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Abstract Yiannis Sakellaridis and Akshay Venkathesh have determined, when the
group G is split and the field F is of characteristic zero, the Plancherel formula for any
spherical space X for G modulo the knowledge of the discrete spectrum.

The starting point is the determination of good neighborhoods at infinity of X/J ,
where J is a small compact open subgroup of G. These neighborhoods are related to
”boundary degenerations” ofX . The proof of their existence is made by using wonderful
compactifications.

In this article we will show the existence of such neighborhoods assuming that F
is of characteristic different from 2 and X is symmetric. In particular, one does not
assume that G is split. Our main tools are the Cartan decomposition of Benoist and
Oh, our previous definition of the constant term and asymptotic properties of Eisenstein
integrals due to Nathalie Lagier .

Once the existence of these neighborhoods at infinity of X is established, the analog
of the work of Sakellaridis and Venkatesh is straightforward and leads to the Plancherel
formula for X .

Classification 22E
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1 Introduction

Let G be the group of F-points of a reductive group G defined over the non archimedean
local field F.

In a tremendeous work (cf. [SV]), Yiannis Sakellaridis and Akshay Venkathesh
have determined, when the group G is split and the field F is of characteristic zero,
the Plancherel formula for any spherical space X for G modulo the knowledge of the
discrete spectrum.

The starting point is the determination of good neighborhoods at infinity of X/J ,
where J is a small compact open subgroup of G. Notice that G acts on X on the right.
These neighborhoods are related to ”boundary degenerations” of X . The proof of their
existence is made by using wonderful compactifications

In this article we will show the existence of such neighborhoods assuming that F is of
characteristic different from 2 and X is symmetric. In particular, one does not assume
that G is split. The main tool is the Cartan decomposition (cf. [BenO]), the definition
of the constant term (cf [D]) and asymptotic properties of Eisenstein integrals due to
Nathalie Lagier (cf. [L]). The use of Eisenstein integrals to prove results geometric in
nature on symmetric spaces goes back to her work (cf. [L] Theorem 7). Notice that our
neighborhoods at infinity are quite explicit in terms of the Cartan decomposition.

Once the existence of these neighborhoods at infinity of X is established, the analog
of part 3 of [SV] is straightforward and leads to the Plancherel formula for X . Notice
that our definition of normalized integrals differs slightly from the one in [SV] section
15.

Let σ be an involution of G defined over F . Let H be the fixed point group of σ in
G and let X = H\G. We denote by X(G) the group of unramified characters of G and
X(G)σ be the connected component of 1 in {χ ∈ X(G)|χ ◦ σ = χ−1}.

Let P be a σ-parabolic subgroup of G i.e. such that P and σ(P ) are opposed. Let
M := P ∩σ(P ) be the σ-stable Levi subgroup of G. Let U ( resp., U− ) be the unipotent
radical of P (resp., P− := σ(P )) and let δP be the modulus function of P . We define:

HP = U−(M ∩H), XP = HP\G

The space XP is called a ”boundary degeneration ” of X = H\G. It is an important
object whose role has been emphasized by Sakellaridis and Venkatesh.

Let P∅ = M∅U∅ be a minimal σ-parabolic subgroup of G. We will assume in this
introduction that P∅H is the only (P∅, H)-open double coset in G. A split torus is said
σ-split if all its elements are antiinvariant by σ. Let A∅ be the maximal σ-split torus
of the center of M∅ . Let A+

∅ be the closed positive chamber in A∅ for P∅. The Cartan
decomposition asserts (cf. [BenO]):

G = HA+
∅ Ω,

for some compact subset, Ω, of G. Let P be a σ-parabolic sugroup of G. If C > 0, let

A+
∅ (P,C) := {a ∈ A+

∅ ||α(a)|F > C, α root of A∅ in U}.

