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Introduction

Timed automata [START_REF] Alur | A theory of timed automata[END_REF] equip finite automata with a finite number of real-valued variables-aptly called clocks-that evolve with a uniform rate. The syntax of timed automata also permits specifying transition guards and location (state) invariants using the constraints over clock valuations, and resetting the clocks as a means to remember the time since the execution of a transition. Timed automata is a well-established formalism to specify time-critical properties of realtime systems. Priced timed automata [START_REF] Alur | Optimal paths in weighted timed automata[END_REF][START_REF] Behrmann | Minimum-cost reachability for priced timed automata[END_REF] (PTAs) extend timed automata with price information by augmenting locations with price-rates and transitions with discrete prices. The natural reachability-cost optimization problem for PTAs is known to be decidable with the same complexity [START_REF] Bouyer | On the optimal reachability problem of weighted timed automata[END_REF] as the reachability problem (PSPACE-complete), and forms the backbone of many applications of timed automata including scheduling and planning.
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Priced timed games (PTGs) extend the reachability-cost optimization problem to the setting of competitive optimization problem, and form the basis of optimal controller synthesis [START_REF] Ramadge | The control of discrete event systems[END_REF] for real-time systems. We study turn-based variant of these games where the game arena is a PTA with a partition of the locations between two players Player 1 and Player 2. A play of such a game begins with a token in an initial location, and at every step the player controlling the current location proposes a valid timed move, i.e., a time delay and a discrete transition, and the state of the system is modified accordingly. The play stops if the token reaches a location from a distinguished set of target locations, and the payoff of the play is equal to the cost accumulated before reaching the target location. If the token never reaches a target location then the game continues forever, and the payoff in this case is +∞ irrespective of actual cost of the infinite play. We characterize a PTG according to the objectives of Player 1. Since we study zero-sum games, the objective of Player 2 is also implicitly defined. We study PTGs with the following objectives: (i ) Constrained-price reachability objective Reach( K) is to achieve a payoff C of the play such that C K where ∈ { , <, =, >, } and K ∈ N; (ii ) Bounded-time reachability objective TBReach(K, T ) is to keep the payoff of the play less than K while keeping the total time elapsed within T units; and (iii ) Repeated reachability objective RReach(η) is to visit target infinitely often with a payoff in the interval [-η, η].

An example of PTG with clock variable x and six locations is given in Fig. 1. We depict Player 1 locations as circles and Player 2 locations as boxes. The numbers inside locations denote their price-rates, while the clock constraints next to a location depicts its invariant. We denote a transition, as usual, by an arrow between two location annotated by a tuple a, g, r, c where a is the label, g is the guard, r is the clocks reset set, and c is the cost of the transition. Related work. PTGs with constrained-price reachability objective Reach( K) were independently introduced in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF] and [START_REF] Alur | Optimal reachability for weighted timed games[END_REF], with semi-algorithms to decide the existence of winning strategy for Player 1 in PTGs with nonnegative prices. They also showed that under the strongly non-Zeno assumption on prices the proposed semi-algorithms always terminate. This assumption was justified in [START_REF] Brihaye | On optimal timed strategies[END_REF] by showing that, in the absence of non-Zeno assumption, the problem of deciding the existence of winning strategy for the objective Reach( K) is undecidable for PTGs with five or more clocks. This result has been later refined in [START_REF] Bouyer | Improved undecidability results on weighted timed automata[END_REF] by showing that the problem is undecidable for PTGs with three or more clocks and nonnegative prices. In [START_REF] Berendsen | Undecidability of cost-bounded reachability in priced probabilistic timed automata[END_REF] is showed the undecidability of the existence of winning strategy problem for Reach( K) objective over PTGs with both positive and negative price-rates and two or more clocks.

On a positive side, the existence of winning strategy for Reach( K) problem for PTGs with one clock when the price-rates are restricted to values 0 and d ∈ N has been shown decidable in [START_REF] Brihaye | On optimal timed strategies[END_REF], by proving that the semi-algorithms in [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF][START_REF] Alur | Optimal reachability for weighted timed games[END_REF] always terminate. However, the authors did not provide any complexity analysis of their algorithm. One-clock PTGs with nonnegative prices are reconsidered in [START_REF] Bouyer | Almost optimal strategies in one-clock priced timed games[END_REF], and a 3-EXPTIME algorithm is given to solve the problem, while the best known lower bound is PTIME. A tighter analysis of the problem is presented in [START_REF] Rutkowski | Two-player reachability-price games on single-clock timed automata[END_REF] that lowered the known complexity of this problem to EXPTIME, namely 2 O(n 2 +m) where n is the number of locations and m is the number of transitions. A significant improvement over the complexity (m12 n n O (1) ) was given in [START_REF] Hansen | A faster algorithm for solving one-clock priced timed games[END_REF] by improving the analysis of the semi-algorithms by [START_REF] Bouyer | Optimal strategies in priced timed game automata[END_REF][START_REF] Alur | Optimal reachability for weighted timed games[END_REF].

Contributions. We consider PTGs with both negative and positive prices. We show that deciding the existence of a winning strategy for reachability objective Reach( K) is undecidable for PTGs with two or more clocks. In [START_REF] Ouaknine | Towards a theory of time-bounded verification[END_REF], a theory of time-bounded verification has been proposed, arguing that restriction to bounded-time domain reclaims the decidability of several key verification problems. As an example, we cite [START_REF] Brihaye | Time-bounded reachability for monotonic hybrid automata: Complexity and fixed points[END_REF] where authors recovered the decidability of the reachability problem for hybrid automata under time-bounded restriction. We begin studying PTGs with bounded reachability objective TBReach(K, T ) hoping that the problem may be decidable due to time-bounded restriction.

However, we answer this question negatively by showing undecidability of the existence of winning strategy problem for PTGs with six or more clocks. We also show the undecidability for the corresponding problem for repeated reachability objective RReach(η) for PTGs with three or more clocks.

Reachability-cost games on priced game graphs

PTGs can be considered as a succinct representation of some games on uncountable state space characterized by the configuration graph of timed automata.

We begin by introducing the concepts and notations related to such more general game arenas that we call priced game graphs. Definition 1. A priced game graph is a tuple G = (V, A, E, π, V f ) where:

-V = V 1 V 2 is the set of vertices partitioned into the sets V 1 and V 2 ; -A is a set of labels called actions; -E : V × A → V is the edge function defining the set of labeled edges; π : V × A → R is the price function that assigns prices to edges; and -V f ⊆ V is the set of target vertices. We call a game graph finite if both V and A are finite and with rational prices.

A reachability-cost game begins with a token placed on some initial vertex v 0 . At each round, the player who controls the current vertex v chooses an action a ∈ A and the token is moved to the vertex E(v, a). The two players continue moving the token in this fashion, and give rise to an infinite sequence of vertices and actions called a play of the game. Formally, a finite play r is a finite sequence of vertices and actions v 0 , a 0 , v 1 , a 1 , . . . , a n-1 , v n where for each 0 i < n we have that v i+1 = E(v i , a i ); we write Last(r) for the last vertex of a finite play, here Last(r) = v n . An infinite play is defined analogously. We write FPlay G (FPlay G (v)) for the set of finite plays (starting from the vertex v) of the game graph G. We often omit the subscript when the game arena is clear form the context. We similarly define Play and Play(v) for the set of infinite plays. For all k 0, we let r[k] be the prefix v 0 , a 0 , . . . , a k-1 , v k of r, and we denote by Cost(r[k]) = k-1 i=0 π(v i , a i ) its cost. We write Stop(r) for the index of the first target vertex in r, i.e., Stop(r) = inf {k : v k ∈ F }. We define the cost of an infinite run r = v 0 , a 1 , v 1 , . . . as Cost(r) = +∞ if Stop(r) = ∞ and Cost(r) = Cost(r[Stop(r)]), otherwise.

A strategy for a Player i (for i ∈ {1, 2}) is a partial function σ : FPlay → A that is defined for a run r = v 0 , a 0 , v 1 , . . . , a n-1 , v n if v n ∈ V i and is such that E(v n , σ(r)) is defined, i.e., there is a σ(r)-labeled outgoing transition from v n . We denote by Strat i (G) (or Strat i when the game arena is clear) the set of strategies for Player i. Given a strategy profile (σ 1 , σ 2 ) ∈ Strat 1 × Strat 2 for both players, and an initial vertex v ∈ V , the unique infinite play Play(v, σ 1 , σ 2 ) = v 0 , a 0 , v 1 , . . . v k , a k , v k+1 , . . . is such that for all k 0 if v k ∈ V i , for i = 1, 2, then a k+1 = σ i (r [k]) and v k+1 = E(v k , a k+1 ). A strategy σ is said to be memoryless (or positional ) if, for all finite plays r, r ∈ FPlay with Last(r) = Last(r ) we have that σ(r) = σ(r ). Similarly, finite-memory strategies can be defined as implementable with Moore machines, see [START_REF] Brihaye | Reachability-cost games with negative weights[END_REF] for a formal definition.

We consider optimal reachability-cost games on priced game graphs, where the goal of Player 1 is to minimize the reachability-cost, while the goal of Player 2 is the opposite. The standard concepts of upper value and lower value of the optimal reachability-cost game are defined in straightforward manner. Formally, the upper-value Val G (v) and lower value Val G (v) of a game starting from a vertex v is defined as Val G (v) = inf σ1∈Strat1 sup σ2∈Strat2 Cost(Play(v, σ 1 , σ 2 )) and Val G (v) = sup σ2∈Strat2 inf σ1∈Strat1 Cost(Play(v, σ 1 , σ 2 )). It is easy to see that Val G (v) Val G (v) for every vertex v. We say that a game is determined if the lower and the upper values match for every vertex v, and in this case, we say that the optimal value of the game exists and we let Val

G (v) = Val G (v) = Val G (v).
The determinacy of these games follow from Martin's determinacy theorem, and an alternative proof is given in [START_REF] Brihaye | Reachability-cost games with negative weights[END_REF].

In the following, we write Cost(v, σ 1 ) for the value of the strategy σ 1 of Player 1 from vertex v, i.e., Cost(v, σ 1 ) = sup σ2∈Strat2 Cost(Play(v, σ 1 , σ 2 )) . A strategy σ * 1 of Player 1 is said to be optimal from v if Cost(v, σ * 1 ) = Val G (v) . Optimal strategies do not always exist, hence we also define ε-optimal strategies. For ε > 0, a strategy σ 1 is an ε-optimal strategy if for all vertex v ∈ V , Cost(v, σ 1 ) Val G (v) + ε . In this paper we exploit the following result from [START_REF] Brihaye | Reachability-cost games with negative weights[END_REF].

Theorem 1 ([14]). Let G be a finite priced game graph. 1. Deciding Val G (v) = +∞ is in Polynomial Time. 2. Deciding Val G (v) = -∞ is in NP ∩ co-NP, can be achieved in pseudopolynomial time 4 and is as hard as solving mean-payoff games [START_REF] Zwick | The complexity of mean payoff games on graphs[END_REF]. 3. Given -∞ < Val G (v) < +∞ for every vertex v, optimal strategies exist for both players. In particular, Player 2 has optimal memoryless strategies, while Player 1 has optimal finite-memory strategies. Moreover, the values Val G (v), as well as optimal strategies, can be computed in pseudo-polynomial time.

It must be noticed that, in the presence of negative costs, and even when every vertex v has a finite value Val G (v) ∈ R, memoryless optimal strategies may not exist for Player 1, as pointed out in [14, Example 1].

Priced timed games

In order to formally introduce priced timed games, we need to define the concepts of clocks, clock valuations, constraints, and zones. Let X be a finite set of realvalued variables called clocks. A clock valuation on X is a function ν : X → R 0 and we write V (X ) for the set of clock valuations. Abusing notation, we also treat a valuation ν as a point in R |X | . If ν ∈ V (X ) and t ∈ R 0 then we write ν + t for the clock valuation defined by (ν + t)(c) = ν(c) + t for all c ∈ X . For C ⊆ X , we write ν[C := 0] for the valuation where ν[C := 0](c) equals 0 if c ∈ C and ν(c) otherwise. A clock constraint over X is a conjunction of simple constraints of the form c i or c -c i, where c, c ∈ X , i ∈ N and ∈ {<, >, =, , }. A clock zone is a finite set of clock constraints that defines a convex set of clock valuations. We write Z(X ) for the set of clock zones over the set of clocks X . Definition 2. A priced timed game is a tuple A = (L, X , Inv, Σ, δ, ω, L f ) where:

-L = L 1 L 2 is a finite set of locations, partitioned into the sets L 1 and L 2 ; -X is a finite set of clocks;

-Inv : L → Z(X ) associates an invariant to each location; -Σ is a finite set of labels; δ : L × Σ → Z(X ) × 2 X × L is a transition function that maps a location ∈ L and label a ∈ Σ to a clock zone ζ ∈ Z(X ) representing the guard on the transition, a set of clocks R ⊆ X to be reset and successor location ∈ L; ω : L ∪ Σ → Z is the price function; and and L f ⊆ L is the set of target locations.

A configuration of a PTG is a tuple ( , ν) ∈ L × V where is a location, ν is a clock valuation and ν ∈ Inv( ). A timed action is a tuple τ = (t, a) ∈ R 0 × Σ where t is a time delay and a is a label. In the following, for a timed move τ = (t, a) ∈ R 0 × Σ, we let del(τ ) = t be the delay part and lab(τ ) = a be the label part. The semantics of a PTG is given as an infinite priced game graph.

Definition 3 (Semantics). The semantics of a PTG

A = (L, X , Inv, Σ, δ, ω, L f ) is given as a priced game graph [[A]] = (S, Γ, ∆, κ, S f ) where -S = {( , ν) ∈ L × V | ν ∈ Inv( )} is the set of configurations of the PTG; -Γ = R 0 × Σ is the set of timed moves; -∆ : S × Γ → S is the transition function defined by ( , ν ) = ∆(( , ν), (t, a)) if δ( , a) = (ζ, R, ) such that ν + t ∈ ζ, ν + t ∈ Inv( ) for all 0 t t, and ν = (ν + t)[R := 0]; -κ : S × Γ → R is such that κ(( , ν), (t, a)) = ω( ) × t + ω(a); and -S f ⊆ S is such that ( , ν) ∈ S f iff ∈ L f .
The concepts of a play, its cost, and strategies of players for a PTG A is defined via corresponding objects for its semantic priced game graph [[A]]. In the previous section we introduced games with reachability-cost objective for priced game graphs. We also study the following winning objectives for Player 1 in the context of priced timed games; the objective for Player 2 is the opposite.

1. Constrained-price reachability. The constrained-price reachability objective Reach( K) is to keep the payoff within a given bound K ∈ N. Objectives Reach( K) for constrains ∈ {<, =, >, } are defined analogously. 2. Bounded-time reachability. Given constants K, T ∈ N, the bounded-time reachability objective TBReach(K, T ) is to keep the payoff of the play less than or equal to K while keeping the total time elapsed within T units. 3. Repeated reachability. For this objective, we consider slightly different semantics of the game where the play continues forever, and the repeated reachability objective RReach(η), η ∈ R 0 is to visit target locations infinitely often each time with a payoff in a given interval [-η, η].

In Section 4, we sketch the proof of the following negative result regarding the decidability of PTGs with these objectives. This result is particularly surprising for bounded-time reachability objective, since bounded-time restriction has been shown to recover decidability in many related problems [START_REF] Ouaknine | Towards a theory of time-bounded verification[END_REF][START_REF] Brihaye | Time-bounded reachability for monotonic hybrid automata: Complexity and fixed points[END_REF]. Theorem 2. Let A be a priced timed game arena. The decision problems corresponding to the existence of winning strategy for following objectives are undecidable:

1. Reach( K) objective for PTGs with two or more clocks and arbitrary prices; 2. TBReach(K, T ) objective for PTGs with five or more clocks; and prices 0,1; 3. RReach(η) objective for PTGs with three or more clocks and arbitrary prices.

To recover decidability, we consider a subclass of one-clock PTGs. In this subclass, the set of clocks X is a singleton {x}, and price-rates of the locations come from a doubleton set {p -, p + } with p -< p + two distinct elements of {-1, 0, 1} (no condition is made on the prices ω(a) of labels a ∈ Σ). We call these restricted games one-clock bi-valued priced timed games, abbreviated as 1PTG(p -, p + ), or 1BPTG if p -and p + do not matter. All our results may easily be extended to the case where p -and p + are taken from the set {-d, 0, d} with d ∈ N. We devote Section 5 to the proof of the following decidability results.

Theorem 3. We have the following results: 1. 1BPTGs are determined. 2. The value of a 1BPTG can be computed in pseudo-polynomial time. 3. Given that a 1BPTG has a finite value, an ε-optimal strategy for Player 1 can be computed in pseudo-polynomial time. 4. Aforementioned complexities drop to polynomial time for 1PTG(0, 1) with prices of labels taken from N.

Undecidability results

In this section we provide a proof sketch of our undecidability result (Theorem 2) by reducing the halting problem for two counter machines (see [START_REF] Minsky | Computation: finite and infinite machines[END_REF]) to the existence of a winning strategy for Player 1 for the desired objective. For all the three objectives, given a two counter machine, we construct a PTG A whose building blocks are the modules for instructions. In these reductions the objective of Player 1 is linked to a faithful simulation of various increment, decrement, and zero-test instructions of the machine by choosing appropriate delays to adjust the clocks to reflect changes in counter values. The goal of Player 2 is then to verify the simulation performed by Player 1. Proofs of correctness of the reductions, as well as more details can be found in the appendix.

