
k!1

A

k⇣
, ⇣ > 1, A > 0 (14)

then the series is rate-optimal.

Theorem 5. Let (Xt)t2[0,T ] be a centered Gaussian process with stationnary increments and � the
auto-covariance function of the increments. Assume that � is continuously di↵erentiable, concave
and increasing on (0,T]. If �0(x)⇠x!0

A
x� with � 2 (0, 1) and A > 0, then the series

Yt =
1X

k=1

r
�ck
2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆
, t 2 [0, T ]

converges uniformly in [0,T], almost surely. It is moreover a rate-optimal expansion for X.

Proof. We may first notice that �(0) = 0 since � is the auto-covariance function of the increments.
by using Lemma 1. again we obtain that

�ck ⇠
k!1

A

k2��
, , A > 0

since � 2 (0, 1) we can use Lemma 3. to get that

E sup
t2[0,T ]

�����

1X

k=N+1

r
�ck
2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆����� ⇠
k!1

C log(N)

N
1+�
2

, C > 0



and that the series converges almost surely and uniformly in [0,T], and

8s, t 2 [0, T ], EYsYt =
1X

k=1

�ck
2

✓
1� cos

k⇡t

T
� cos

k⇡s

T
+ cos

k⇡(t� s)

T

◆

by using Lemma 2. we can conclude that

8s, t 2 [0, T ], EYsYt =
1

2
(�(t) + �(s)� �(|t� s|))

The rate-optimality comes directly from (14)

For the rest of this section we consider � a continuously di↵erentiable, decreasing and convex
function in (0,T] such that �0(x)⇠x!0

�A
x� with � 2 (0, 1), A > 0. We get the following theorem

Theorem 6. Let (Xt)t2[0,T ] be a centered stationary Gaussian process and � its auto-covariance
function. Assume that c0 � 0, then the series

Yt =
p
c0Z0 +

1X

k=1

p
ck

✓
sin

k⇡t

T
Zk + cos

k⇡t

T
Z�k

◆
, t 2 [0, T ]

converges uniformly in [0,T], almost surely. It is moreover a rate-optimal expansion for X.

Proof. Applying Lemma 1. to �� we get that:

• 8k 2 N⇤, ck > 0

• ck ⇠k!1
C

k2�� , C > 0

now that the series is well defined, we use again Lemma 3. to get the uniform and almost sure
convergence of the series.

8s, t 2 [0, T ], EYsYt =
1X

k=0

ck cos
k⇡t

T
= �(t� s)

Again the rate-optimality comes from (14)

One immediate consequence is a series expansion for the stationary fractional Ornstein-Uhlenbeck
with H < 1/2, where a stationary fOU is a centered gaussian process such as:

8s, t 2 [0, T ], EXsXt = e�|t�s|2H

This expansion is already given in [7].
The method we are proposing here can be applied also for stochastic processes that are neither

stationary nor with stationary increments. As an example we will apply it to another class of
Gaussian processes (Xt) where:

8t, s 2 [0, T ], EXsXt =
1

2

✓
�(|t� s|)� �(t+ s)

◆
(15)

In this case we give another rate optimal expansion

Theorem 7. Let (Xt)t2[0,T ] be a centered Gaussian process with a covariance structure given in
(15), then the expansion

Xt =
1X

k=1

p
ck sin

k⇡t

2T
Zk, t 2 [0, T ]

is almost surely uniformly convergent. It is also a rate-optimal series expansion of the process.



Proof. As for the previous theorem, we still have

• 8k 2 N⇤, ck > 0

• ck ⇠k!1
C

k2�� , C > 0

As a consequence Lemma 3. give that the series converges almost surely uniformly. Moreover we
obtain

8t, s 2 [0, T ], EXsXt =
1X

k=1

ck

✓
sin

k⇡t

2T
sin

k⇡s

2T

◆
=

1

2

1X

k=1

ck

✓
cos(t� s)� cos(t+ s)

◆

and get directly that

8t, s 2 [0, T ], EXsXt =
1

2

✓
�(|t� s|)� �(t+ s)

◆

rate-optimality is just a consequence of (14)

Remark 2. We may notice that here we consider a 4T-periodic function instead of 2T because
80 < t, s < T, �2T  t� s , s+ t  2T .
The previous expansions still apply when �0(0) is finite where we get the uniform and absolute
convergence from Remark 1. but we can not conclude about the rate-optimality.