We denote by 1̇ (resp., 1̇P ) the image of the neutral element 1 of G in X (resp., XP ).
The following Theorem (cf. Theorem 1) is an easy consequence of [D], Proposition 3.14.
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Theorem (Constant term map)
There is a unique G-equivariant map cP : C∞(X) → C∞(XP ) with the following prop-
erty. For every compact open subgroup J of G, there exists C > 0 such that for all
f ∈ C∞(X) which is J-invariant:

(cPf)(1̇Paω) = f(1̇aω), a ∈ A+
∅ (P,C), ω ∈ Ω.

The following theorem (cf. Theorem 2 for its detailed version) was suggested by the
work [SV] of Sakellaridis and Venkatesh, who constructed similar maps, in their context,
using wonderful compactifications.
Theorem (expP,J-maps)
Let P = MU be a standard σ-parabolic subgroup of G i.e. such that P∅ ⊂ P . Let J be
a compact open subgroup of G.
(i) There exists C > 0 such that the correspondence 1̇xJ 7→ 1̇PxJ , for x ∈ A+

∅ (P,C)Ω, is

a well defined bijective map denoted expP,J from the subset NX,J(P,C) := 1̇A+
∅ (P,C)ΩJ

of X/J , to the subset O′ := 1̇PA
+
∅ (P,C)ΩJ of XP/J .

(ii) For J small enough, the map expP,J preserves volumes.
(iii) For f any right J-invariant element of C∞(H\G), one has :

(cP )(expP,J(x)) = f(x), x ∈ NX,J(P,C).

As said above we need some results of N. Lagier on Eisenstein integrals that we will
recall. Let P =MU be a σ-parabolic subgroup of G. Let (δ, E) be a unitary irreducible
representation of M . Let χ ∈ X(M)σ and let δχ = δ ⊗ χ. We denote by iGP δχ or πχ the
normalized induced representation and let Vχ denote its space.

Let η ∈ E ′M∩H . Let χ ∈ X(M)σ, sufficiently P -dominant. There is a canonical
H-fixed linear form ξ(P, δχ, η) on Vχ, (cf. [BD]). One defines the Eisenstein integrals
on X , E(P, δχ, η, v) ∈ C∞(X), v ∈ Vχ. by:

E(P, δχ, η, v)(1̇g) = 〈ξ(P, δχ, η), πχ(g)v〉, g ∈ G

Let AM be the maximal σ-split torus of the center of M and let µδ be the character of
AM by which AM acts on δ. The following theorem is due to Nathalie Lagier. This is
the analog of a Langlands lemma on asymptotics of smooth coefficients.

One says that the sequence (an) satisfies (an) →P ∞ if an ∈ AM and for
every root α of AM in the Lie algebra of U , (|α(an)|F ) tends to infinity.

Let us assume Re(χ)δ
−1/2
P is P -dominant. Then if (an) →P ∞ the follow-

ing limit exists

limn→∞(χδ
−1/2
P )(a−1

n )µδ(a
−1
n )E(P, δχ, η, v)(1̇an)

and is equal to
< η, (A(P−, P, δχ)v)(1) >,

where A(P−, P, δχ) is the (converging) intertwining integral operator.

(1.1)
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The theorem admits a variation when (an) →Q ∞, with P ⊂ Q. This implies easily:
First Key Lemma
Let us assume that (an) →P ∞ and that (gn) is a sequence in G converging to g. If
1̇angn = 1̇an for all n, then g ∈ U−(M ∩H).
Second Key Lemma
Let J be a compact open subgroup of G. Let (an) →P ∞, (a′n) →P ′ ∞, for P, P ′ σ-
parabolic subgroups of G and let g, g′ ∈ G. Let us assume 1̇angJ = 1̇a′ng

′J, n ∈ N.
Then P = P ′ and a subsequence of (an

−1a′n) is bounded.
Definition of expP,J Although we gave a formula for expP,J it is unclear that it is well
defined. Let us sketch the proof that it is well defined. If it was not well defined for all
C > 0, there would exist two standard σ-parabolic subgroups Q, Q′ of G contained in
P , and two sequences (an) →Q ∞, (a′n) →Q′ ∞, u, u′ ∈ G such that

1̇anuJ = 1̇a′nu
′J

and
1̇Panu

′J 6= 1̇Panu
′J.