Constrained-price reachability objectives Reach( K). The result in the case Reach( K) is a consequence of the result in [START_REF] Berendsen | Undecidability of cost-bounded reachability in priced probabilistic timed automata[END_REF]. Undecidability for other comparison operators is a new contribution. We only consider the objective Reach(=1) in this section, since proofs for other constraints are similar. Our reduction uses a PTG with two clocks x 1 and x 2 , arbitrary price-rates for locations and no prices for labels. Each counter machine instruction (increment, decrement, and test for zero value) is specified using a PTG module. The main invariant in our reduction is that upon entry into a module, we have that x 1 = 1 5 c 1 7 c 2 and x 2 = 0 where c 1 (respectively, c 2 ) is the value of counter C 1 (respectively, C 2 ). We outline the simulation of a decrement instruction for counter C 1 in Fig. 2. Let us denote by x old = 1 5 c 1 7 c 2 the value of x 1 while entering the module. At the location k+1 of the module, x 1 = x new should be 5x old to correctly decrement counter C 1 . At location k , Player 1 spends a non-deterministic amount of time t k = x new -x old such that x new = 5x old + ε. To correctly decrement C 1 , ε should be 0, and t k must be 4 5 c 1 7 c 2 . At location Check, Player 2 could choose to go to Go (in order to continue the simulation of the machine) or go to the widget WD 1 , if he suspects that ε = 0. If Player 2 spends time t > 0 in the location Check before proceeding to Go, then Player 1 can enter the location Abort (to abort the simulation), rather than going to k+1 . Player 1 spends 1 + t time in location Abort and reaches a target T 1 with cost 1 (and thus achieve his objective). However, if t = 0 then entering location Abort will make the cost to be greater than 1 (which is losing for Player 1). If Player 2 decides to enter widget WD 1 , then the cost upon reaching the target in the widget WD

1 is 1 + ε which is 1 iff ε = 0.
Bounded-time reachability objective. We sketch the reduction for objective TBReach(K, T ). Our reduction uses a PTG with price-rates 0 or 1 on locations, and zero prices on labels, along with five clocks x 1 , x 2 , z, a, b. On entry into a module for the (k + 1)th instruction, we always have one of the two clocks x 1 , x 2 with value 1 2 k+c 1 3 k+c 2 and other is 0. Clock z keeps track of the total time elapsed during simulation of an instruction: we always have z = 1 -1 2 k at the end of simulating kth instruction. Thus, time 1 2 is spent simulating the first instruction, 1 4 for the second instruction and so on, so that the total time spent in simulating the main modules is less than 1. The main challenge here is to ensure that only a bounded time is spent along the entire simulation, along with updating the counter values correctly. Clocks a, b are used for rough work. For instance, if the (k + 1)th instruction k+1 is an increment of C 1 , and we have x 1 = 1 2 k+c 1 3 k+c 2 , while a = b = x 2 = 0, and z = 1 -1 2 k , then at the end of the module simulating k+1 , we want x 2 = 1 2 k+1+c 1 +1 3 k+1+c 2 and x 1 = 0 and z = 1 -1 2 k+1 . Repeated reachability objective. Finally, we consider the repeated reachability objective RReach(η). Our reduction uses a PTG with 3 clocks, and arbitrary price-rates, but zero prices for labels. On entry into a module, we have x 1 = (ε = 0) then Player 2 can jump in widget WD 1 . The cost of going from location A to F is ε; each time we come back to A, the clock values with which A was entered are restored. Clearly, if ε = 0, Player 2 can incur a cost that is not in [-η, η] by taking the loop from A to F a large number of times.

One-clock bi-valued priced timed games

This section is devoted to the proof of Theorem 3. First of all, let us assume that all 1BPTGs A we consider are bounded, i.e., that there is a global invariant in every location, of the form x M K (where M K denotes the greatest constant appearing in the clock guards and invariants of A). This restriction comes w.l.o.g since every 1BPTG arena can be made bounded with a polynomial algorithm. 5Our proof of Theorem 3 is based on an extension of the classical notion of regions in timed automata, in the spirit of the regions introduced to define the corner point abstraction [START_REF] Bouyer | Optimal infinite scheduling for multipriced timed automata[END_REF]. Indeed, to take the price into account, ε-optimal strategies do not take uniform decisions on the classical regions. That is why we need to subdivide each classical region into three parts: two small parts around the corners of the region (that we will call borders in the following, considering our one-clock setting), and a big part in-between. We will show that considering only strategies that never jump into those big parts is sufficient (Lemma 1). Lemma 2, later, shows a stronger result that one can restrict attention to strategies that play closer and closer to the borders of the regions as time elapses. Finally, we combine these results to show that a finite abstraction of 1BPTGs is sufficient to compute the value as well as ε-optimal strategies (Lemma 3). This not only yields the desired result, but also provides us further insight into the shape of ε-optimal strategies for both players.

Reduction to η-region-uniform strategies

Since we only consider one-clock PTGs, we need not consider the standard Alur-Dill regional equivalence relation. Instead, we consider special region equivalence relation characterized by the intervals with constants appearing in guards and invariants of A inspired by Laroussinie, Markey, and Schnoebelen construction [START_REF] Laroussinie | Model checking timed automata with one or two clocks[END_REF]. Let 0=M 0 <M 1 < • • • <M K be the integers appearing in guards and invariants of A. We say that two valuations ν, ν ∈ R 0 are region-equivalent (or lie in the same region), and we write ν ∼ ν , if for every k ∈ {0, . . . , K}, ν M k iff ν M k , and ν M k iff ν M k . We define the set of regions to be the set of equivalence classes of ∼. We extend the equivalence relation ∼ from valuations to configurations in a straightforward manner. We also generalize the regional equivalence relation to the plays. For two (finite or infinite) plays r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . and r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . we say that r ∼ r if the lengths of r and r are equal, and they define sequences of regional equivalent states (i.e., ( i , ν i ) ∼ ( i , ν i ) for all i 0) and follow equivalent timed actions (i.e., a i = a i and ν i + t i ∼ ν i + t i for all i 0). We also consider a refinement of region equivalence relation that we call the η-region equivalence relation, and we write ∼ η , for a given η ∈ (0, 1 3 ). Intuitively, ν ∼ η ν if both valuations are close or far from any borders of the regions, with respect to the distance η.

Definition 4 (η-regions). For valuations ν, ν ∈ R 0 we say that ν ∼ η ν if ν ∼ ν and for every k ∈ {0, . . . , K -1}, |ν -

M k | η iff |ν -M k | η, and ν M K -η iff ν M K -η.
We assume the natural order over η-regions by their lower bounds. We call η-regions the equivalence classes of ∼ η . We also extend the relation ∼ η to configurations and runs.

For instance, if M 1 = 2 and M 2 = 3, the set of η-regions is given by {{0}, (0, η], (η, 2-η), [2-η, 2), {2}, (2, 2+η], (2+η, 3-η), [3-η, 3), {3}, (3, +∞)}. We next introduce the strategies of a restricted shape with the properties that they depend only on the η-region abstraction of runs; their decision is uniform over each η-region; and they play η-close to the borders of the regions.

Definition 5 (η-region uniform strategies). Let η ∈ (0, 1 3 ) be a constant. A strategy σ ∈ Strat 1 ∪ Strat 2 is said to be η-region-uniform if for all finite run r ∼ η r ending respectively in ( , ν) and ( , ν ) (in particular ν ∼ η ν ) we have ν + del(σ(r)) ∼ η ν + del(σ(r )) and lab(σ(r)) = lab(σ(r )); for every finite run r ending in

( , ν), if ν +del(σ(r)) ∈ (M k , M k+1 ), we have ν + del(σ(r)) ∈ (M k , M k + η] ∪ [M k+1 -η, M k+1
). We write UStrat η 1 and UStrat η 2 for the set of η-region-uniform strategies for Players 1 and 2. We also define upper-value UVal η (s) when both players are restricted to use only η-region-uniform strategies. Formally,

UVal η (s) = inf σ1∈UStrat η 1 sup σ2∈UStrat η 2 
Cost(Play(s, σ 1 , σ 2 )), for all s ∈ S.

Example 1. Consider PTG A 1 shown in Fig. 4 (that is not a 1BPTG since there are three distinct price-rates). A strategy of Player 2 is entirely described by the time spent in the initial location with initial valuation 0. For example, Player 2 can choose to delay 1/2 time units before jumping in the next location. Indeed, the lower and upper value of the game is -1 2 . However, this strategy is not η-region-uniform. Instead, an η-region-uniform strategy will delay t time units with t ∈ [0, η] ∪ [1 -η, 1]. Hence, the upper value when players can only use η-region-uniform strategies is equal to -1.

0 1 -1 -1 x 1 x = 1, {x} x 1 x = 1 x = 1 0 -1 1 1 x 1 x = 1, {x} x 1 x = 1 x = 1
Fig. 4. The value in the left-side one-clock PTG A1 with price-rates in {-1, 0, 1} is -1 2 , while the value in the right-side PTG A2 is 1 2 .

Contrary to this example, the next lemma shows that, in 1BPTGs, the upper value of the game increases when we restrict ourselves to η-region-uniform strategies. Intuitively, every cost that Player 2 can secure with general strategies, it can also secure it with η-region-uniform strategies against η-region-uniform strategies of Player 1.

Lemma 1. Val(s) UVal

η (s) , for every 1BPTG A, s ∈ S and η ∈ (0, 1 3 ),

Reduction to η-convergent strategies

A similar result concerning the lower values of the games can be shown in case of η-region-uniform strategies. In subsequent proofs, we need a stronger result to avoid situations detailed in Example 2, where player 2 needs infinite precision to play incrementally closer to borders (as well as an infinite memory). For this reason, we restrict the shape of strategies to force them to play at distance η

2 n
of borders when playing the nth round of the game. The slight asymmetry in the definitions for the two players is exploited in proving subsequent results.

Definition 6 (η-convergent strategies). Let η ∈ (0, 1 3 ) be a constant. A strategy σ ∈ Strat 1 ∪ Strat 2 is said to be η-convergent if σ is η-region-uniform and for all finite run r of length n ending in ( , ν):

if σ ∈ Strat 1 , there exists k such that either |ν + del(σ(r)) -

M k | η 2 n+1 , or del(σ(r)) = 0 and ν ∈ (M k + η 2 n+1 , M k + η]; -if σ ∈ Strat 2 , there exists k such that either ν + del(σ(r)) ∈ {M k + η 2 n+1 } ∪ [M k -η 2 n+1 , M k ), or del(σ(r)) = 0 and ν ∈ (M k + η 2 n+1 , M k + η]. We let CStrat η
1 and CStrat η 2 be respectively the set of η-convergent strategies for Player 1 and Player 2, and we define, for every configuration s ∈ S, CVal η (s) = sup σ2∈CStrat η 2 inf σ1∈CStrat η 1 Cost(Play(s, σ 1 , σ 2 )) . Example 2. Consider the 1BPTG A 3 composed of a vertex per player, on top of the target vertex. In its vertex, having price-rate 0, Player 1 must choose between going to the target vertex, or going to the vertex of Player 2 by resetting clock x. In its vertex, having price-rate -1, Player 2 must go back to the vertex of Player 1, with a guard x > 0: hence, Player 2 would like to exit as soon as possible, but because of the guard, he must spend some time before exiting. If Player 2 plays according to a finite-memory strategy, there must be a bound ε such that Player 2 always stays in his state for a duration bounded from below by ε, and Player 1 can exploit it by letting the game continue for an arbitrarily long time to achieve an arbitrarily small payoff. On the other hand, if Player 2 plays an infinite-memory η-convergent strategy by staying in his location for a duration ε/2 n in his n-th visit to its location, Player 2 ensures a payoff -ε for an arbitrarily small ε > 0, resulting in the value 0 of the game.

It is clear from the previous example that Player 2 needs infinite-memory strategies to optimize his objective. The following lemma formalizes our intuition that the lower value of the game decreases when we restrict ourselves to η-convergent strategies. Intuitively, every cost that Player 1 can secure with general strategies, it can also secure it with η-convergent strategies against an η-convergent strategy of Player 2.

Lemma 2. CVal η (s) Val(s) , for every 1BPTG A, s ∈ S and η ∈ (0, 1 3 ). Observe that this lemma fails to hold when location price-rates can take more than two values as exemplified by arena A 2 in Fig. 4. It shows a game with three distinct prices with lower and upper value equal to 1/2. However, when restricted to η-convergent strategies, the lower value equals 1.

Our next goal is to find a common bound being both a lower bound on CVal η (s) and an upper bound on UVal η (s) by studying the value of a reachabilitycost game on a finitary abstraction of 1BPTGs.

Finite abstraction of 1BPTGs

We now construct a finite price game graph à from any 1BPTG A, as a finite abstraction of the infinite weighted game [[A]], based on η-regions. Since we have learned that η-region-uniform strategies suffice, we limit ourselves to playing at a distance at most η from the borders of regions. Observe that only η-regions close to the borders are of interest, and moreover η-regions after the maximal constant M K are not useful since A is bounded. Let I η A be the set of remaining "useful" η-regions. For example, if constant appearing in the PTG are M 1 = 2 and M 2 = 3, we have I η A = {{0}, (0, η], [2 -η, 2), {2}, (2, 2 + η], [3 -η, 3), {3}}. We next define the delay between two such η-regions I J, denoted by d(I, J), as the closest integer of q -q, where q (respectively, q ) is the lower bound of interval I (respectively, J). For example, d((2,

2 + η], [3 -η, 3)) = 1 and d({0}, [2 -η, 2)) = 2.
Definition 7. For every 1BPTG A we define its border abstraction as a finite priced game graph

à = (V = V 1 V 2 , A, E, π, V f ) where: -V i = {( , I) | ∈ L i , I ∈ I η A , I ⊆ Inv( )} for i ∈ {1, 2}; -A = I η
A × Σ; -E is the set of tuples (( , I), (J, a), ( , J )) such that I J and for all I K J we have K ⊆ Inv( ) and J ⊆ ζ and J = J[R := 0] with (ζ, R, ) = δ( , a)}; π(( , I), (J, a), ( , J )) = ω( ) × d(I, J) + ω(a); and

-V f = {( , I) | ∈ L f , I ∈ I η A }.
In a border abstraction game Ã, the meaning of action (J, a) is that the player wants to let time elapse until it reaches the η-region J, then playing label a. It simulates any timed move (t, a) with t any delay reaching a point in J. Example 3. Consider the border abstraction of the 1BPTG of Fig. 1 shown in Fig. 5. Observe that we depict only a succinct representation of the real abstraction, since we only show the reachable part of the game from ( 1 , 0), and we have removed multiple edges (introduced due to label hiding) and kept only the most useful ones for the corresponding player. For example, consider the location ( 5 , {0}). There are edges labelled by (J, a) for every interval J ∈ I η A , all directed to ( 4 , {0}) due to a reset being performed there. We only show the best possible edge-the one with lowest price-since location 5 belongs to Player 1, who seeks to minimise cost. Each vertex contains the η-region it represents. Thanks to Theorem 1, it is possible to compute the optimal value as well as optimal strategies for both players. Here, the value of state ( 1 , 0) is 1, and an optimal strategy for Player 1 is to follow action ({0}, a) (i.e., jump to 2 immediately), and then action ({1}, a) (i.e., to delay 1 time unit, before jumping in 3 ). Lemma 3. Let A be a 1BPTG and à be its border abstraction. Suppose that for all 0 k K and ∈ L we have that

{0} {0} [0, η] [1-η, 1) [1, 1+η] [2-η, 2] {0} (0, η] [1-η, 1) {1} {0} 0 
Val Ã(( , {M k })) is finite. Then, for all ε > 0, there is η > 0 s.t. UVal η A (( , M k ))-ε Val Ã(( , {M k })) CVal η A (( , M k ))+ε.
Combining this result with Theorem 1 we obtain the following.

Corollary 1. 1BPTGs are determined and we can compute their values in pseudo-polynomial time. Moreover, in case the values are finite, ε-optimal strategies exist for both players: Player 2 may require infinite memory strategies, whereas finite memory is sufficient for Player 1. Finally, ε-optimal strategies can also be computed in pseudo-polynomial time.