Example 1. Karhunen Loeve expansion of Brownian motion.
In this example we consider the auto-covariance function �(t) = �|t|. This function is convex,
decreasing on [0, 2T ] such as �0(0) = 0, we can then apply Theorem 7. We should first notice that
this process is a Brownian motion since

8t, s 2 R+,
1

2
(�|t� s|+ |t+ s|) = min(t, s)

In this case we have

8k 2 N⇤, ck =
1

T

Z 2T

0
�t cos

k⇡t

2T
dt

=
2

k⇡

Z 2T

0
sin

k⇡t

2T
dt

=
�
1� (�1)k

�✓ 2

k⇡

◆2

T

(16)

We then get that

8t 2 [0, T ], Xt =
p
2

1X

k=1

p
T

(k � 1
2 )⇡

sin
(k � 1

2 )⇡t

T
Zk

Example 2. A new rate-optimal series expansion of generalized Ornstein-Uhlenbeck.
In this example we consider the non-stationary Ornstein-Uhlenbeck process (Xt)t�0 where X0 is
distributed such as N (µ,�2

0). This process can be defined as follows:

8t � 0, EXt = µe�✓t + ↵(1� e�✓t)

and

8s, t � 0, cov (Xs, Xt) = �2
0e

�✓(t+s) +
�2

2✓

⇣
e�✓(|t�s|) � e�✓(t+s)

⌘



for some ✓ > 0 and ↵,� 2 R. By setting �(t) = �2

✓ e�✓|t|, we have that � is convex and decreasing
on [0,T], and that �0(0) has a finite value. We can apply again Theorem 7. to get the following
expansion

8t � 0, Xt = X0e
�✓t + ↵(1� e�✓t) +

1X

k=1

p
ck sin

k⇡t

2T
Zk

where X0 is independent from (Zk)k�1. We can also calculate ck explicitly as follows:

8k � 1,
✓

�2
ck =

1

T

Z 2T

0
e�✓t cos

k⇡t

2T
= Re

 
1

T

Z 2T

0
e(�✓+i k⇡

2T )tdt

!

= Re

 
1� (�1)ke�2✓T

✓T � ik⇡
2

!
=

1

1 +
�

k⇡
2✓T

�2
1� (�1)ke�2✓T

✓T

(17)

This expansion is rate-optimal, and easier to use than the one known that includes zeros of Bessel
functions.

5 Application: Functional quantization

The quantization of a random variable X taking values in (E, |.|) consists in approximating it by
the best discretized random variables Y taking finite values in E. If we set N to be the maximum
number of values taken by Y, the problem is equivalent to minimizing the error defined below

⇠N (X,�) = {
��|X � Proj�(X)|

��
2
, � ⇢ E such that |�|  N } (18)

A solution of (18) is an L2-optimal quantizer of X.
For a multidimensional Gaussian random variable X real optimal-quantization is expensive. One

way to mitigate this cost, is to consider the product-quantization that is to use a cartesian product of
one-dimensional optimal-quantizers of each marginale as in [8]. The resulting quantizer is stationnary
when marginals of X are independent. In [9], it is shown that Karhunen-Love product-quantization,
while it is sub-optimal, remains rate-optimal in the case of Gaussian processes.

We consider now a stochastic continuous process (Xt)t2[0,T ] such that
R T

0 E|X2
t |dt < 1, and its

expansion:

8t 2 [0, T ], Xt =
1X

i=0

�iei(t)Zi

where (�i)i2N is a sequence of real numbers such that
P1

i=0 �
2
i < 1, (ei)i2N is an orthonormal

sequence of continuous functions, and (Zi)i2N independent standard gaussian variables. Notice that
the Karhunen-Loeve expansion is a special case of what we are introducing. In this case the error
induced by replacing the process by a rate-optimal quantizer of its truncation up to m is given by:

⇠N (X)2 =

Z T

0
E
 
Xt �

mX

i=0

�iei(t)Yi

!2

dt

where 8 0  i  N, Yi is an optimal quantizer of Zi. More precisely we get that:

⇠N (X)2 =
1X

i=m+1

�2
i +

mX

i=0

⇠Ni(N (0,�2
i ))

where
Qm

i=0 Ni  N . If moreover �2
N ⇠

N!1
1

N� , with 1 < � < 3, it is shown in [10] that, the optimal

product-quantization of level N is achieved when the dimension of the quantizer is of order logN
and then it satisfies

⇠N (X) ⇠
N!1

A(logN)
1��
2 , A > 0



When the basis chosen in the expansion in not orthonormal, Junglen gives a method to quantize
in his paper [11]. The idea consists in truncating up to an order m and considering the covariance
matrix Km of the truncation. More specifically we consider H a linear L2-subspace defined by
H = Span((ei)0im) and define the operator TKm

TKm :

(
H ! H

f !
R T

0 Km(s, .)f(s)ds

TKm is clearly an endomorphism from the definition of Km. Unlike the Karhunen-Love theorem,
in this case we deal with a linear and symmetric operator in finite dimension. Hence there exists
(µm

i )0im a positive sequence of real numbers and (fm
i )0im an orthonormal base of H such that

8t, s 2 [0, T ], Km(t, s) =
mX

i=0

µm
i fm

i (t)fm
i (s)

We can then assert that there exists (Y m
i )0im a sequence of standard random gaussian variables

such that:

8t 2 [0, T ],
mX

i=0

�iei(t)Zi =
mX

i=0

p
µm
i fm

i (t)Y m
i a.s

It is obvious now that if we replace the process by a rate-optimal quantizer of
Pm

i=0

p
µm
i fm

i (t)Y m
i

we will get a quadratic quantization error similar to the previous one

⇠N (X)2 =
1X

i=m+1

�2
i +

mX

i=0

⇠Ni
(N (0, µ2

i ))

As a consequence, the quadratic quantization of level N would be optimal for m ⇠ logN . To illus-
trate this, we give a rate-optimal quantization of both fBm and generalized Ornstein Uhlenbeck for
T=1 and N=20.

(a) generalized OU ✓ = 2,↵ = 0 (b) fBm H=0.4

Figure 1: Product quantization of a centered Ornstein-Uhlenbeck process, starting from X0 = 0
(left), and a fBm (right)

6 Conclusion

We have derived a new rate-optimal series expansion of fBm an far more. The advantage of this
expansion is that the coe�cients are easily calculated which can reduce the complexity of simula-
tion, especially for the case H < 1/2 where no other trigonometric series expansion is known. We



have shown that our approach can be generalized to a class of Gaussian processes, in particular to
Ornstein-Uhlenbeck process. The application to quantization is interesting. Usually we need the
Karhunen-Loève decomposition to have an optimal quantization because of the orthnormality of the
base. In this case, we show how to deal with the non-orthonormality of our base and then get a
rate-optimal quantization.
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[6] Thomas Kühn and Werner Linde. Optimal series representation of fractional brownian sheets.
Bernoulli, pages 669–696, 2002.

[7] Harald Luschgy and Gilles Pagès. Expansions for gaussian processes and parseval frames.
Electron. J. Probab, 14(42):1198–1221, 2009.

[8] Jacques Printems et al. Functional quantization for numerics with an application to option
pricing. Monte Carlo Methods and Applications mcma, 11(4):407–446, 2005.

[9] Harald Luschgy, Gilles Pagès, et al. High-resolution product quantization for gaussian processes
under sup-norm distortion. Bernoulli, 13(3):653–671, 2007.

[10] Harald Luschgy and Gilles Pagès. Functional quantization of gaussian processes. Journal of
Functional Analysis, 196(2):486–531, 2002.