By the Second Key Lemma, one sees that Q = Q′ and, possibly extracting a subse-
quence, one has from the First Key Lemma:

1̇QanuJ = 1̇Qa
′
nu

′J.

A trick (see below for an other occurence of this trick) with the constant term of the
characteristic function of a J-coset in X allows to show 1̇PanuJ = 1̇Pa

′
nJ for n large.

A contradiction which proves our claim.
Injectivity of expP,J
One wants to prove that, for C large, if x, x′ ∈ NX,J(P,C) and expP,J(x) = expP,J(x

′),
then x = x′. One introduces the characteristic function f of x ⊂ X and one will use
its constant term cPf . These functions are J-invariant and their values on a J-coset
makes sense. From the properties of the constant term, if C is large enough one has:

(cPf)(expP,J(x)) = f(x) = 1.

But, from our hypothesis one deduces :

(cPf)(expP,J(x)) = (cPf)(expP,J(x
′)).

Moreover by the properties of the constant term and because C is large, one has:

(cPf)(expP,J(x
′)) = f(x′) = 1.

This implies that f(x′) = 1, hence x = x′, as wanted.

A compact open subgroup J of G is said to have a strong σ-factorization for P∅ if
for all σ-parabolic subgroup P =MU which contains P∅ one has:
1)J = JU−JMJU for all σ-parabolic subgroups, where JM = J ∩M, ...,
2) For all a ∈ A+

∅ , a
−1JUa ⊂ JU , aJU−a−1 ⊂ JU−.
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3) J = JHJP , where JH = J ∩H, JP = J ∩ P .
4) JM satisfies the same properties for P∅ ∩M .
There are arbitrary small compact open subgroups with a strong σ-factorization for P∅

(cf. Kato-Takano [KT1] if the residual characteristic is different from 2, [CD] in general
and Lemma 6 of this article for the ”strong” version).

A choice of a G-invariant measure on X determines a G-invariant measure on XP .
Third Key Lemma Let J be a compact open subgroup with a strong σ-factorization
for P∅. Let a ∈ A+

∅ . Then:

1̇aJ = 1̇aJMJU , 1̇PaJ = 1̇PaJMJU ,

volX(1̇aJ) = volXP
(1̇PaJ).

The proof is easy. Moreover one can show that the identity of volumes is also true for
any small enough compact open subgroup of G. This implies easily the last property
of expP,J .

Then, one introduce the restriction eP of the transpose map of the constant term
map to C∞

c (XP ). Following an idea given to us by Joseph Bernstein, and using a result
of Aizebbud, Avni, Gourevitch[AAG] , one shows that its image is contained in C∞

c (X)
(cf Theorem 3). This achieves to prove the analog of Theorems 5.1.1 and 5.1.2 of [SV].

Then, as was said before, this allows to prove the Plancherel formula, modulo the
discrete spectrum of the XP , by using the same method than [SV], Part 3.

It is natural to ask about spherical varieties for general reductive groups. We think
that the key point is the existence or not of a Cartan decomposition.
Acknowledgments I thank warmly Joseph Bernstein for very useful discussions. I
thank also Yiannis Sakellaridis who answered to my numerous questions about his
work with Akshay Venkatesh. I thank also Pascale Harinck and Omer Offen for useful
discussions about the case GL(n, F )\GL(n,E).

2 Notations

If E is a vector space, E ′ will denote its dual. If T : E → F is a linear map between
two vector spaces, T t will denote its transpose. If E is real, EC will denote its complex-
ification. If G is a group, g ∈ G and X is a subset of G, g.X will denote gXg−1. If J
is a subgroup of G, g ∈ G and (π, V ) is a representation of J , V J will denote the space
of invariant elements of V under J and (gπ, gV ) will denote the representation of g.J
on gV := V defined by:

(gπ)(g.x) := π(x), x ∈ J.