Proof. In case of infinite values Val

Ã(( , {M k })), we can show directly that Val A (( , M k )) = Val Ã(( , {M k })) = Val A (( , M k ))
. Otherwise, let ε > 0. By Lemma 3, we know that there exists η > 0 such that for every location ∈ L and integer 0 k K:

0 0 1 0 0 1 0 x 1, {y} y = 0 y = 0 x = 1 x = 1 y = 1 y = 1
UVal η A (( , M k )) -ε Val Ã(( , {M k })) CVal η A (( , M k )) + ε .
Moreover Lemma 1 and 2 show that:

CVal η (( , M k )) Val(( , M k )) Val(( , M k )) UVal η (( , M k )) .
Both inequalities combined permit to obtain

Val Ã(( , {M k })) -ε Val(( , M k )) Val(( , M k )) Val Ã(( , {M k })) + ε .
Taking the limit when ε tends to 0, we obtain that Val((

, M k )) = Val(( , M k )) = Val Ã(( , {M k }))
. Therefore, 1BPTG are determined. Moreover, in case of finite values, the proof of Lemma 3 permits to construct ε-optimal η-region-uniform strategies σ * 1 (with finite memory) and σ * 2 (which is moreover η-convergent). In the case of 1BPTGs, the finite values are integers. This property fails if we allow more than one clock, as shows Fig. 6 with a two-clock PTG with price-rates in {0, 1} and optimal value 1 2 . It also fails if we allow more than two price-rates as was shown in Fig. 4. However for 1PTG(0, 1) with prices of labels in N, the value of the game is necessarily nonnegative disallowing the case -∞. The case +∞ can be detected in polynomial time. If the value is not +∞, the exact computation in the finite abstraction à can be performed in polynomial time (see [START_REF] Brihaye | Reachability-cost games with negative weights[END_REF] or [START_REF] Hansen | A faster algorithm for solving one-clock priced timed games[END_REF]), resulting in a polynomial algorithm for PTGs. The sketch of Theorem 3 is now complete. Notice that our proof shows that optimal value functions (as defined in [START_REF] Bouyer | Almost optimal strategies in one-clock priced timed games[END_REF][START_REF] Rutkowski | Two-player reachability-price games on single-clock timed automata[END_REF][START_REF] Hansen | A faster algorithm for solving one-clock priced timed games[END_REF]) of such games have a polynomial number of line segments, and hence algorithms presented in [START_REF] Bouyer | Almost optimal strategies in one-clock priced timed games[END_REF][START_REF] Rutkowski | Two-player reachability-price games on single-clock timed automata[END_REF][START_REF] Hansen | A faster algorithm for solving one-clock priced timed games[END_REF] are indeed polynomial time.

Conclusion

We revisited games with reachability objective on PTGs with both positive and negative price-rates. We showed undecidability of all classes of constrained-price reachability objectives with two or more clocks. We also observed that adding bounded-time restriction does not recover decidability, even with nonnegative prices. We also partially answer the question regarding polynomial-time algorithm for one-clock PTGs by showing that for a bi-valued variant the problem is in pseudo-polynomial time. However, the existence of a polynomial-time algorithm for multi-priced one-clock PTGs with nonnegative price-rates, and the existence of algorithm for computing ε-optimal strategies for PTGs with arbitrary number of clocks remain open problems.

A Motivation: A case-study from Project Cassting

Our work is partly motivated by possible applications to real case study, like energy-aware houses, taken from the EU FP7 project Cassting. It consists in houses equiped with solar panels and energy storage capacities (e.g., with a water tank), that can produce some energy, use or store it, and possibly sell it on a local grid, for use by other houses. Priced timed games may permit to model such house, and strategy synthesis allows us to build optimal controller for the house, aiming at energy and cost savings: player 1 models the house and wants to minimize its cost, whereas player 2 models other houses and the environment, modelling the worst possible situation. Pricing policy implies that selling energy on the grid is more profitable during the day than the night, whereas it is more profitable to use energy from the grid during the night than the day. Moreover, weather conditions (sun or clouds, e.g.) imply that the solar panels are not constantly producing energy. Hence, we can model the situation with three independant phases: sunny day, cloudy day and night. In each of these phases, we can suppose that only two rates are indeed available. During a sunny day, selling energy will be rewarded α euros per time unit (assuming that the energy production or consumption is constant), whereas consumption or storing of energy does not cost anything. During a cloudy day, solar panels are off: because of storage capacities, it is however possible to sell energy at the same cost than previously, but the consumption may now cost α euros per time unit. Finally, during the night, selling energy rewards β euros per time unit, whereas consuming costs β euros per time unit. Notice that in each of the phases, we can use bi-valued priced timed games to model the arena.

B Detailed decidability proofs

B.1 Proof of Lemma 1

With respect to rechability of the target locations, (η-)equivalent plays are indistinguishable. Moreover, with respect to weights, we show that plays may avoid regions (M k + η, M k+1 + η) without loss of generality. Formally, a play r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . is said to stay η-close to borders if for all i 0, there exists k such that |ν i + t i -M k | η. Before proving Lemma 1, we first study more precisely the relationship between general plays and plays that stay η-close to borders. More precisely, we now explain how to construct, from any finite play r, a play r + such that (i ) r + stays η-close to borders; (ii ) r and r + are region-equivalent; and (iii ) Cost(r)

Cost(r + ). Intuitively, the idea is to consider the steps of play r and to shift them towards one of the closest borders, unless the current step is already η-close to a border: when the current location has price p + , since we want the weight of r + to be greater than or equal to the weight of r, we will spend more time in this location, hence shifting the step 'to the right', and symetrically in case of a location of price p -. Moreover, the construction will trivially verify that if r and r are two plays that coincide on their prefix of length n, i.e., r 7. A play r and its associated play r + . The price of the location in play r, when it matters, is denoted on the transition exiting this location: for instance the first location of r has price p -, whereas the second has price p + . On the first transition, the second rule of the definition applies, and less time is spent in the location of price p -. On the second transition, the first rule applies, and more time is spent in the location of price p + . On the third transition, the first rule applies and both plays synchronize. The transition of time duration t = 0 (denoted as a loop) in r is supposed to be taken in a location owned by player 1, of price p + . In particular, in r + , it is taken when the valuation is 3 + η, which implies a time duration t + = 0 as prescribed in the second case of the last rule of the definition.

[n] = r[n], then (r ) + [n] = r + [n]. 0 η 1 -η 1 1 + η 3 -η 3 3 + η 5 -η 5 5 + η r p - p + p - p - p - p + r + Fig.
The construction is by induction on the length of the play. Henceforth, let r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . , ( i+1 , ν i+1 ) and suppose that ν 0 is η-close to some M k . We construct a play r + = ( + 0 , ν + 0 ), (t + 0 , a + 0 ), . . . , ( + i+1 , ν + i+1 ). In case i + 1 = 0, we simply let + 0 = 0 and ν + 0 = ν 0 . Otherwise, we consider the play r + constructed by induction up to its configuration of index i, and we now explain how to construct the next timed action (t + i , a + i ). First, we let a + i = a i . Then, we distinguish between three cases:

if there exists k such that

|ν i + t i -M k | η, then we let t + i = ν i + t i -ν + i ; -if there exists k such that ν i + t i ∈ (M k + η, M k+1 -η) and ω( i ) = p -, then we let t + i = max(M k + η -ν + i , 0)
. Indeed, in this case, we want to spend as little time as possible in the location in order to ensure Cost(r) Cost(r + ); if there exists k such that ν i + t i ∈ (M k + η, M k+1 -η) and ω( i ) = p + , then there are two cases. In case i ∈ L 2 or t i > 0 or

ν + i = M k + η, we let t + i = M k+1 -η -ν + i .
The intution is that we try to spend as much time as possible in the location to enforce Cost(r) Cost(r + ). Otherwise, i.e., if i ∈ L 1 and t i = 0 and ν + i = M k +η, then we let t + i = 0. Because t i = 0 = t + i , we will still ensure that Cost(r) Cost(r + ) in that case. Notice that this definition is purely syntactic, and we will show later that all t + i 's are non-negative, ensuring that we are indeed constructing a play of the game. We then let + i+1 = i+1 , and valuation ν + i+1 is defined according to the semantics of the game.

An example of construction of r + is given in Fig. 7, for a play r without reset. We have supposed that the sequence of borders is 0, 1, 3 and 5.

Lemma 4. Let r be a play that starts from some state η-close to a border. Then, the play r + verifies the following properties: 1. if for some j, there exists k such that |ν j +t j -M k | η, then ν + j +t + j = ν j +t j ;

M k M k + η M k+1 -η M k+1 νi νi + ti ν + i Fig. 8.
Illustration for the proof of Lemma 4-2

2. if for some j, there exists k such that

ν j + t j ∈ (M k + η, M k+1 -η), then ν + j + t + j ∈ {M k + η, M k+1 -η}; 3. r + is a play that stays η-close to borders; 4. r + ∼ r; 5. Cost(r) Cost(r + ).
In the rest of this section, we call the five points of this Lemma 'property 1', 'property 2', and so forth.

Remark 1. Before starting the proof, notice that in case δ( j , a j ) = (ζ, ∅, j+1 ), i.e., the clock is not reset at step j, we have ν j+1 = ν j + t j (and we will also have ν + j+1 = ν + j + t + j ). In particular, in that case, property 1 implies that if

|ν j+1 -M k | η, then ν + j+1 = ν j+1 , whereas property 2 implies that if ν j+1 ∈ (M k + η, M k+1 -η), then ν + j+1 ∈ {M k + η, M k+1 -η}.
Proof. All properties are shown by a simultaneous induction on the length of the play. All properties are clearly true in case of a play r reduced to a single state (which is assumed to be η-close to a border). We now consider a play r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . , ( i+1 , ν i+1 ) with i + 1 1, and prove the properties for the play r + whose construction has been given before.

1. The first property is true directly by construction. 2. For the second property, by induction hypothesis, it is sufficient to prove that if

ν i + t i ∈ (M k + η, M k+1 -η), then ν + i + t + i ∈ {M k + η, M k+1 -η}. Suppose first that ω( i ) = p -: then, t + i = max(M k + η -ν + i , 0). In case t + i > 0, we have t + i = M k + η -ν + i , hence, ν + i + t + i = M k + η.
Otherwise, we have t + i = 0 so that ν + i + t + i = ν + i and ν + i > M k + η: we have depicted an example of the situation in Fig. 8. Since ν + i must be η-close to a border, we have ν

+ i M k+1 -η. Then, ν + i > ν i +t i ν i . But, ν +
i and ν i are in the same region by induction hypothesis of property 4 (no reset has been performed in the previous transition since ν i = ν + i , so that they are respectively equal to

ν + i-1 +t + i-1 and ν i-1 +t i-1 ). This implies that ν + i ∈ [M k+1 -η, M k+1 ) and ν i ∈ (M k , M k+1 -η). However, by induction hypothesis, if ν i ∈ (M k , M k +η], then ν + i = ν i which is forbidden in this case. Hence, we have ν i ∈ (M k +η, M k+1 - η).
Hence, by induction hypothesis again, we have

ν + i ∈ {M k + η, M k+1 -η}, which finally implies that ν + i = M k+1 -η. Suppose then that ω( i ) = p + . The result is again immediate in case t + i = M k+1 -η -ν + i . Otherwise, we have t + i = 0, i ∈ L 1 , t i = 0 and ν + i = M k + η. We directly obtain ν + i + t + i = M k + η which permits to conclude.
3. We now prove that r + is indeed a play. The only non-trivial property is that t + i is a non negative delay, especially when

t + i = ν i + t i -ν + i or t + i = M k+1 -η -ν + i . Consider first the case t + i = ν i +t i -ν + i . It has to be shown that if there exists k such that |ν i + t i -M k | η, then ν + i is not greater than ν i + t i . Notice first that ν i ν i + t i . Hence, if ν i is η-close to a border, then by property 1, ν + i = ν i ν i + t i . Otherwise, we know that ν i / ∈ [M k -η, M k + η], hence, either ν i < M k -η, or ν i > M k + η. Since ν i ν i + t i M k + η, we can rule out the case ν i > M k + η, and conclude that ν i < M k -η. By property 2 (applied to ν + i = ν + i-1 +t + i-1
, since no reset has just been performed, knowing that ν i is not η-close to 0), this implies that ν

+ i M k -η ν i + t i . Consider then the case t + i = M k+1 -η -ν + i , which holds when ν i + t i ∈ (M k + η, M k+1 -η) and ω( i ) = p + . Then, ν i ν i + t i < M k+1 -η.
Hence, either ν i is η-close to a border (in particular when the clock has just been reset), in which case, by property 1, we have

ν + i = ν i < M k+1 -η, so that t + i = M k+1 -η -ν + i > 0. Or ν i ∈ (M k + η, M k +1 -η) with k k. By property 2, this implies that ν + i M k +1 -η M k+1 -η, once again implying that t + i 0.
The fact that r + stays η-close to the borders is directly implied by properties 1 and 2. 4. Property r + ∼ r is also a direct consequence of properties 1 and 2.

It only remains to prove that Cost(r)

Cost(r + ). Notice that the weights Cost(r) and Cost(r + ) can be decomposed as sums of weights of subplays that start and end in the same configuration, but with intermediate configurations that do no match. Hence, it is sufficient to prove the inequality for subplays r and r + that start in the same configuration (at step j, ν j + t j = ν + j + t + j ) and that do not contain other identical configurations, unless possibly the last one. For the sake of simplicity, we suppose in the following that j = 0. In particular, we may suppose that r does not contain reset transitions or positions j such that ν j is η-close to borders, except possibly the very last one (otherwise, the two plays would again contain matching configurations). Since there are no resets, we have ν j = ν j-1 + t j-1 and ν + j = ν + j-1 + t + j-1 for every j > 0. We now consider separately the possibility of sets {p -, p + }.

-As a first case, consider that p -= -1 and p + = +1. We prove by induction over 0 j i that

Cost(r + [j + 1]) Cost(r[j + 1]) + |ν j+1 -ν + j+1 | .
For the sake of brevity, we omit the weights of the actions in this proof, but notice that the same actions occur in r and r + since these two plays are equivalent (by property 4).

• Base case. If j = 0, then we have supposed that ν 0 is η-close to a border, so that

ν + 0 = ν 0 . Let k be such that 6 ν 1 ∈ (M k +η, M k+1 -η).
Then, if ω( 0 ) = -1, t + 0 = max(M k +η-ν 0 , 0). However, ν 0 ν 1 and ν 0 is η-close to a border, so that ν 0 M k +η. Hence,

t + 0 = M k +η-ν 0 , which implies ν + 1 = ν 0 + t + 0 = M k + η. Hence, Cost(r + [1]) = -(ν + 1 -ν 0 ) = Cost(r[1]) + ν 1 -ν + 1 = Cost(r[1]) + |ν 1 -ν + 1 |
. Consider then the case where ω( 0 ) = +1. Notice that we supposed that ν 1 is not η-close to a border, contrary to ν 0 , so that t 0 > 0. Hence, we are sure that t + 0 = M k+1 -η -ν 0 . This implies that

ν + 1 = ν + 0 + t + 0 = ν 0 + t + 0 = M k+1 -η > ν 1 and Cost(r + [1]) = ν + 1 -ν 0 = Cost(r[1]) + ν + 1 -ν 1 = Cost(r[1]) + |ν 1 -ν + 1 | . • Inductive case.
Let us suppose that the property is proved for all indices less than or equal to j, and prove it for j +1. We let k be such that ν j+1 = ν j + t j ∈ (M k + η, M k+1 -η). We will distinguish four possible cases depending on ω( j ) and the relative order between ν + j+1 and ν j+1 . (a) We first suppose that ω( j ) = +1. Then,

Cost(r + [j + 1]) = Cost(r + [j]) + ν + j+1 -ν + j Cost(r[j]) + |ν j -ν + j | + ν + j+1 -ν + j (Ind. Hyp.) Hence, since Cost(r[j + 1]) = Cost(r[j]) + (ν j+1 -ν j ): Cost(r + [j + 1]) Cost(r[j + 1]) -(ν j+1 -ν j ) + |ν j -ν + j | + ν + j+1 -ν + j . (1) 
i. In the case where ν + j+1 > ν j+1 , we have |ν j+1 -ν + j+1 | = ν + j+1ν j+1 so that (1) can be rewritten

Cost(r + [j + 1]) Cost(r[j + 1]) + |ν j+1 -ν + j+1 | + (ν j -ν + j ) + |ν j -ν + j |
which is greater than or equal to Cost(r[j

+ 1]) + |ν j+1 -ν + j+1 | since ν j -ν + j -|ν j -ν + j |. ii. Similarly, in the case where ν + j+1 < ν j+1 , we have |ν j+1 - ν + j+1 | = ν j+1 -ν + j+1 .
Notice that this necessarily implies that i ∈ L 1 and t j = 0 and ν + j = M k + η: otherwise, we would have t + j = M k+1 -η -ν + j and thus ν + j+1 = M k+1 -η > ν j+1 that contradicts the hypothesis. In particular, we have t + j = 0 and ν

+ j = ν + j+1 < ν j+1 = ν j , so that (1) becomes Cost(r + [j + 1]) Cost(r[j + 1]) + |ν j -ν + j | = Cost(r[j + 1]) + |ν j+1 -ν + j+1 | .
(b) Suppose then that ω( j ) = -1. Then, a similar calculation gives

Cost(r + [j + 1]) = Cost(r + [j]) -(ν + j+1 -ν + j ) Cost(r[j]) + |ν j -ν + j | -(ν + j+1 -ν + j ) (Ind. Hyp.) Hence, since Cost(r[j + 1]) = Cost(r[j]) -(ν j+1 -ν j ): Cost(r + [j + 1]) Cost(r[j + 1]) + (ν j+1 -ν j ) + |ν j -ν + j | -(ν + j+1 -ν + j ) . (2) 
i. Once again, if ν + j+1 < ν j+1 , we have

|ν j+1 -ν + j+1 | = ν j+1 -ν + j+1 so that (2) becomes Cost(r + [j + 1]) Cost(r[j + 1]) + |ν j+1 -ν + j+1 | -(ν j -ν + j ) + |ν j -ν + j |
which is greater than or equal to Cost(r

[j + 1]) -|ν j+1 -ν + j+1 | since ν j -ν + j |ν j -ν + j |. ii. Similarly, if ν + j+1 > ν j+1 , we know by property 2 that ν + j+1 = M k+1 -η. In particular, since t + j = max(M k + η -ν + j , 0) and ν + j+1 = ν + j + t + j = M k + η, we know that t + j = 0, and ν + j M k +η. This implies ν + j+1 = ν + j = M k+1 -η > ν j+1 ν j . Knowing that |ν j+1 -ν + j+1 | = ν + j+1 -ν j+1
, we obtain from ( 2)

Cost(r + [j + 1]) Cost(r[j + 1]) + |ν j+1 -ν + j+1 | + 2(ν j+1 -ν + j+1 ) -2(ν j -ν + j ) = Cost(r[j + 1]) + |ν j+1 -ν + j+1 | + 2(ν j+1 -ν j ) Cost(r[j + 1]) + |ν j+1 -ν + j+1 | .
We finally have proved the property by induction. Notice in particular that this shows that Cost(r

+ [j + 1]) Cost(r[j + 1]
) for every j with ν + j+1 = ν j+1 . To conclude the proof of Cost(r + ) Cost(r), it remains to deal with the case of a possible last transition ending with ν + i+1 = ν i+1 . Unless i = 0, in which case we have Cost(r + ) = Cost(r), we know by hypothesis that ν + i = ν i . By the previous property, we have Cost(r

+ [i]) Cost(r[i])+|ν i -ν + i |. Moreover, Cost(r + ) = Cost(r + [i])+ω( i )(ν + i+1 -ν + i ) and Cost(r) = Cost(r[i]) + ω( i )(ν i+1 -ν i ).
In the overall (using the fact that ν + i+1 = ν i+1 ), we get

Cost(r + ) Cost(r) + ω( i )(ν i -ν + i ) + |ν i -ν + i | .
In all cases, we verify that -ω

( i )(ν i -ν + i ) |ν i -ν + i |
, so that we have proved that Cost(r + ) Cost(r).