[11] Stefan Junglen and Harald Luschgy. A constructive sharp approach to functional quantization
of stochastic processes. Journal of Applied Mathematics, 2010, 2010.
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A Appendix

Lemma 4. Let (�k)k2N be a sequence of real numbers, (Zk)k2N centered standard Gaussian variables,
and (ek)k2N a family of continuous functions on [0,T]. Under the conditions

• �k = O
k!1

�
1

kH+1/2

�
, for some H > 0

• 9L > 0, 8k 2 N, 8s, t 2 [0, T ], |ek(t)� ek(s)|  L |t� s|

we get that

E sup
t2[0,T ]

�����

1X

k=N

�kek(
k⇡t

T
)Zk

����� = O
N!1

⇣
N�H

p
logN

⌘

and the series
PN

k=0 �kekZk converges almost surely, uniformly in the space of continuous functions
on [0,T].

Proof. We will need the following result first. For (Xi)0iM a finite set of gaussian variables.

E max
1iM

|Xi|  c
p
logM max

1iM

q
EX2

i , c > 0 (19)

We denote by vk(t) := �kek(
k⇡t
T )Zk for k 2 N and t 2 [0, T ]. To prove the lemma we will first show

that for some A > 0,

8n 2 N, E sup
t2[0,T ]

������

2n+1�1X

k=2n

vk(t)

������
 A

p
n2�nH (20)

Let N 2 N, we denote by Ij =
⇥
j T
N , (j + 1) T

N

⇤
and tj the respective centers, 80  j  N � 1. Let

n 2 N

E sup
t2[0,T ]

������

2n+1�1X

k=2n

vk(t)

������
= E sup

0j<N
sup
t2Ij

������

2n+1�1X

k=2n

vk(t)

������

 E sup
0j<N

������

2n+1�1X

k=2n

vk(tj)

������
+ E sup

0j<N
sup
t2Ij

������

2n+1�1X

k=2n

(vk(t)� vk(tj))

������

(21)

Using (19) we get that,

E sup
0j<N

������

2n+1�1X

k=2n

vk(tj)

������
 c
p
logN sup

0j<N

vuutE
�����

2n+1�1X

k=2n

vk(tj)

�����

2

 c
p
logN sup

0j<N

vuut
2n+1�1X

k=2n

Evk(tj)2

 C
p

logN2�nH

(22)

where the last inequality comes from Evk(tj)2  �2
k||ek||21  C

k1+2H , for some C > 0.
For the second part of (21),

E sup
0j<N

sup
t2Ij

������

2n+1�1X

k=2n

(vk(t)� vk(tj))
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 E sup

0j<N

2n+1�1X

k=2n

sup
t2Ij

|vk(t)� vk(tj)| (23)



Since 8t 2 Ij , |t� tj |  T
N we get

sup
t2Ij

|vk(t)� vk(tj)|  |�k||Zk|
����ek
✓
k⇡t

T

◆
� ek

✓
k⇡tj
T

◆����

 C 0k
1
2�H |Zk|

⇡

N

(24)

By replacing in (23),

E sup
0j<N

sup
t2Ij

������

2n+1�1X

k=2n

(vk(t)� vk(tj))

������
 C 0

N

2n+1�1X

k=2n

k
1
2�H

 C⇤

N
2n(

3
2�H)

(25)

from (22) and (25) we get

E sup
t2[0,T ]

������

2n+1�1X

k=2n

vk(t)

������
 C

p
logN2�nH +

C⇤

N
2n(

3
2�H) (26)

By taking N = 22n we have proved (20). This result holds even if we replace
���
P2n+1�1

k=2n vk(t)
��� by���

P2n+1�1
k=M vk(t)

��� for some M 2 [2n, 2n+1 � 1]. Now we consider n = blogN/log2c

E sup
t2[0,T ]

|vk(t)|  E sup
t2[0,T ]

������

2n+1�1X

k=N+1

vk(t)
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+

1X

i=n+1

E sup
t2[0,T ]

������

2i+1�1X

k=2i

vk(t)
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(27)

We can conclude by using (20),

E sup
t2[0,T ]

�����

1X

k=n

vk(t)

�����  A
1X

k=n

p
k2�kH  A0pn2�nH (28)

and the fact that 2n  N  2n+1. The uniform tightness implies that
PN

k=0 vk has a weak limit in
C[0,T] the space of continuous functions on [0,T]. If we endow this space with the supremum metric,
we get by the It-Nisio theorem, as in [12], that the process

PN
k=0 vk converges in C[0, T ] almost

surely.