We will denote by (π′, V ′) the contragredient representation of a representation (π, V )
of G in the algebraic dual vector space V ′ of V .
If V is a vector space of vector valued functions on G which is invariant by right
(resp., left) translations, we will denote by ρ (resp., λ) the right (resp., left) regular
representation of G in V .
If G is locally compact, dlg or dg will denote a left invariant Haar measure on G and
δG will denote the modulus function.
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Let F be a non archimedean local field. We assume:

The characteristic of F is different from 2. (2.1)

Let |.|F be the normalized absolute value of F.
One considers various algebraic groups defined over F, and a sentence like:

” let A be a split torus ” will mean ” let A be the group of F-points of a
torus, A, defined and split over F ”.

(2.2)

With these conventions, let G be a connected reductive linear algebraic group. Let ÃG
be the maximal split torus of the center of G. The change with standard notation will
become clear later.

Let G be the algebraic group defined over F whose group of F-points is G. Let σ be
a rational involution of G defined over F. Let H be the group of F-points of an open
F-subgroup of the fixed point set of σ. We will also denote by σ the restriction of σ to
G.
A split torus A of G is said σ-split if A is contained in the set of elements of G which
are antiinvariant by σ. We will denote by AG the maximal σ-split torus of the center
of G.
If J is an algebraic subgroup of G stable by σ, one denotes by Rat(J)σ the group of its
rational characters defined over F which are antiinvariant by σ. Let us define:

aG = HomZ(Rat(G)σ,R).

The restriction of rational characters from G to AG induces an isomorphism:

Rat(G)σ ⊗Z R ≃ Rat(AG)⊗Z R. (2.3)

Notice that Rat(AG) appears as a generating lattice in the dual space a′G of aG and:

a
′
G ≃ Rat(G)σ ⊗Z R. (2.4)

One has the canonical map HG : G→ aG which is defined by:

e〈HG(x),χ〉 = |χ(x)|F, x ∈ G, χ ∈ Rat(G)σ. (2.5)

The kernel of HG, which is denoted by G1, is the intersection of the kernels of the
characters of G, |χ|F, χ ∈ Rat(G)σ. One defines X(G)σ = Hom(G/G1,C∗). It is a
subgroup of the group X(G) of unramified characters of G. It is precisely the connected
component of the neutral element of the group of elements of X(G) which are invariant
by σ.

One denotes by ãG,F (resp., aG,F) the image of G (resp., AG) by HG. The group
G/G1 is isomorphic to the lattice aG,F.

There is a surjective map:
(a′G)C → X(G)σ → 1 (2.6)

denoted by ν 7→ χν which associates to χ⊗ s, with χ ∈ Rat(G)σ, s ∈ C, the character
g 7→ |χ(g)|s

F
(cf. [W], I.1.(1)). In other words:

χν(g) = e〈ν,HG(g)〉, g ∈ G, ν ∈ (a′G)C. (2.7)
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The kernel is a lattice and it defines a structure of a complex algebraic variety on
X(G)σ of dimension dimRaG. Moreover X(G)σ is an abelian complex Lie group whose
Lie algebra is equal to (a′G)C.

If χ is an element of X(G)σ, let ν be an element of a′G,C such that χν = χ. The real
part Re ν ∈ a′G is independent from the choice of ν. We will denote it by Re χ. If
χ ∈ Hom(G,C∗) is continuous and antiinvariant by σ, the character of G, |χ|, is an
element of X(G)σ. One sets Reχ = Re |χ|. Similarly, if χ ∈ Hom(AG,C

∗) is continuous,
the character |χ| of AG extends uniquely to an element of X(G)σ with values in R∗+,
that we will denote again by |χ| and one sets Re χ = Re |χ|.
A parabolic subgroup P of G is called a σ-parabolic subgroup if P and σ(P ) are opposite
parabolic subgroups. Then M := P ∩ σ(P ) is the σ-stable Levi subgroup of P . If P is
such a parabolic subgroup, P− will denote σ(P ).