-We now consider the case where p -= 0 and p + = +1 (the case p -= -1 and p + = 0 is very similar, and not explained in details here). We prove another inequality by induction over 0 j i, namely that

Cost(r + [j + 1]) Cost(r[j + 1]) + max(ν j+1 -ν + j+1 , 0
) . The proof is very similar to the previous case, and we conclude as previously.

We now go to the proof of Lemma 1. In case, Val(s) = -∞ the Lemma is trivially true. We first consider the case Val(s) < +∞. Let σ 1 ∈ UStrat η 1 . We now explain how to construct a strategy σ 1 ∈ Strat 1 such that for all states s sup

σ 2 ∈UStrat η 2 Cost(Play(s, σ 1 , σ 2 )) sup σ2∈Strat2 Cost(Play(s, σ 1 , σ 2 )) .
To prove such an inequality, we will consider any strategy σ 2 ∈ Strat 2 and construct a strategy

σ 2 ∈ UStrat η 2 such that Cost(Play(s, σ 1 , σ 2 )) Cost(Play(s, σ 1 , σ 2 )) .
Strategy σ 1 follows σ 1 in case of plays staying η-close to borders. We must however extend it to deal with the other plays faithfully. Let r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . , ( i , ν i ) be any finite play ending in a location i of player 1, and r + = ( + 0 , ν + 0 ), (t + 0 , a + 0 ), . . . , ( + i , ν + i ) the play constructed as before. By Lemma 4, we know that r + is a play that stays η-close to borders. Hence, σ 1 (r + ) = (t i , a), for some t i ∈ R 0 , with ν + i + t i being η-close to a border. We let t i = max(ν + i + t i -ν i , 0) and σ 1 (r) = (t i , a). Let r (respectively, r ) be the play r (respectively, r + ) extended with the step prescribed by σ 1 (respectively, σ 1 ). Then, we prove that r matches the construction above starting from the run r, i.e., r+ = r . By construction, we only have to verify that the value of t i is consistent with the previous constructions, i.e., t i = t + i . Lemma 5. We have

t i = t + i . Proof. In case ν i ν + i +t i , since t i = max(ν + i +t i -ν i , 0), we have ν i +t i = ν + i +t i which is η-close to borders, and t i = ν i + t i -ν +
i that fits with the definition of t + i in r+ : hence t i = t + i in that case. Otherwise, we have ν i > ν + i + t i and t i = 0. In particular, ν i > ν + i so that ν i cannot be η-close to a border (by Lemma 4-1). By Lemma 4-2, since ν + i < ν i , there exists k such that ν

+ i = M k + η and ν i ∈ (M k + η, M k+1 -η).
We are thus in the situation i ∈ L 1 and t i = 0 and ν + i = M k + η that prescribes a choice of the next time delay t + i = 0. Hence, we must prove that t i = 0. It is necessarily the case, since

M k + η = ν + i ν + i + t i < ν i with ν + i + t i being η-close to a border and ν i ∈ (M k + η, M k+1 -η)
. Finally, we obtain t i = 0 = t + i . We now consider any strategy σ 2 ∈ Strat 2 , and construct a strategy σ 2 ∈ UStrat η 2 such that Play(s, σ 1 , σ 2 ) = Play(s, σ 1 , σ 2 ) + for every state s η-close to a border. From Lemma 4, we will then get Cost(Play(s, σ 1 , σ 2 )) Cost(Play(s, σ 1 , σ 2 )) , which will enable us to conclude. We assume Play(s, σ 1 , σ 2 ) + = ( + 0 , ν + 0 ), (t + 0 , a + 0 ), . . . , ( + n , ν + n ), . . . with s = ( + 0 , ν + 0 ) η-close to a border. Then, we first define σ 2 over the finite plays Play(s, σ 1 , σ 2 ) + [n] with n ∈ N, by letting

σ 2 (Play(s, σ 1 , σ 2 ) + [n]) = (t + n , a + n ) .
Notice first that this strategy verifies Play(s, σ 1 , σ validating the definition of η-region-uniform strategies.

, σ 2 ) + [n]) ∼ η σ 2 (Play(s , σ 1 , σ 2 ) + [n]) (induced by
This concludes the proof of Val(s) UVal η (s) in case Val(s) < +∞.

Finally, the case Val(s) = +∞, corresponds to two possible situations: either player 2 has a way to ensure that the goal is never reached, or he cannot have such a guarantee, but still is able to make the price go bigger and bigger, i.e. he has a family of strategies that do not forbid from reaching the goal but ensure a price which is not bounded over the family 7 . It only remains to prove that player 2 can do it so with η-region-uniform strategies too. Let σ 1 ∈ UStrat η 1 be an η-region-uniform strategy for player 1. We know that sup σ2∈Strat2 Cost(Play(s, σ 1 , σ 2 )) = +∞ .

The first case corresponds to the one where there exists a strategy σ 2 ∈ Strat 2 such that Cost(Play(s, σ 1 , σ 2 )) = +∞, i.e., in this outcome, the goal is not reached. As previously, it is possible to reconstruct from σ 2 an η-region-uniform strategy σ 2 achieving the very same goal (notice that the goal is definable with regions): the only difference is the fact that σ 2 must now mimic an infinite number of prefixes since the outcome is no longer finite. The second case finally corresponds to the one where there is no strategy σ 2 ∈ Strat 2 such that Cost(Play(s, σ 1 , σ 2 )) = +∞. We construct as previously a strategy σ 1 ∈ Strat 2 for player 1 from strategy σ 1 . From the fact that sup σ2∈Strat2 Cost(Play(s, σ 1 , σ 2 )) > M , we know the existence of a strategy σ 2 ∈ Strat 2 so that Cost(Play(s, σ 1 , σ 2 )) > M . Since this price is finite by hypothesis, the previous construction allows us to obtain a region-uniform strategy σ 2 verifying:

Cost(Play(s, σ 1 , σ 2 )) Cost(Play(s, σ 1 , σ 2 )) > M
for all M ∈ R. This proves that UVal(s) = +∞.

7 Indeed, we will show in Appendix B.4 that only the first alternative is possible.

B.2 Proof of Lemma 2

The proof of Lemma 2 is a refinement of the proof of Lemma 1 (where, moreover, the roles of both players are switched). To avoid the divergence phenomenon of Example 2, we restrict our attention to plays staying η-close to borders, that moreover jump closer and close to borders. More formally, a play r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . is said to be η-convergent if for all i 0, there exists k such that either

|ν i +t i -M k | η/2 i+1 , or t i = 0 and ν i ∈ (M k +η/2 i+1 , M k +η].
Notice in particular that η-convergent runs stay η-close to borders. Unfortunately, it is not possible to define η-convergent runs as runs such that the first property

(|ν i + t i -M k | η/2 i+1
) always holds since it would forbid a player to delay 0 time units when, in the round i, its valuation is

ν i ∈ (M k +η/2 i+1 , M k +η].
The second property is there to fix this issue.

We first study more precisely the relationship between general plays and η-convergent plays, like we did for runs staying η-close to borders. More precisely, we now explain how to construct from any finite play r, a play r -such that (i ) r -is an η-convergent play; (ii ) r and r -are region-equivalent; and (iii ) Cost(r -) Cost(r). Moreover, the construction will trivially verify that if r and r are two plays that coincide on their prefix of length n, i.e., r

[n] = r[n], then (r ) -[n] = r -[n].
Indeed, the construction is by induction on the length of the play, and very similar to the construction of r + in the previous section. The main difference with the case of r + , apart from the fact that we look for a play with a smaller weight rather than a greater weight, belongs in the fact that r - must jump closer and closer to the borders.

Henceforth, let r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . , ( i+1 , ν i+1 ) and suppose that ν 0 is ηclose to some M k . We construct a play r -= ( - 0 , ν - 0 ), (t - 0 , a - 0 ), . . . , ( - i+1 , ν - i+1 ). In case i + 1 = 0, we simply let - 0 = + 0 = 0 and ν - 0 = ν + 0 = ν 0 . Otherwise, we consider the play r -constructed by induction up to its configuration of index i, and we now explain how to construct the next timed action (t - i , a - i ). First, we let a - i = a i . Then, we distinguish between three cases:

-if there exists k such that |ν i +t i -M k | η/2 i+1 , then we let t - i = ν i +t i -ν - i ; -if there exists k such that ν i + t i ∈ (M k + η/2 i+1 , M k+1 -η/2 i+1 ) and ω( i ) = p + , then we let t - i = max(M k + η/2 i+1 -ν - i , 0); -if there exists k such that ν i + t i ∈ (M k + η/2 i+1 , M k+1 -η/2 i+1
) and ω( i ) = p -, then there are two cases.

In case i ∈ L 1 or t i > 0 or ν - i > M k +η, in which case we let t - i = M k+1 -η/2 i+1 -ν - i . Otherwise, i.e., if i ∈ L 2 and t i = 0 and ν - i M k + η, then we let t - i = max(M k + η/2 i+1 -ν - i , 0
). Once again, we will verify in the next lemma that t - i is always non-negative, ensuring that we indeed construct a valid play. Once defined t - i , we let - i+1 = i+1 , and valuation ν - i+1 is defined to be consistent with the semantics [[A]] of the game. Lemma 6. Let r be a play that starts from some state η-close to a border. Then, the play r -constructed before verifies the following properties: 1. if for some j, there exists k such that |ν j +t j -M k | η/2 j+1 , then ν - j +t - j = ν j + t j ; 2. if for some j, there exists k such that

ν j +t j ∈ (M k +η/2 j+1 , M k+1 -η/2 j+1 ), then (a) ν - j + t - j ∈ {M k + η/2 j+1 , M k+1 -η/2 j+1 , ν - j }; (b) ν - j + t - j M k+1 -η/2 j+1 ; (c) if t - j = 0 and ν - j M k + η, then ν - j ν j + t j ; 3. r -is an η-convergent play; 4. r -∼ r; 5. Cost(r -) Cost(r).
Remark 2. As for Lemma 1, notice that if the clock is not reset at step j, we have ν j+1 = ν j +t j , and ν - j+1 = ν - j +t - j . In particular, in that case, property 1 implies

that if |ν j+1 -M k | η/2 j+1 , then ν - j+1 = ν j+1 . Similarly, property 2 implies that if ν j+1 ∈ (M k +η/2 j+1 , M k+1 -η/2 j+1 ), then ν - j+1 ∈ {M k +η/2 j+1 , M k+1 - η/2 j+1 , ν - j }. Moreover, ν - j+1 M k+1 -η/2 j+1 and if t - j = 0 and ν - j M k + η, then ν - j ν j+1
. Properties (b) and (c) will be useful in the proof by induction of subsequent properties.

Proof. All properties are shown by induction on the length of the play. All properties are clearly true in case of a play r reduced to a single state (which is assumed to be η-close to a border). We now consider a play r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . , ( i+1 , ν i+1 ) with i + 1 1 and we prove the properties for the play r -constructed before.

1. The first property is true directly by construction. 2. For the second property, by induction hypothesis, it is sufficient to prove the property for j = i. Hence, suppose that

ν i + t i ∈ (M k + η/2 i+1 , M k+1 - η/2 i+1 ). In case ω( i ) = p + , we have t - i ∈ {M k + η/2 i+1 -ν - i , 0}. In case ω( i ) = p -, we have t - i ∈ {M k + η/2 i+1 -ν - i , M k+1 -η/2 i+1 -ν - i , 0}. This implies that ν - i +t - i ∈ {M k +η/2 i+1 , M k+1 -η/2 i+1 , ν - i }, i.e., property (a). Property (b), namely ν - i + t - i M k+1 -η/2 i+1
, needs only to be proved when ν - i + t - i = ν - i (otherwise the property is trivially verified since M k + η/2 i+1 < M k+1 -η/2 i+1 ). In that case, there are two possibilities. If ν i is η/2 i -close to borders, since ν i ν i + t i , we have ν i M k+1 -η/2 i+1 , and by property 1,

ν - i = ν i M k+1 -η/2 i+1 (as ν - i = ν - i-1 + t - i-1 = ν i-1 + t i-1 = ν i ). If ν i is not η/2 i -close to borders, then ν i ∈ (M k + η/2 i , M k +1 -η/2 i ), with k k. By induction, ν - i M k +1 -η/2 i , so that ν - i + t - i = ν - i M k+1 -η/2 i+1
. Finally, let us prove property (c). Assume that t - i = 0 and ν - i M k + η. We now prove that ν - i ν i . Whatever the value of ω( i ), we have that ν - i M k + η/2 i+1 . There are then four cases.

-In a first case, we have ν i M k . Whatever ν i is η/2 i -close to a border or not, we obtain (by property 1 or by induction), that ν

- i M k ν i + t i . -In a second case, we have ν i ∈ (M k , M k +η/2 i ]. By property 1, we deduce that ν - i = ν i ν i + t i . -The third case corresponds to ν i ∈ (M k + η/2 i , M k+1 -η/2 i ), which implies that ν i-1 + t i-1 = ν i ∈ (M k + η/2 i , M k+1 -η/2 i ). By induction, we obtain that ν - i = ν - i-1 + t - i-1 ∈ {M k + η/2 i , M k+1 -η/2 i , ν - i-1 }. If ν - i = M k + η/2 i < ν i ν i + t i , we conclude directly. The case ν - i = M k+1 -η/2 i > M k + η leads to a contradiction. Finally, if ν - i = ν - i-1 , since we assume ν - i-1 M k + η, we obtain by induction that ν - i-1 ν i-1 + t i-1 = ν i ν i + t i . -The fourth case is ν i ∈ [M k+1 -η/2 i , M k+1 -η/2 i+1 ), but then ν - i M k + η M k+1 -η/2 i ν i ν i + t i .
3. We now prove that r -is indeed a play. The only non-trivial property is that t - i is a non negative delay, especially when

t - i = ν i + t i -ν - i or t - i = M k+1 -η/2 i+1 -ν - i . Consider first the case t - i = ν i + t i -ν - i . It has to be shown that if there exists k such that |ν i + t i -M k | η/2 i+1 , then ν - i is not greater than ν i + t i . Notice that ν i ν i + t i . Hence, if ν i is η/2 i -
close to a border, then by property 1, ν - i = ν i ν i + t i , and we are done. Otherwise (i.e. if ν i is not η/2 i -close to a border), since ν i ν i + t i M k + η/2 i+1 , we even know that ν i < M k -η/2 i . Since no reset has been possibly performed during action a i-1 (otherwise, ν i = 0 is η/2 i -close to a border), we have

ν i = ν i-1 + t i-1 ∈ (M k + η/2 i , M k +1 -η/2 i ) with k < k. By property 2, this implies that ν - i = ν - i-1 + t - i-1 M k +1 -η/2 i . In consequence, ν - i M k -η/2 i ν i + t i . Consider then the case t - i = M k+1 -η/2 i+1 -ν - i , which holds when ν i + t i ∈ (M k + η/2 i+1 , M k+1 -η/2 i+1 ) and ω( i ) = p -. Then, ν i ν i + t i < M k+1 -η/2 i+1 . Hence, either ν i is η/2 i -
close to a border (in particular when the clock has just been reset), in which case, by property 1, we have

ν - i = ν i < M k+1 -η/2 i+1 , so that t - i > 0. Or ν i ∈ (M k + η/2 i , M k +1 -η/2 i ) with k k. By property 2, this implies that ν - i M k +1 -η/2 i < M k+1 -η/2 i+1
, once again implying that t - i > 0. The fact that r -is an η-convergent play is then directly implied by properties 1 and 2. 4. Property r -∼ r is also a direct consequence of properties 1 and 2. 5. It only remains to prove that Cost(r -) Cost(r). Notice that, by induction, only matters the weight since the last index j where plays r and r -have synchronized, i.e., where ν j + t j = ν - j + t - j . For the sake of simplicity, we suppose in the following that j = 0. In particular, we may suppose that r does not contain reset transitions or positions j such that ν j is η/2 j -close to borders, except possibly the very last one. Since there are no resets, we have ν j = ν j-1 + t j-1 for every j > 0. We now consider separately the possibility of sets {p -, p + }.

-As a first case, consider that p -= -1 and p + = +1. We prove by induction over 0 j i that

Cost(r -[j + 1]) Cost(r[j + 1]) -|ν j+1 -ν - j+1 | .
To simplify the notations, we forget the weights of the actions in this proof, but notice that the same weights occur in r and r -since these two plays are equivalent.

ii. Similarly, in the case where ν - j+1 < ν j+1 , we have |ν j+1ν - j+1 | = ν j+1 -ν - j+1 . Notice that this necessarily implies that i ∈ L 2 and t j = 0, ν - j M k +η and t - j = max(M k +η/2 j+1ν - j , 0): otherwise, we would have ν - j+1 = M k+1 -η/2 i+1 > ν j+1 that contradicts the hypothesis. If t - j = 0, this implies that ν - j = ν - j+1 < ν j+1 = ν j , so that (3) can be rewritten

Cost(r -[j + 1]) Cost(r[j + 1]) -ν j + ν - j = Cost(r[j + 1]) -|ν j+1 + ν - j+1 | .
Otherwise, t - j > 0 and we have t

- j = M k + η/2 j+1 -ν - j . This is possible only if ν - j M k + η/2 j+1 < ν j+1 = ν j . Then, |ν - j -ν j | = ν j -ν - j so that Cost(r -[j + 1]) Cost(r[j + 1]) -|ν j+1 + ν - j+1 | -2|ν - j -ν j | Cost(r[j + 1]) -|ν j+1 + ν - j+1 | .
(b) Suppose then that ω( j ) = +1. Then, a similar calculation gives

Cost(r -[j + 1]) = Cost(r -[j]) + ν - j+1 -ν - j Cost(r[j]) -|ν j -ν - j | + ν - j+1 -ν - j (Ind. Hyp.) Cost(r -[j + 1]) Cost(r[j + 1]) -(ν j+1 -ν j ) -|ν j -ν - j | + ν - j+1 -ν - j . (4) 
i. Once again, if ν - j+1 < ν j+1 , we have |ν j+1 -ν - j+1 | = ν j+1 -ν - j+1 so that (4) is rewritten

Cost(r -[j+1]) Cost(r[j+1])-|ν j+1 -ν - j+1 |+ν j -ν - j -|ν j -ν - j |
which is less than or equal to Cost(r

[j + 1]) -|ν j+1 -ν - j+1 | since ν j -ν - j |ν j -ν - j |. ii. Similarly, if ν - j+1 > ν j+1 , we know by property 2 that ν - j+1 ∈ {M k+1 -η/2 j+1 , ν - j }. If ν - j+1 = M k+1 -η/2 j+1 , since t - j = max(M k + η/2 j+1 -ν - j , 0), we know that t - j = 0, i.e., in all case ν - j+1 = ν - j . Then, ν - j+1 = ν - j > ν j+1 ν j . Knowing that |ν j+1 -ν - j+1 | = ν - j+1 -ν j+1 , (4) becomes Cost(r -[j + 1]) Cost(r[j + 1]) -|ν j+1 -ν - j+1 | + 2(ν - j+1 -ν j+1 ) + 2(ν j -ν - j ) = Cost(r[j + 1]) -|ν j+1 -ν - j+1 | + 2(ν j -ν j+1 ) Cost(r[j + 1]) -|ν j+1 -ν - j+1 | .
We finally have proved the property by induction. Notice in particular that this shows that Cost(r -[j + 1]) Cost(r[j + 1]) for every j with ν - j+1 = ν j+1 . To conclude the proof of Cost(r -) Cost(r), it remains to deal with the case of a possible last transition ending with ν - i+1 = ν i+1 . Unless i = 0, in which case we have Cost(r -) = Cost(r), we know by hypothesis that ν - i = ν i . By the previous property, we have Cost(r

-[i]) Cost(r[i]) -|ν i -ν - i |. Then, Cost(r -) = Cost(r -[i]) + ω( i )(ν - i+1 -ν - i ) and Cost(r) = Cost(r[i]) + ω( i )(ν i+1 -ν i ).
In the overall, we get

Cost(r -) Cost(r) + ω( i )(ν i -ν - i ) -|ν i -ν - i | .
In all cases, we verify that

ω( i )(ν i -ν - i ) |ν i -ν - i |
, so that we have proved that Cost(r -) Cost(r).

-We now consider the case where p -= 0 and p + = +1 (the case p -= -1 and p + = 0 is very similar, and not explained in details here). We prove another inequality by induction over 0 j i, namely that

Cost(r -[j + 1]) Cost(r[j + 1]) -max(ν j+1 -ν - j+1 , 0) .
The proof is very similar to the previous case, and we conclude as previously.

We now go to the proof of Lemma 2. In case, Val(s) = +∞ nothing has to be done. We then consider the case Val(s) < +∞. Let σ 2 ∈ CStrat η 2 . We now explain how to construct a strategy σ 2 ∈ Strat 2 such that for all state s inf

σ 1 ∈CStrat η 1 Cost(Play(s, σ 1 , σ 2 )) inf σ1∈Strat1
Cost(Play(s, σ 1 , σ 2 )) .

To prove such an inequality, we will consider any strategy σ 1 ∈ Strat 1 and construct a strategy σ 1 ∈ CStrat η 1 such that Cost(Play(s, σ 1 , σ 2 )) Cost(Play(s, σ 1 , σ 2 )) .

Strategy σ 2 follows σ 2 in case of η-convergent plays. We must however extend it to deal with the other plays faithfully. Let r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . , ( i , ν i ) be any finite play ending in a location i of player 2, and r -= ( - 0 , ν - 0 ), (t - 0 , a - 0 ), . . . , ( - i , ν - i ) the play constructed as before. By Lemma 6, we know that r -is an η-convergent play. Hence, σ 2 (r -) = (t i , a), for some t i ∈ R 0 , and there exists k such that either ν

- i + t i ∈ {M k + η/2 i+1 } ∪ [M k -η/2 i+1 , M k ), or t i = 0 and ν - i ∈ (M k + η/2 i+1 , M k + η]. We let t i = max(ν - i + t i -ν i , 0
) and σ 2 (r) = (t i , a). Let r (respectively, r ) be the play r (respectively, r -) extended with the step prescribed by σ 2 (respectively, σ 2 ). Then, we prove that r matches the construction above starting from the run r, i.e., r-= r . By construction, we only have to verify that the value of t i is consistent with the previous constructions, i.e., t i = t - i .

Lemma 7. We have t i = t - i .

Proof. The proof considers several cases.

-Suppose first that there exists k such that

|ν i + t i -M k | η/2 i+1 . In case ν - i + t i = ν i + t i , we have t i = ν i + t i -ν - i which is equal to t - i (since ν i + t i is η/2 i+1
-close to a border implying that the first rule of the construction of r-applies). Otherwise (i.e. when ν - i + t i = ν i + t i ), we know that t i = 0 (by definition of t i as max(ν - i + t i -ν i , 0)) and that

ν i > ν - i + t i ν - i .
In particular, we have ν i = ν - i . However, since

t i = 0, |ν i -M k | η/2 i+1
η/2 i so that we should have ν - i = ν i , causing a contradiction.

-Suppose then that there exists k such that

ν i + t i ∈ (M k + η/2 i+1 , M k +1 - η/2 i+1 ). • In case ν i + t i = ν - i + t i , since σ 2 is η-convergent and ν - i + t i not η/2 i+1
close to a border, we have t i = 0, and

ν - i ∈ (M k + η/2 i+1 , M k + η]: in particular, k = k and ν i + t i = ν - i ∈ (M k + η/2 i+1 , M k + η].
We know that ν i ∼ ν - i , hence there are two possibilities for the position of

ν i ∈ (M k , M k + η].
* The first case is ν i ∈ (M k , M k + η/2 i ): by Lemma 6-1 (applied on ν i = ν i-1 + t i-1 since no reset transition may have been taken), we know that ν - i = ν i . Since ν - i = ν i + t i , we have t i = 0. This shows that t i = 0 is consistent with the construction of r-that sets

t - i = ν i + t i -ν - i = 0 in that case (since ν i + t i ∈ (M k , M k + η/2 i )). * The second case is ν i ∈ (M k + η/2 i , M k + η]: by Lemma 6-2-(a), we know that ν - i ∈ {M k + η/2 i , M k+1 -η/2 i , ν - i-1 }. It is not possible neither that ν - i = M k + η/2 i < ν i (because ν - i = ν i + t i ν i ), nor that ν - i = M k+1 -η/2 i > M k + η (because we know that ν - i M k + η)
. Hence, we have ν - i = ν - i-1 (and thus t - i-1 = 0). Moreover, by Lemma 6-2-(c), since t - i-1 = 0 and ν

- i-1 = ν - i M k + η, we have ν - i = ν - i-1 ν i-1 + t i-1 = ν i .
Since, we also have ν i ν i + t i = ν - i , we obtain that ν i = ν - i , and t i = ν - i +t i -ν i = 0. In case ω( i ) = p + , this shows that t i = 0 is consistent with the construction of r-that sets t

- i = max(M k +η/2 i+1 -ν - i , 0) = 0 (since ν - i = ν i > M k +η/2 i > M k + η/2 i+1
). In case ω( i ) = p -, since we are in the case where i ∈ L 2 (since i is a location where σ 2 needs to be defined), t i = 0 and ν - i M k + η, the choice t i = 0 is also consistent with the construction of r-which sets

t - i = max(M k + η/2 i+1 -ν - i , 0) = 0 (once again, because ν - i > M k + η/2 i+1 ). • The last case is when ν i +t i = ν - i +t i , implying that t i = 0 (by definition of t i as max(ν - i +t i -ν i , 0)). This implies that ν i > ν - i +t i ν - i . It is not possible that ν i ∈ (M k + η/2 i+1 , M k + η/2 i ] ∪ [M k +1 -η/2 i , M k +1 - η/2 i+1 ), since otherwise we would have ν - i = ν i , by Lemma 6-1 (ap- plied to ν - i = ν - i-1 + t - i-1 = ν i-1 + t i-1 = ν i ). Hence, we have ν i ∈ (M k + η/2 i , M k +1 -η/2 i ). In particular, by Lemma 6-2-(a), we know that ν - i ∈ {M k + η/2 i , M k +1 -η/2 i , ν - i-1 }.
There are two possibilities now, depending on t i taken from the fact that σ 2 is η-convergent. * The first possibility is ν

- i + t i ∈ {M k + η/2 i+1 } ∪ [M k -η/2 i+1 , M k ). Notice that ν - i ∼ ν i and ν - i +t i ∈ [ν - i , ν i ), so that ν - i +t i ∼ ν i . Hence, ν - i + t i ∈ (M k , M k +1 ). Knowing that ν - i + t i < ν i < M k +1 -η/2 i , and that |ν - i + t i -M k | η/2 i+1 , we conclude that k = k and ν - i + t i ∈ (M k , M k + η/2 i+1 ]. It is therefore only possible that ν - i + t i = M k + η/2 i+1 , i.e., t i = M k + η/2 i+1 -ν - i .
This choice is consistent with the construction of r-, whatever the price of i , which sets

t - i = max(M k + η/2 i+1 -ν - i , 0) = M k + η/2 i+1 -ν - i (since ν - i M k + η/2 i+1 ): in particular if ω( i ) = p -, we are indeed in the case i ∈ L 2 , t i = 0 and ν - i M k + η.
* The second possibility is that t i = 0 and ν - i ∈ (M k +η/2 i+1 , M k +η], in which case we again deduce from ν i ∼ ν - i that k = k. We have

t - i = max(M k + η/2 i+1 -ν - i , 0) = 0 = t i (since ν - i M k + η/2 i+1
), whatever the price of i : once again, if ω( i ) = p -, we are indeed in the case i ∈ L 2 , t i = 0 and ν - i M k + η.

We now consider any strategy σ 1 ∈ Strat 1 , and construct a strategy σ 1 ∈ CStrat η 1 such that Play(s, σ 1 , σ 2 ) = Play(s, σ 1 , σ 2 ) -for every state s η-close to a border. From Lemma 6, we will then get Cost(Play(s, σ 1 , σ 2 )) Cost(Play(s, σ 1 , σ 2 )) , which will enable us to conclude. We let Play(s, σ 1 , σ 2 ) -= ( - 0 , ν - 0 ), (t - 0 , a - 0 ), . . . , ( - n , ν - n ), . . . with s = ( - 0 , ν - 0 ) η-close to a border. Then, we first define σ 1 over the finite plays Play(s, σ 1 , σ 2 ) -[n] with n ∈ N, by letting

σ 1 (Play(s, σ 1 , σ 2 ) -[n]) = (t - n , a - n ) .
Notice first that this strategy verifies Play(s, σ 1 , σ 2 )[n] = Play(s, σ 1 , σ 2 )[n] -for every state s η-close to a border, by induction on n ∈ N. In fact, in case Play(s, σ 1 , σ 2 ) -[n] ends with a state of player 2, the equation holds by construction of σ 2 , and in case it ends with a state of player 1, by construction of σ 1 . Once built on these finite plays, it is possible to extend σ 1 as an η-convergent strategy defined over every play: in particular, the η-region-uniformity is possible, since, if Play(s, σ 1 , σ 2 ) -[n] ∼ η Play(s , σ 1 , σ 2 ) -[n] (with s and s η-close to a border), we have σ 1 (Play(s, validating the definition of η-region-uniform strategies. The ηconvergence is ensured by This concludes the proof of Val(s) UVal η (s) in case Val(s) > -∞.

σ 1 , σ 2 ) -[n]) ∼ η σ 1 (Play(s , σ 1 , σ 2 ) -[n]) (induced by
Finally, in case Val(s) = -∞, we have to show that CVal η (s) = -∞ too. Notice that Val(s) = -∞ means that for all strategy σ 2 ∈ Strat 2 of player 2, we have inf σ1∈Strat1

Cost(Play(s, σ 1 , σ 2 )) = -∞ , i.e., player 1 has a sequence of strategies ensuring the reachability of the goal with smaller and smaller prices. Hence, let σ 2 ∈ CStrat η 2 be an η-convergent strategy for player 2, and M ∈ R be any constant. We construct as previously a strategy σ 2 ∈ Strat 2 for player 2. From the fact that inf σ1∈Strat1 Cost(Play(s, σ 1 , σ 2 )) < M , we know the existence of a strategy σ 1 ∈ Strat 1 so that Cost(Play(s, σ 1 , σ 2 )) < M . In particular, this price is finite so that the previous construction allows us to obtain an η-convergent strategy σ 1 verifying that

Cost(Play(s, σ 1 , σ 2 )) Cost(Play(s, σ 1 , σ 2 )) < M .
This proves that CVal(s) = -∞.

B.3 Proof of Lemma 3

The proof uses the fact that we can translate a strategy in à into η-regionuniform/η-convergent strategies in the original game A and vice versa. Since we assume that Val Ã(( , {M k })) is finite, let ξ * 1 and ξ * 2 the optimal strategies for both players provided by Theorem 1. Strategy ξ * 1 uses a finite memory whereas ξ * 2 is memoryless. They verify, for all , and 0 k K:

Val Ã(( , {M k })) = Cost(Play(( , {M k }), ξ * 1 , ξ * 2 )) .

We first show inequality

UVal η A (( , M k )) -ε Val Ã(( , {M k })). In case UVal η A (( , M k )) = -∞, the inequality is trivially verified. Since Val Ã(( , {M k }))
is finite for every , and 0 k K, we know that every play where player 1 follows strategy ξ * 1 reaches the target set of states. Let L ∈ N be the maximum Length(r) for every such play r: notice that L is finite since the game arena is finite and that ξ * 1 has finite memory. For all ε > 0, we let η be a positive rational number less than ε/(2L) and we explain how to construct an η-region-uniform strategy σ (ε)

1 of A so that sup σ2∈UStrat η 2 (A) Cost(Play(( , M k ), σ (ε) 1 , σ 2 )) Cost(Play(( , {M k }), ξ * 1 , ξ * 2 )) + ε (5) Since σ (ε) 1
will only have to play against an η-region-uniform strategy σ 2 , we may define only σ (ε) 1 on finite plays r only visiting η-regions in I η A , i.e., that only stops at distance at most η from the integers M k . Such a play r can indeed be translated in a play ρ of Ã, by simply translating each state ( i , ν i ) (with ν i at distance at most η from some M k by assumption) it encounters into ( i , I i ) with I i ∈ I η A the interval containing ν i . Then, we let (J, a) = ξ * 1 (ρ). Let also denote by ( , ν) the last state of r, as well as I the interval of I η A containing ν. Notice that I J. In case J = I, we let σ (ε) 1 (r) = (0, a) forcing player 1 to play immediately. In case J is a singleton {M k }, we let σ

(ε) 1 (r) = (M k -ν, a). In case J = [M k -η, M k ), we let σ (ε) 1 (r) = (M k -η -ν, a). Finally, in case J = (M k , M k + η], we let σ (ε) 1 (r) = (M k + η -ν, a).
Notice that in all case, the fact that ν ∈ I implies that the delay prescribed in σ (ε) 1 (r) is not less than 0.

The construction of σ (ε)

2 is inspired from the previous case, but special care has to be made to prevent player 1 from decreasing its cost in A by accumulating errors made by player 2. Once again, since σ (ε) 2 will be evaluated against an η-convergent play of player 1, we only define it on finite plays r that are ηconvergent. Let ( , ν) be the last configuration of r, n its length and I ∈ I η A the interval containing ν. Let (J, a) = ξ * 2 ( , I) (remember that ξ * 2 is memoryless so that only the last configuration of the play is useful). Once again, we necessarily have I J. In case J is a singleton {M k }, we let σ

(ε) 2 (r) = (M k -ν, a). In case J = [M k -η, M k ), we let σ (ε) 2 (r) = (max(M k -η/2 n+1 -ν, 0), a). In case J = (M k , M k + η], we let σ (ε) 2 (r) = (max(M k + η/2 n+1 -ν, 0), a)
. The use of a maximum operator to define the delay in the two last cases permits to delay 0 in case ν is either too close or too far from M k to go exactly at distance η/2 n+1 from M k .

Then, to prove inequality ( 6), we consider any η-convergent strategy σ 1 of player 1. As in the previous case, we can construct from σ 1 a strategy

ξ 1 ∈ Strat 1 ( Ã) verifying that Play(( , {M k }), ξ 1 , ξ *
2 ) is the sequence of η-regions visited by the play Play((

, M k ), σ 1 , σ (ε)
2 ). The following lemma permits to compare the weight of these two plays. Lemma 9. Let r = ( 0 , ν 0 ), (t 0 , a 0 ), . . . , ( i+1 , ν i+1 ), . . . be a play of A, such that ν 0 = M k for some k , and r its abstraction in terms of η-regions. Suppose that r is η-convergent. Then, |Cost(r) -Cost(r)| 3η .

Proof. We define the latency λ n of an index n Length(r) = Length(r) as the greatest index 0 < m n such that t m-1 = 0 or the clock has been reset by action a m-1 in location m-1 , or 0 if such an index m does not exist. Notice that if n < n and λ n = λ n , then we have t m = 0 for every m ∈ {n, . . . , n -1}, and ν n = ν n . We also know that ν λn is η/2 λn+1 -close to a border: indeed, either t λn-1 = 0 (which permits to conclude by definition of η-convergent plays), or the clock has been reset by action a λn-1 , in which case ν λn = 0.

We then prove by induction on 0 n Length(r) = Length(r) that

|Cost(r[n]) -Cost(r[n])| 3η 1 - 1 2 λn .
The property is trivially verified for n = 0, since λ n = 0, and

Cost(r[n]) = Cost(r[n]) = 0.
Suppose now that the property holds for n < Length(r) = Length(r). We now prove it for n + 1. We split our study with respect to the value of λ n+1 .

-If λ n+1 = n + 1, then we know that t n = 0 or that the clock has just been reset. Denote by I the η-region containing ν n and J the η-region containing ν n + t n .

• If t n = 0, then d(I, J) = 0, and

|Cost(r[n + 1]) -Cost(r[n + 1])| = |Cost(r[n]) -Cost(r[n])| 3η 1 - 1 2 λn (Ind. Hyp.) 3η 1 - 1 2 λn+1 since λ n+1 = n + 1 > n λ n .
• Otherwise, t n = 0 so that, ν n + t n is η/2 n+1 -close to a border (since the play is supposed to be η-convergent). By reasoning on the transition from step λ n -1 to step λ n , we also know that ν n is η/2 λn -close to a border. By definition of d(I, J), we obtain |d(I, J) -t n | η(1/2 n+1 + 1/2 λn ). In the overall, we get

|Cost(r[n + 1]) -Cost(r[n + 1])| |Cost(r[n]) -Cost(r[n])| + |ω( n )(d(I, J) -t n )| 3η 1 - 1 2 λn + η 1 2 n+1 + 1 2 λn = η 3 - 1 2 λn-1 + 1 2 n+1 η 3 - 3 2 n+1 = 3η 1 - 1 2 λn+1
the last inequality coming from the fact that λ n n, so that 1/2 n-1 1/2 λn-1 .

-If λ n+1 < n, then we know that λ n+1 = λ n and t n = 0, so that

|Cost(r[n + 1]) -Cost(r[n + 1])| = |Cost(r[n]) -Cost(r[n])| 3η 1 - 1 2 λn (Ind. Hyp.) 3η 1 - 1 2 λn+1 .
The property is proved by induction, and we conclude as in Lemma 8.

Since Play((

, M k ), σ 1 , σ (ε)
2 ) is an η-convergent play by construction, this lemma permits to conclude that

Cost(Play(( , {M k }), ξ 1 , ξ * 2 )) -ε Cost(Play(( , M k ), σ 1 , σ (ε) 2 )) .
Once again, notice that this shows that Cost(Play((

, M k ), σ 1 , σ (ε) 
2 )), and hence also CVal η A (( , M k )), is greater than -∞.

B.4 Proof of the infinite case of Corollary 1

If

Val Ã(( , {M k })) = -∞, then it is sufficient to prove that Val A (( , M k )) = -∞.
To do so, let M ∈ R and ξ 1 a strategy of player 1 such that Cost(( , {M k }), ξ 1 ) M . From the construction in [START_REF] Brihaye | Reachability-cost games with negative weights[END_REF], we know that we can choose ξ 1 with the following structure: the strategy follows the mean-payoff strategy, storing in its memory the cost accumulated so far, and stops the mean-payoff execution to reach a target state whenever the cost is low enough. In particular, the length of this computation is bounded by a linear function over M of the shape CM with C only depending on A. Following the same reconstruction as the one given in Lemma 3, with η ε/(CM max |π|), we can map strategy ξ 1 into an η-region-uniform strategy σ (ε) 1 of A. In the overall, whatever strategy σ 2 of player 2, we can build ξ 2 in à that mimicks the play following the profile (σ 1 , σ 2 ) of strategies in A. However, the length of this play will necessarily be bounded by CM , so that the difference of weight between the two plays is bounded by ε. This suffices to prove that UVal η A (( , M k ))

M . By Lemma 1, this shows that Val A (( , M k )) M . Since this holds for every M , we conclude that

Val A (( , M k )) = -∞.
Finally, if Val Ã(( , {M k })) = +∞, then we prove that CVal η A (( , M k )) = +∞, that is sufficient for the result by Lemma 2. We will indeed show that player 2 has a strategy σ 2 to ensure a value +∞, i.e., ensuring that player 1 cannot reach the target set of states. We again use our knowledge on the strategy ξ 2 ensuring a cost +∞ in Ã: following the construction of Theorem 3, we know that a memoryless strategy is enough. Similarly to the previous cases, we can reconstruct a strategy σ 2 in A. In particular, it automatically ensure that the target set of states is not reachable by any strategy of player 1, which permits to conclude easily.

C Detailed undecidability proofs

C.1 Counter machines

A two-counter machine M is a tuple (L, C) where L = { 0 , 1 , . . . , n } is the set of instructions-including a distinguished terminal instruction n called HALTand C = {c 1 , c 2 } is the set of two counters. The instructions L are one of the following types:

1. (increment c) i :

c := c + 1; goto k , 2. (decrement c) i : c := c -1; goto k , 3. (zero-check c) i : if (c > 0) then goto k else goto m , 4. (Halt) n : HALT. where c ∈ C, i , k , m ∈ L.
A configuration of a two-counter machine is a tuple (l, c, d) where l ∈ L is an instruction, and c, d are natural numbers that specify the value of counters c 1 and c 2 , respectively. The initial configuration is ( 0 , 0, 0). A run of a two-counter machine is a (finite or infinite) sequence of configurations k 0 , k 1 , . . . where k 0 is the initial configuration, and the relation between subsequent configurations is governed by transitions between respective instructions. The run is a finite sequence if and only if the last configuration is the terminal instruction n . Note that a two-counter machine has exactly one run starting from the initial configuration. The halting problem for a two-counter machine asks whether its unique run ends at the terminal instruction n . It is well known ( [START_REF] Minsky | Computation: finite and infinite machines[END_REF]) that the halting problem for two-counter machines is undecidable.

C.2 Constrained-price reachability Theorem 4. Deciding the existence of a strategy for constrained-reachability objective Reach( 1) with ∈ { , <, =, >, } is undecidable for PTGs with two clocks or more.

Proof. We prove that the existence of a strategy for constrained-reachability objective Reach(=1) is undecidable. The proofs for other objectives follow a similar approach: we outline the changes at the end of this proof. In order to obtain the undecidability result, we use a reduction from the halting problem for two counter machines. Our reduction uses a PTG with arbitrary price-rates, and zero prices on labels, along with two clocks x 1 , x 2 . We specify a module for each instruction of the counter machine. On entry into a module for increment/decrement/zero check, we always have that x 1 = 1 5 c 1 7 c 2 and x 2 = 0 where c 1 (resp. c 2 ) is the value of counter C 1 (resp. C 2 ). Given a two counter machine, we construct a PTG A whose building blocks are the modules for instructions. The role of Player 1 will be to simulate faithfully the machine by choosing appropriate delays to adjust the clocks to reflect changes in counter values. Player 2 will have the opportunity to verify that Player 1 did not cheat while simulating the machine. We shall now present the modules for decrement, increment and zero-check instructions of the two counter machine. Simulate decrement instruction. Fig. 2 gives the complete module for the instruction to decrement C 1 . Let us denote by x old = 1 5 c 1 7 c 2 the value of x 1 while entering the module. At the location k+1 of the module, x 1 = x new should be 5x old to correctly decrement counter C 1 .

At location k , Player 1 spends a nondeterministic amount of time k = x newx old such that x new = 5x old + ε. To correctly decrement C 1 , ε should be 0, and k must be 4 5 c 1 7 c 2 . At location Check, Player 2 could choose to go to Go (in order to continue the simulation of the machine) or to go to the widget WD 1 , if he suspects that ε = 0. If Player 2 spends t time in the location Check before proceeding to k+1 , then Player 1 can enter the location Abort from Go (to abort the simulation), spend 1 + t time in location Abort and reach a target T 1 with cost = 1 (and thus achieve his objective). However, if t = 0 then entering location Abort will make the cost to be > 1 (which is losing for Player 1). In this case, player 1 will prefer entering k+1 from Go.

If player 2 spends t time in location Check, and enters widget WD 1 , then the cost upon reaching the target in the widget WD 1 is 1 + ε which is 1 iff ε = 0 (see Table 1).

Let us summarize the construction. Let us assume that when entering k (see Fig. 2) the value of x 1 (resp. x 2 ) is 1 5 c 1 7 c 2 (resp. 0). First, let us consider In this case, Player 2 has three possibilities: (i) either Player 2 goes immediately to Go, in this case Player 1 has no incentive to go to the location Abort and thus the simulation of the machines goes on; (ii) or Player 2 goes to Go after delaying some time t > 0 in the location Check, in this case Player 1 will go to the location Abort in order to immediately achieve his objective; (iii) or Player 2 goes to the widget WD 1 , in this case, as Player 1 has correctly simulated the machine, Player 1 achieves his objective. Let us now turn to the case where Player 1 does not simulate the machine faithfully. In this case, Player 2 has the possibility to reach the target location with a cost different from 1 by using the widget WD 1 . In conclusion, if Player 1 simulates the machine properly either the simulation continues or he achieves his objective immediately; and if Player 1 does not simulate the machine properly, then Player 2 has a strategy to reach a target location with a cost different from 1.

-t + 1 + xnew + t -5x old = 1 + ε = 1 iff ε = 0 0 k 0 I - 5 
Simulate Increment instruction. Fig. 9 gives the complete module for increment instruction. The construction is similar to that as decrement.

Simulate Zero-check instruction. The module for the Zero check instruction ( k : if C 2 = 0 goto k+1 else goto k+2 ) is depicted in Fig. 10 and its widgets are in Fig. 11 and12. Player 1 guesses whether C 2 is zero or not and Player 2 has the possibility to check if the guess of Player 1 is correct by entering the corresponding widget.

0 k 0 Checkc 2 =0 W =0 2 0 Check c 2 =0 W =0 2 k+1 k+2 x2 = 0 x2 = 0 x2 = 0 x2 = 0 x2 = 0 x2 = 0 Fig. 10. Widget WZ2 simulating zero-check for C2 0 A 0 B -1 Check WD1 1 Abort 1 D T2 T3 x2=0 x1 1, {x2} x1=1 ∧ x2 = 0 x1>1, {x2} x2>1 x2=1 1 Abort T1 x2=0 x2>1 Fig. 11. Widget W =0
2 . Note that if the delay in Check is > 0 then Player 1 will go to Abort and reach a target with cost = 1. Widget WD1 is the same as in the decrement module. Delay at B is k = 4×5 i 5 c 1 7 c 2 + ε. If ε = 0 then Player 2 will enter the widget WD1 and the target in WD1 is reached with cost = 1.

0 A 0 B -1 Checkc 1 WD1 -1 Checkc 2 WD2 0 C 1 D 1 C T2 T3 x2=0 x1 1, {x2} x1 1, {x2} x1=1 ∧ x2=0 x1<1 ∧ x2=0 x1=1 ∧ x2=0 x2=1 x2>1 1 Abort T1 x2=0 x2>1 x1>1, {x2} 1 Abort T4 x2=0 x2>1 x1>1, {x2} Fig. 12. Widget W =0 2 .
Widget WD2 is similar to WD1 in the decrement module shown earlier, except that the prices are adjusted to verify decrement of counter C2 instead of C1.

In the widget depicted in Fig. 11, in order to verify if C 2 is indeed zero, C 1 is repeatedly decremented (using a construction similar to Decrement module in Fig. 2) until C 1 becomes 0. At that point, if x 1 is not 1 then clearly C 2 was nonzero, and Player 1 has made an error in guessing. In this case, the total cost incurred will be greater than 1. However, if indeed C 2 was zero, then the total cost incurred is 1 for the following reasons:

-If some time has elapsed at location Check, and still x 1 is less than 1, Player 1 can go to Abort from location B. However, if time has elapsed at Check and x 1 > 1, the only option is to go to Abort from Check; then Abort goes to T 2 . If Player 1 cannot control x 1 not exceeding 1, then in that case, Player 2 will spend 0 units of time in Check, and then Player 1 will pay a cost > 1 on reaching T 2 . In a similar manner, if Player 1 guesses that C 2 = 0, then Player 2 verifies it by entering the widget in Fig. 12. In this case, C 1 is first decremented (the decrement module may be called several times) until it reaches 0, and then C 2 is decremented until it also reaches 0 (the decrement module is called at least once):

-Entry to C happens with x 1 < 1 and x 2 = 0. To get to C , some time elapse is needed at C. However, then x 2 > 0, so directly there is no access to C , without going to Check c2 (ensuring that the decrement module for C 2 is taken at least once). To not get punished through Check c2 , Player 1 has to elapse a time of the form 6 5 i 7 j : hence, if C 2 = 0, this time elapse must be 6 5 i , if C was entered with x 1 = 1 5 i . Due to C 2 = 0, at some point, 6 5 i will exceed 1; at that time, Player 2 will spend 0 unit of time in Check, and go to Abort. That will punish Player 1. Note that Player 2 can not delay in the zero check module due to clock constraints. In the widgets W =0 1 and W =0 1 however, Player 2 can delay at the Check locations. As in the decrement module, we offer to Player 1 the option to abort (via the Abort location) : if t units of time was spent at location Check, then the cost incurred will be 1 + p -t where p > 0 is chosen by Player 1. Table 2 shows the cost incurred in the widget W =0 2 when Player 1 guesses C 2 = 0. To summarize the zero check instruction for C 2 : assume that at location k , we enter with x 1 = 1 5 i (hence C 2 = 0) and x 2 = 0. First let us consider the case when Player 1 guesses correctly that C 2 is zero: in this case, Player 2 has 2 possibilities: (i) continue with the next instruction, (ii) simulate the widget W =0

2 . In both cases, no time elapse is possible at location Check c2 . Player 1 achieves his objective even on entering widget W =0 2 due to his correct guess. Let us now turn to the case when Player 1 made a wrong guess. Then, Player 2 has the capability to invoke widget W =0 2 and in this case, Player 1 will incur a cost different from 1. A similar analysis applies to the case when we start in k with x 1 = 1 5 i 7 j . Correctness of the construction. On entry into the location n (encoding the HALT instruction of the two-counter machine), we reset clock x 1 to 0; n has cost 1, and the edge coming out of n goes to a Goal location, with guard

x 1 =1. Table 2. Cost incurred in widget W =0 2 Location → A B D T3 C C T2 x1 while entering 1 5 c 1 7 c 2 5 i 5 c 1 7 c 2 loop taken i times 1 5 i 5 c 1 7 c 2 = 1 ⇒ i = c1 ∧ c2 = 0 7 j 7 c 2
loop taken j times 1

5 i 7 j 5 c 1 7 c 2 = 1 ⇒ i = c1 ∧ j = c2 > 0 x2 while entering 0 0 0 > 1 0 0 1 Time elapsed at 0 4×5 i 5 c 1 7 c 2 + ε > 1 0 6×7 j 7 c 2 + ε 1 0 Cost incurred at 0 0 > 1 0 0 1 Total cost > 1 1
1. Assume that the two counter machine halts. If Player 1 simulates all the instructions correctly, he will incur a cost 1, by either reaching the goal location after n , or by entering a widget (the second case only occurs if Player 2 decides to check whether Player 1 simulates the machine faithfully.

If Player 1 makes an error in his computation, Player 2 can always enter an appropriate widget, making the cost different from 1. In summary, if the two counter machine halts, Player 1 has a strategy to achieve his goal (i.e., reaching a target location with a cost equal to 1). 2. Assume that the two counter machine does not halt.

-If Player 1 simulates all the instructions correctly, and if Player 2 never enters a widget, then Player 1 incurs cost ∞ as the path never reaches a target. -Suppose now that Player 1 makes an error. In this case, Player 2 always has the capability to reach a target set with a cost different from 1. In summary, if the two counter machine does not halt, Player 1 does not have a strategy to achieve his goal. Thus, Player 1 incurs a cost 1 iff he chooses the strategy of faithfully simulating the two counter machine, when the machine halts. When the machine does not halt, the cost incurred by Player 1 is different from 1 if Player 1 made a simulation error and Player 2 entered a widget. Else if a widget is not entered then the run does not end and cost is +∞.

We briefly discuss the difference with the proofs for other constrained-price reachability objectives.

-Reach(<1). We use 2 clocks x 1 , x 2 , and a module for each instruction of the two counter machine. On entry into a module for increment/decrement/zero check, x 1 = 1 5 c 1 7 c 2 and x 2 = 0. We discuss the case of decrementing counter C 1 . Fig. 13 gives the complete module for the instruction to decrement C 1 . To simulate the decrementation correctly, Player 1 has to elapse 4 5 c 1 7 c 2 units of time at k . At the location Check, Player 2 can either continue to k+1 after elapsing t 0 units of time, or enter a widget to check the choice of Player 1. Consider the case when Player 2 proceeds to k+1 after elapsing a time t > 0. This incurs a cost -t. Then Player 1 can go to location Abort, and spend 1 unit of time there, reaching a target with cost 1 -t < 1. Assume now that Player 1 spends 4 5 c 1 7 c 2 + ε units of time in k , and 1 spends t > 0 units of time at Check. Since Player 1 has elapsed more time than what he should have, Player 2 enters the widget WD > 1 . The cost incurred so far is -t. On entry into WD > 1 , we have

x 1 = 5 5 c 1 7 c 2 + ε + t, x 2 = 4 5 c 1 7 c 2 + ε + t.
Then, the total accumulated cost becomes -1 + 5 5 c 1 7 c 2 + ε on coming out of L, and then becomes -1 + ε on coming out of M ; this further becomes 1 + ε on entering O. At location O, time 0 < p < 1 has to be spent, making the total cost to be 1 -p + ε. Time p is chosen by Player 2. Thus, if ε = 0 (hence, Player 1 made no error), the cost incurred is less than 1; however, when ε > 0, p can always be chosen to be at most ε, thereby making the total cost at least 1. A similar analysis can be done when Player 1 incurs a delay 4 5 c 1 7 c 2 -ε, ε > 0 at location k . In this case, Player 2 enters widget WD < 1 . The increment and zero-check instructions are obtained by a similar approach.

-Reach( 1). We use 2 clocks x 1 , x 2 , and a module for each instruction of the two counter machine. On entry into a module for increment/decrement/zero check, x 1 = 1 5 c 1 7 c 2 and x 2 = 0 where c 1 (c 2 ) is the value of counter C 1 (C 2 ). We discuss the case of decrementing counter C 1 . Fig. 14 gives the complete module for the instruction to decrement C 1 . As in the case of the objective Reach(<1), Player 1 has to elapse a time 4 5 c 1 7 c 2 at k . If Player 2 elapses t > 0 units of time in Check and proceeds to k+1 , then Player 1 has the option to go to Abort, and reach a target with a total cost of -t + 1 + k, where 1 + k is the time elapsed at Abort. k can be chosen by Player 1 so that 1 + k -t 1. Let us consider the case when Player 1 spends 4 5 c 1 7 c 2 -ε units of time in k , with ε 0 and Player 1 spends t > 0 units of time at Check. Player 2 then will proceed to the widget WD < 1 . On entry into WD < 1 , we have 5 c 1 7 c 2 + ε -2t, and further on entering N , the accumulated cost becomes 1 + ε -2t. Finally, when T is entered, the total cost is 1 + ε -2t -p, where 0 < p < 1 is a delay chosen by Player 2. Clearly, 1 + ε -2t -p < 1 if ε = 0. However, if ε = 0, Player 2 can adjust the values of p, t in such a way that 2t + p < ε, there by making the total cost > 1.

A similar analysis can be done when Player 1 incurs a delay 4 5 c 1 7 c 2 + ε, ε > 0 at location k . In this case, Player 2 enters widget WD > 1 . The increment and zero-check instructions are obtained by a similar approach.

-Reach(>1). We use 2 clocks x 1 , x 2 , and a module for each instruction of the two counter machine. On entry into a module for increment/decrement/zero check, x 1 = 1 5 c 1 7 c 2 and x 2 = 0 where c 1 (c 2 ) is the value of counter C 1 (C 2 ). We discuss the case of decrementing counter C 1 . Fig. 15 gives the complete module for the instruction to decrement C 1 . As in the previous two objectives, Player 1 has to spend a time 4 5 c 1 7 c 2 at k . If Player 2 elapses t > 0 units of time in Check and proceeds to k+1 , then Player 1 has the option to go to Abort, and reach a target with a total cost of t + k, where k < 1 is the time elapsed at Abort by Player 1. k can be chosen by Player 1 so that t + k > 1. Let us consider the case when Player 1 spends 4 5 c 1 7 c 2 -ε units of time in k , with ε 0 and Player 1 spends t > 0 units of time at Check. Player 2 then will proceed to the widget WD < 1 . On entry into WD < 1 , we have

x 1 = 5 5 c 1 7 c 2 -ε + t, x 2 = 4 5 c 1 7 c 2 -ε + t,
and an incurred cost of t. On entering M , we have an accumulated cost of -1 + 5 5 c 1 7 c 2 -ε + 2t, and further on entering N , the accumulated cost becomes -1 -ε + 2t. On entering O, the accumulated cost becomes 1 -ε + 2t, and finally, on entering T , the total cost is 1 -ε + 2t + p, where 0 < p < 1 is a delay chosen by Player 2. Clearly, 1 -ε + 2t + p > 1 if ε = 0. However, if ε = 0, Player 2 can adjust the values of p, t in such a way that 2t + p ε, there by making the total cost 1. Proof. We prove that the existence of a strategy for bounded-time reachability objective ensuring a cost at most 18 within 40 time units of total elapsed time is undecidable. In order to obtain the undecidability result, we use a reduction from the halting problem for two counter machines. Our reduction uses PTGs with price-rates in {0, 1}, zero prices of labels, and 6 clocks. We specify a module for each instruction of the two counter machine. On entry into a module for the (k +1)th instruction, we have one of the clocks x 1 , x 2 having the value as 1 2 k+c 1 3 k+c 2 , and the other one having value 0. Values c 1 and c 2 represent the values of the two counters, after simulation of k instructions. A clock z keeps track of the total time elapsed during simulation of an instruction: we always have z = 1 -1 2 k at the end of simulating k instructions. Thus, a time of 1 2 is spent simulating the first instruction, a time of 1 4 is spent simulating the second instruction and so on, so that the total time spent in simulating the main modules corresponding to increment/decrement/zero check is less than 1 at any point of time. Two clocks a and b are used for rough work, and for enforcing urgency in some locations.

Again, the role of Player 1 is to simulate the machine faithfully by choosing appropriate delays to adjust clock values in order to reflect the changes in counter values, and also to reflect the total time elapsed. Player 2 will have the opportunity to check if Player cheated while simulating the machine. We now present the modules for decrement, increment and zero-check instructions.

Simulate increment instruction. Fig. 16 gives the complete increment module with respect to counter C 1 . Assume this is the (k + 1)th instruction that we are simulating. Also, as mentioned earlier, one of x 1 , x 2 will have the value of 1 2 k+c 1 3 k+c 2 on entry, while the other will be zero. Without loss of generality, assume x 1 = 1 2 k+c 1 3 k+c 2 , while a = b = x 2 = 0, and z = 1 -1 2 k . At the end of the module we want x 2 = 1 2 k+1+c 1 +1 3 k+1+c 2 and x 1 = 0 and z = 1 -1 2 k+1 . Let t 1 and t 2 be respectively the time spent at locations k+1 and L. We want to check that t 1 + t 2 = 1 2 k+1 , t 2 = 1 2 k+1+c 1 +1 3 k+1+c 2 . This will ensure that the clocks keep track of the total time elapsed, as well as the increment of C 1 . Player 2 has two widgets at his disposal to check each of these:

1. WZ is a widget (that can be used by Player 2) in order to check that the total time elapsed in any module corresponding is correct. More precisely Player 2 has the opportunity to check (by means of the module WZ) that the execution of the module corresponding to the (k + 1)th instruction takes exaclty 1 2 k+1 time units (recall that this time is recorded in clock z). 2. WI 1 is a widget (that can be used by Player 2) in order to check that counter C 1 is indeed incremented properly. Upon entering the location Check, the values of clocks are

a = t 1 + t 2 , z = 1 -1 2 k + t 1 + t 2 , x 1 = t 2 , x 2 = 1 2 k+c 1 3 k+c 2 + t 1 + t 2 and b = 0.
-Widget WZ: The role of widget WZ is to check if the value of the clock z is 1 -1 2 k+1 when the location Check is reached. The PTG corresponding to WZ is depicted in Fig. 16, and a cost analysis of WZ is presented in Table 3. 8WZ is a general template for two widgets, based on the actual values of the price-rates. These two widgets are WZ < and WZ > . In widget WZ > , pricerates b 1 = c 1 = c 2 = e = 1 and the other ones are zero, while in widget WZ < , price-rates a 1 = d = e = 1 and the other ones are zero. It can be seen that if t 1 + t 2 < 1 2 k+1 , then the total cost incurred in WZ < is strictly more than 18; similarly, if t 1 + t 2 > 1 2 k+1 , then the total cost incurred in WZ > is strictly more than 18. Player 2 can choose one these widgets appropriately. In case t 1 + t 2 = 1 2 k+1 , then the total cost incurred in either widget is exactly 18.

-Widget WI 1 : The widget WI 1 in Fig. 16 ensures that upon entering the location Check, the value of the clock

x 2 = t 2 = 1 2 k+1+c 1 +1 3 k+1+c 2 = 1 12 × 1 2 k+c 1 3 k+c 2 = n 12 .
This indeed accounts for increment of counter C 1 , and also for reaching the end of k + 1 th instruction while keeping the value of C 2 unchanged. The widget WI 1 in Fig. 16 is again a general template for two widgets WI < 1 and WI > 1 , obtained by fixing the prices at various locations. The prices a, b, c, d, e, f are values > 0. It must be noted that we only need prices in {0, 1} for each location; using general prices is a short hand notation for a longer path which will use only prices from {0, 1}. In widget WI < 1 , (in the shorthand notation), we have prices a = d = 1, f = 11, h = 6 and the rest To summarize the simulation of the (k + 1)th instruction, which is an increment C 1 instruction: assume we enter k+1 with values x 1 = 1 2 k+c 1 3 k+c 2 , while a = b = x 2 = 0, and z = 1 -1 2 k . First let us consider the case when Player 1 correctly simulates the machine, respecting the time limit: then Player 1 spends a total of 1 2 k+1 time across k+1 and L, and a time the right amount of time in L (and therefore did not increment C 1 properly), then again Player 2 has the possibility to reach a target with a cost > 18 using one of the widgets WI > 1 or WI < 1 .

→ i ∈ {1, 2} Ai Bi Ci D E z on entry 1 -1 2 k + t1 + t2 = 1 -1 2 k + t t = t1 + t2 0 1 -1 2 k - - a on entry t 1 2 k 0 1 b on entry 0 1 2 k -t 1 -t 0 - time elapsed at 1 2 k -t 1 -1 2 k t 1 -t 17 Widget WZ > check t > 1 2 k+1 prices b1, c1, c2, e : 1 rest : 0 cost incurred at 0 1 -1 2 k at B1 2t t at C1 t at C2 0 17 Total Cost at target - - - - 1 -1 2 k + 2t + 17 = 18 if t = 1 2 k+1 > 18 if t > 1 2 k+1 Widget WZ < check t <
b = 0] W Z W I {x2} 0 < x1, x2, z < 1 {b} 0 Z [b = 0] 0 Checkc 1 =0 W =0 1 0 Check c 1 =0 W =0
Simulate decrement instruction. The module to decrement counter C 1 is the same as the module to increment C 1 in Fig. 16. We replace only the widget WI 1 by the widget WD 1 . This widget ensures that the time spent t 2 at L (and hence the value of x 2 ) is

1 2 k+1+c 1 -1 3 k+1+c 2 = 1 2 k+c 1 3 k+1+c 2 = 1 3 1
2 k+c 1 3 k+c 2 . WD 1 can be obtained by a simple modification of the prices in WI 1 .

Simulate Zero-check instruction. Consider k+1 : if C 1 = 0 then goto l 1 k+2 else goto l 2 k+2 . During the simulation of this instruction, we need to ensure that all the clocks are updated to account for reaching the end of (k +1)th instruction and the counter values remain unchanged.

The module for zero check is given in Fig. 17. At the location labelled Check, the widgets WZ and WI ensure that the clocks z and x 2 are updated to account for reaching the end of the (k + 1)th instruction. This is similar to the increment module. If the values of clocks on entering k+1 are z

= 1 -1 2 k , x 1 = 1 2 k+c 1 3 k+c 2 then upon entering Check they are z = 1 -1 2 k+1 , x 2 = 1 2 k+1+c 1 3 k+1+c 2 .
No time elapses at the Check location. At location Z, no time elapses, and Player 1 guesses the value of counter C 1 and goes to either of the locations Check c1=0 or Check c1 =0 . Based on the choice of Player 1, Player 2 can go to one of the widgets W =0 1 (in Fig. 18) or W =0 1 (similar to W =0 1 ), if he suspects that Player 1 has made a wrong guess.

-Widget W =0 1 given in Fig. 18. We have

x 2 = 1 2 k+1+c 1 3 k+1+c 2 , on entering the L 1 of Widget W =0 1 .
To check if c 1 = 0, we first convert x 2 to be of the form 

2 k+1+c 1 3 k+1+c 2 .
The location L 1 is entered with a = 1 2 k+1 = α and x 2 = 1 2 k+1+c 1 3 k+1+c 2 = β. Let t 1 , t 2 be the times spent at locations L 1 , L 2 respectively. Then, on entering Check 1 , we have a = α + t 1 + t 2 , z = t 1 + t 2 , x 2 = β + t 1 + t 2 and x 1 = t 2 . The widget DB a (Fig. 18) ensures that t 1 + t 2 = α, i.e; a has been doubled. Similarly, the widget Hex x (Fig. 18) ensures that t 2 = 6β. No time is spent at Check 1 . We repeatedly keep multiplying a by 2 until a becomes equal to 1. For this, we once take the path L 1 to Check 1 , using clock x 1 , and the next time, use the path L 3 to Check 2 , using clock x 2 . Note that when a becomes 1 after k+1 iterations, we have also multiplied β with 6 k+1 . Due to the alternation of clocks x 1 , x 2 in paths L 1 to Check 1 and Check 1 to Check 2 , the value β * 6 k+1 could be either in x 1 or x 2 while the other clock is 0. We ensure (via locations I, J) that x 2 = 6 k+1 β and x 1 = 0 upon entering M . Hence, we get after k +1 iterations, a = 1 = 2 k+1 α and

x 2 = 6 k+1 β = 6 k+1 1 2 k+1+c 1 3 k+1+c 2 = 1 2 c 1 3 c 2 .
At this point, we are at location M . Now each time the loop between M and Check x is taken, value in x 2 is doubled; the widget DB x checks this. Repeatedly doubling x 2 i times gives

x 2 = 2 i 1 2 c 1 3 c 2 .
If this value is 1, then we know i = c 1 , and c 2 = 0. When this happens we reach location N 1 , from where a target is reached with cost 18. If c 2 = 0, then after some j iterations of the loop between Check x and M , we will obtain x 2 = 1 3 c 2 . Note that we can neither go to N 1 nor N 2 at this point, so the only option is to continue the loop between M and Check x . Clearly, x 2 will never become 1; so the only option is for x 2 to grow larger than 1. At that point, the transition to N 2 is enabled, and we reach a target with a cost 19.

-Time spent in widget W =0 1 : if L 1 was entered for the first time with a = 1 2 k+1 = α, then the time spent in L 1 and L 2 before Check 1 is entered is t = α. After visiting L 1 , L 2 , the next time we use L 3 , L 4 . Since we enter L 3 for the first time with a = 2α, the time spent in L 3 , L 4 is 2α. The next time we visit L 1 , we will be spending 4α and so on. Proceeding like this, we know that the total time spent in this loop before M is reached is α + 2α + 4α + • • • + 1 2 which is always < 1. A similar argument holds for the time spent in the loop between M and Check x . This apart, we spend 18 or 19 units of time (at N 1 or N 2 ) or at most 25 units of time in the widgets (Hex x), thus adding upto a total time that is at most < 28.

-The widget W =0 1 is similar to W =0 1 . The loop between M and Check x is retained, as is. In addition, when x 2 < 1 and x 1 = 0, we go to a location M 1 from M . The idea is to first multiply x 2 repeatedly till we obtain x 2 = 1 3 c 2 < 1, at which point of time, we go to M 1 . From M 1 , we have a loop between M 1 and an urgent Player 2 location Check x , and a widget Triple x is attached to Check x . Each time we come back to M 1 from Check x , we reset x 1 . Finally, if we get x 2 = 1, x 1 = 0, then we go from M 1 to a location M 2 having price 1. Elapsing 18 units of time in M 2 , we reach a target with cost 18. However, if x 2 exceeds 1, then with the guard x 2 > 1, x 1 = 0?, we go from M 1 to a location M 3 having price 1. To reach a target from M 3 , one has to elapse 19 units of time, thereby incurring a cost 19. Clearly, the route via M 3 will be needed iff c 2 = 0.

-The total time spent in W =0 1 will also be less than 28. To summarize the zero check instruction for C 1 : assume we start with x 1 = 1 2 k+c 1 3 k+c 2 , z = 1 2 k at location k+1 of Fig. 17. Let us consider the case when Player 1 correctly simulates the instructions within time limits. In this case, location Check is reached with z = 1 2 k+1 and x 2 = 1 2 k+c 1 +1 3 k+c 2 +1 . Player 2 has the possibility to test if this is indeed the case, by visiting widgets WZ, WI; however Player 1 will achieve his objective in that case. At location Z, Player 1 then correctly guesses whether C 1 is zero or not, by appropriately choosing one of the locations Check c1=0 or Check c1 =0 . Again, Player 2 has the possibility to check if Player 1's guess is correct by visiting widgets W =0 1 and W =0 1 ; however, Player 1 will achieve his objective here as well. Now consider the case that Player 1 made a mistake: if he did not spend the right amount of time in k+1 and T 2 , then Player 2 has the opportunity to punish him through the widgets WI and WZ; if he made a wrong guess regarding C 1 being zero or non-zero, then again Player 2 has a possibility to punish him through the widgets W =0 1 and W =0 1 .

Correctness of the construction. On entry into the location n (for the HALT instruction), we reset clock x 1 to 0; n has cost 1, and the edge coming out of n goes to a Goal location, with constraint x 1 18. 1. Assume that the two counter machine halts. If Player 1 simulates all the instructions correctly, he will incur a cost 18, by either reaching the goal location after n , or by entering a widget (the second case only occurs if Player 2 decides to check whether Player 1 simulates the machine faithfully.

If Player 1 makes an error in his computation, Player 2 can always enter an appropriate widget, making the cost greater than 18. In summary, if the two counter machine halts Player 1 has a strategy to achieve his goal (i.e., reaching a target location with a cost at most 18). 2. Assume that the two counter machine does not halt.

-If Player 1 simulates all the instructions correctly, and if Player 2 never enters a check widget, then Player 1 incurs cost ∞ as the path is infinite. Notice that even in this case, the total time needed for the computations will be less than 1, due to the strictly decreasing sequence of times chosen for simulating successive instructions. In this case, Player 2 will never want to enter a widget, since he gets a higher payoff. -Suppose now that Player 1 makes an error. In this case, Player 2 always has the possibility to reach a target set with a cost greater than 18. In summary, if the two counter machine does not halts Player 1 does not have a strategy to achieve his goal. Thus, Player 1 incurs a cost at most 18 iff he chooses the strategy of faithfully simulating the two counter machine, when the machine halts. When the machine does not halt, the cost incurred by Player 1 is greater than 18 if Player 1 made a simulation error and Player 2 entered a widget. Otherwise, if a widget is not entered, then the run does not end and cost is +∞. We specify a module for each instruction of the two counter machine. On entry into a module, we have x 1 = 1 5 c 1 7 c 2 ,x 2 = 0 and x 3 = 0, where c 1 , c 2 are the values of counters C 1 , C 2 . We construct a PTG whose building blocks are the modules for instructions. The role of Player 1 is to faithfully simulate the two counter machine, by choosing appropriate delays to adjust the clocks to reflect changes in counter values. Player 2 will have the opportunity to verify that Player 1 did not cheat while simulating the machine. We shall now present modules for increment, decrement and zero check instructions. Simulation of decrement instruction. : The module to simulate the decrement of counter C 1 is given in Fig. 19. We enter location k with x 1 = 1 5 c 1 7 c 2 , x 2 = 0 and x 3 = 0. Lets denote by x old the value 1 5 c 1 7 c 2 . To correctly decrement C 1 , Player 1 should choose a delay of 4x old in location k . At location Check, there is no time elapse. Player 2 has two possibilities : (i) to go to k+1 , or (ii) to enter the widget WD 1 . If Player 1 makes an error, and delays 4x old + ε at k (ε = 0)then Player 2 can enter the widget WD 1 and punish Player 1. When we enter WD 1 for the first time, we have x 1 = x old + 4x old + ε, x 2 = 4x old + ε and x 3 = 0. In WD 1 , the cost of going from location A to F is ε. Also, when we get back to A after going through the loop once, the clock values with which we entered WD 1 are restored; thus, each time, we come back to A, we restore the starting values with which we enter WD 1 . The third clock is really useful for this purpose only.

Since all locations in WD 1 are Player 2 locations, Player 2 can continue taking this loop as long as he pleases; each time incurring a cost ε. Thus, for any choice of η, Player 2 can incur a cost that is not in [-η, η] by taking the loop from A to F a large number of times. Note however that when ε = 0, then Player 1 will always achieve his objective: he will visit F infinitely often with a cost 0 ∈ [-η, η] for any choice of η. Simulation of increment instruction.: The module to increment C 1 is given in Fig. 20. Again, we start at k with x 1 = 1 5 c 1 7 c 2 , x 2 = 0 and x 3 = 0. Again, call 1 5 c 1 7 c 2 as x old . A time of 1 -x old is spent at k . Let the time spent at I be denoted x new . To correctly increment counter 1, x new must be x old 5 . No time is spent at Check. Player 2 can either continue simulation of the next instruction, or can enter the widget WI 1 to verify if x new is indeed x old 5 . Fig. 20 gives a table detailing the values of clocks, time elapsed and cost incurred at each location If c 1 = 0 already, then we can straightaway go to C spending no time at B, if c 2 = 0. In this case, Player 1 has to compulsorily go to Check c2 from C atleast once, since the edge from C to F is not enabled. The loop between C and Check c2 results in Player 1 multiplying x 1 of the form 1 7 c 2 till x 1 becomes 1. Here again, if Player 1 commits a mistake during multiplication by 7, Player 2 can catch Player 1 by entering the widget WD 2 . Otherwise, when x 1 reaches 1, Player 1 can go from C to F achieving his objective. Correctness of the construction. On entry into the location n (for HALT instruction), we reset clock x 1 to 0; from n , we go to a state F with price 0, with a self loop x 1 = 0.

1. Assume that the two counter machine halts. If Player 1 simulates all the instructions correctly, he will incur a cost = 0, by either reaching the F after n , or by entering a widget (the second case only occurs if Player 2 decides to check whether Player 1 simulates the machine faithfully. If Player 1 makes an error in his computation, Player 2 can always enter an appropriate widget, making the cost as large or as small, so as to not fit in [-η, η] for any choice of η. In summary, if the two counter machine halts Player 1 has a strategy to achieve his goal (visiting F with a cost 0 ∈ [-η, η] for any η > 0.) 2. Assume that the two counter machine does not halt.

-If Player 1 simulates all the instructions correctly, and if Player 2 never enters a check widget, then Player 1 incurs cost ∞ as we never reach F . In this case, Player 2 will never want to enter a widget, since he gets a higher payoff. -Suppose now that Player 1 makes an error. In this case, Player 2 always has the possibility to enter a loop, where Player 1 will incur cost ∞ or -∞. In summary, if the two counter machine does not halts Player 1 does not have a strategy to achieve his goal. Thus, Player 1 incurs a cost in [-η, η] for any η iff he chooses the strategy of faithfully simulating the two counter machine, when the machine halts. When the machine does not halt, the cost incurred by Player 1 is not in [-η, η] for any chosen η if Player 1 made a simulation error and Player 2 entered a widget. Else if a widget is not entered then the run does not reach F and cost is +∞. 
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					cost of -t due to delay in
	Total cost upon				Check and xnew = 5x old + ε
	reaching target				gives a total cost
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  = 12, h = 17 and the rest of the prices 0. Player 2 uses WI < 1 to check if t 2 < n 12 , and uses WI > 1 to check if t 2 > n 12 . Table 4 runs the reader through the widgets WI < 1 and WI > 1 . While reading the table, keep in mind that n = 1 2 k+c 1 3 k+c 2 and that t = t 1 + t 2 . As can be seen from the table, the total cost incurred is exactly 18 iff t 2 = n 12 .
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	2 k+1					
	prices					
	a1, d, e : 1					
	rest : 0					
	cost incurred at	1 2 k -t at A1	0	0	1 -t	17
	Total Cost at target	-	-	-	-	18 + 1 2 k -2t = 18 if t = 1 2 k+1 > 18 if t < 1 2 k+1
	are zero. Likewise, in widget WI > 1 , we have (in shorthand notation), prices
	c = 1, g					

polynomial time if the prices are encoded in unary.

By introducing auxiliary states in order to reset the clock x at every time unit once its value goes beyond M k . The polynomial complexity holds only for one-clock PTGs.

Remember that we suppose that there is no synchronization for now, so that no valuation in r is η-close to a border.

Notice that in the table, the line "time elapse" represents time elapsed in the current location, and not the time elapsed before reaching the current location.
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• If j = 0, then we have supposed that ν 0 is η-close to a border, so that ν - 0 = ν 0 . Let k be such that ν 1 ∈ (M k + η/2, M k+1 -η/2). Then, if

Consider then the case where ω( 0 ) = -1. In case ν - 1 = M k+1 -η/2 ν 1 , we have

Otherwise, we know that t 0 = 0 and ν - 0 M k + η. Since ν 0 is not η/2-close from a border, but ν 1 = ν 0 should be η-close from a border, we know that

• Let us suppose that the property is proved for all indices less than or equal to j, and prove it for j + 1. We let k be such that ν j+1 = ν j + t j ∈ (M k + η/2 j+1 , M k+1 -η/2 j+1 ). We will distinguish four possible cases depending on ω( j ) and the relative order between ν - j+1 and ν j+1 . (a) We first suppose that ω( j ) = -1. Then,

i. In the case where ν - j+1 > ν j+1 , we have

We now prove [START_REF] Berendsen | Undecidability of cost-bounded reachability in priced probabilistic timed automata[END_REF]. For that purpose, we consider a strategy σ 2 ∈ UStrat η 2 (A). We reconstruct from it a strategy ξ 2 ∈ Strat 2 ( Ã) such that Play(( , {M k }), ξ * 1 , ξ 2 ) is the sequence of η-regions visited by the play Play(( , M k ), σ Proof. Nothing has to be done in case Cost(r) (or equivalently Cost(r)) is equal to +∞. Hence, we can suppose that these two runs have a finite length. We show by induction on 0 n Length(r) = Length(r) that

For n = 0, nothing has to be proved since Cost(r[0]) = Cost(r[0]) = 0. Suppose that the property holds until step n < Length(r) = Length(r). We now prove it for index n + 1. Let ( , ν) and ( , I) be the last states of r[n] and r[n], respectively. We denote by t the delay taken in r at step n, and J the choice of successor in r at step n. Since the same action occurs at step n, we have

We clearly have |d(I, J) -t| 2η so that, by induction hypothesis,

Hence, the property is proved by induction.

By Lemma 8, we have

where the last inequality comes from the definition of η, and ξ * 2 is the optimal strategy for player 2 in Ã. In particular, notice that this shows that Cost(Play((

+∞, the inequality is trivially verified. For all ε > 0, we let η be a positive rational number less than ε/3 and we explain how to construct (from ξ *

2 ) an η-convergent strategy σ 

and thus the simulation of the machine goes on, or (ii) Player 2 goes to one of the widgets WZ > or WZ < ; in this case, since Player 1 has spent the right amount of time in k+1 and L together, he achieves his objective, or (iii) Player 2 goes to one of the widgets WI > 1 or WI < 1 ; again, in this case, since Player 1 has spent the right amount of time at L, he achieves his objective. Let us now turn to the case when Player 1 does not spend the right amount of time in k and L together; in this case, Player 2 can always enter one of the widgets WZ > or WZ < and reach a target with a cost > 18. Similarly, if Player 1 does not spend Shorthand and Longhand notations used in the proof : Note that in the shorthand notation used in widgets WI > 1 and WI < 1 , we never have consecutive locations with price-rates different from 0; on entering any location, there is a "free" clock with value 0; further, all guards are of the form x = c with reset of x on all edges. The time elapsed at a location is captured in the "free" clock which had value 0 while entering that location. Consider, for example two consecutive locations 1 and 2 where 1 has price f > 0, 2 has price 0, with an edge between 1 and 2 with guard x = c and reset of x. Let y = 0 on entering 1 . If t units of time was spent at 1 , we get y = t, x = 0, and the rest of the clocks are incremented by t. A cost of f t is incurred. This can be replaced by a series of 2f -1 blocks, where a block looks like this: The first block contains a copy 11 of 1 and some dummy location d 1 ; 11 has price 1, d 1 has price 0, and there is an edge from 11 to d 1 with guard x = c, and reset of x. A cost t is incurred. In the second block, all locations have price 0. The second block begins from d 1 and ends in the second copy 12 of 1 . The price of all copies of 1 is same as that of 1 . In the second block, the clock values are adjusted to be the same as they were, when they first entered 1 . The third block begins with 12 , and is like the first block: it ends in a dummy location d 2 . d 2 has price 0. The fourth block begins with d 2 , and is like the second block: it ends in the 3rd copy 13 of 1 and so on. The 2f -1th block will end in location d 2f -3 , with price 0. The valuations of all clocks on entering d 2f -3 is the same as what they were on entering 2 , in the original transition from 1 to 2 . With no time elapse in d 2f -3 , we go to 2 .

The total cost incurred across the 2f -1 blocks is f t. If the time t elapsed at 1 is such that t = r, then the total time elapsed across the 2f -1 blocks is f r: t time elapsed in the odd numbered blocks, and r -t in the even numbered blocks, to restore clock values. The point to note is that, as long as there are sufficiently many clocks, the above trick can be done.

Consider the paths ρ 1 and ρ 2 in Figure 16. As explained above, the "free" clock with value 0 is b. Here f is 2 and t = 1 -v where v is the value of clock x 2 . Clearly, the cost accumulated in path ρ 1 upon reaching I is 2 * (1 -v). The clock values upon entering F 1 of path ρ 2 are x 2 = v and b = 0. Upon entering G1 the values are x 2 = 0 and b = 1 -v. Thus upon entering F 2, x 2 = v and b = 0 and so on. The costs incurred in this path are 1 -v at F 1 and 1 -v at F 2. Hence total cost accumulated is 2 * (1 -v) upon reaching I.

C.4 Repeated reachability

Lemma 11. The existence of a strategy for the repeated reachability objective RReach(η), for any η ∈ R 0 is undecidable for PTGs with 3 clocks or more.

Proof. We prove the existence of a strategy with a repeated reachability objective ensuring the cost is within an interval [-η, η] is undecidable, for any choice of η > 0. In order to obtain the undecidability result, we use a reduction from the halting problem of 2 counter machines. Our reduction uses a PTG with 3 clocks, and arbitrary location prices, but no edge prices. of the main module, as well as WI 1 . It can be seen that the total cost incurred in one pass from location A to F is x old -5x new , which is 0 iff x old = 5x new .

As seen in the case of decrement, here also, each time we come back to A, we restore the clock values with which we enter WI 1 ; clearly, if Player 1 makes an error of the form x new = x old 5 + ε, the cost incurred in one pass from A to F is -5ε. If ε > 0, then Player 2 can bring the cost less than -η for any choice of η by taking the loop between A and F a large number of times. Similarly, if ε < 0, a cost > η can be incurred for any choice of η. Simulation of Zero-check.: Fig. 21 gives the module for zero-check instruction for counter C 2 . k is a no time elapse location, from where, Player 1 chooses one of the locations Check c2=0 or Check c2 =0 . Both these are Player 2 locations, and Player 2 can either continue the simulation, or can go to the check widgets W =0 2 or W =0 2 to verify the correctness of Player 1's choice. The widgets W =0 2 and W =0 2 are given in Fig. 22 and 23 respectively. -Consider the case when Player 1 guessed that C 2 is zero, and entered the location Check c2=0 in Fig. 21. Let us assume that Player 2 verifies Player 1's guess by entering W =0 2 (Fig. 22). No time is spent in the initial location A of W =0 2 . We are therefore at B with x 1 = 1 5 c 1 7 c 2 = x old and x 2 , x 3 = 0. In case c 1 = c 2 = 0, we can directly go to the F state, and stay there forever, incurring cost 0. If that is not the case, Player 1 has to prove his claim right, by multiplying x 1 with 5 repeatedly, till x 1 becomes 1; clearly, this is possible iff c 2 = 0. The loop between B and Check precisely does this: each time Player 1 spends a time x new in B, Player 2 can verify that x new = 5x old by going to WD 1 , or come back to B. No time is elasped in Check. Finally, if x 1 = 1, we can go to F , and Player 1 achieves his objective. However, if C 2 was non-zero, then x 1 will never reach 1 after repeatedly multiplying x 1 with 5; in this case, at some point, the edge from Check to C will be enabled. In this case, the infinite loop between C and T , incurs a cost +∞.

-Consider now the case when Player 1 guessed that C 2 is non-zero, and hence entered the location Check c2 =0 in Fig. 21. Let us assume now that Player 2