If P is a σ-parabolic subgroup of G, PH is open in G. (2.8)

The sentence : ”Let P = MU be a parabolic subgroup of G” will mean that U is the
unipotent radical of P and M is a Levi subgroup of G. If moreover P is a σ-parabolic
subgroup of G, M will denote its σ-stable Levi subgroup.

If P = MU is a σ-parabolic subgroup of G, we keep the same notations with M
instead of G.
The inclusions AG ⊂ AM ⊂ M ⊂ G determine a surjective morphism aM,F → aG,F

(resp., an injective morphism, ãG,F → ãM,F) which extends uniquely to a surjective
linear map between aM and aG (resp., injective map, between aG and aM). The second
map allows to identify aG with a subspace of aM and the kernel of the first one, aGM ,
satisfies:

aM = a
G
M ⊕ aG. (2.9)

If an unramified character of G is trivial on M , it is trivial on any maximal compact
subgroup of G and on the unipotent radical of P , hence on G. This allows to identify
X(G)σ to a subgroup of X(M)σ. Then X(G)σ is the analytic subgroup of X(M)σ with
Lie algebra (a′G)C ⊂ (a′M)C. This follows easily from (2.7) and (2.9).

Let P =MU be a σ-parabolic subgroup of G. Recall that AM is the maximal σ-split
torus of the center of M .
Let A+

P , (resp., A
++
P ) be the set of P -dominant (resp., strictly dominant) elements in

AM . More precisely, if Σ(P ) is the set of roots of AM in the Lie algebra of P , and ∆(P )
is the set of simple roots, one has:

A+
P (resp., A++

P ) = {a ∈ AM ||α(a)|F ≥ 1, (resp., > 1) α ∈ ∆(P )}.

Let A∅ be a maximal σ-split torus contained in M . Let Σ(U,A∅) be the set of roots of
A∅ in the Lie algebra of U , and let ∆(P,A∅) be the set of simple roots. One defines for
C > 0 :

A+
∅ (P,C) = {a ∈ A∅||α(a)|F ≥ C, α ∈ ∆(U,A∅)}. (2.10)

Let A be a σ-split torus and g ∈ G. We will say that g is A-good if and only if g−1.A
is a σ-split torus. Let us prove:

If g is A-good σ(g)g−1 commutes to A (2.11)
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It is enough to prove that if a ∈ A, (σ(g)g−1).a = a. One has (σ(g)g−1).a =
σ(g.σ(g−1.a)) = σ(g.(g−1a−1) = a.

For the rest of the article, we fix P∅ = M∅U∅ a minimal σ-parabolic subgroup of G
and let A∅ be the maximal σ-split torus of the center of M∅. It is a maximal σ-split
torus of G. One denotes by A+

∅ the set A+
P∅
. A σ-parabolic subgroup of G will be said

standard (resp., semistandard) if it contains P∅ (resp., M∅). We choose a maximal split
torus A0 which contains A∅. From [HH], Lemma 1.9, it is σ-stable. Let K0 be the
stabilizer of a special point of the apartment of the extended building of G associated
to A0.

From [BD], Lemma 2.4, there exists a finite set WG
M∅

of A∅-good elements
of G, such that if P is any semi-standard minimal σ-parabolic subgroup
of G, WG

M∅
is a set of representatives of the (P,H)-double open cosets. We

will assume that 1 ∈ WG
M∅

.

(2.12)

For sake of completeness we will recall the definition of WG
M∅

. Let (Ai)i∈I be a set of
representatives of the H-conjugacy classes of maximal σ-split torus of G. Let us assume
that A∅ belongs to this set. The groups Ai are conjugate under G (cf. [HH], Proposition
1.16). Let us choose for each i in I, an element xi of G, such that xi.A∅ = Ai with
x∅ = 1. Let Mi be the centralizer of Ai in G. If L is a subgroup of G, one denotes by
WL(Ai) the quotient of the normalizer in L of Ai by its centralizer. Let us denote by
W (Ai) instead of WG(Ai).

Let Wi be a set of representatives in NG(A∅) of W (A∅)/WHi
(A∅) where Hi = x−1

i .H .
Then ([HH], Theorem 3.1) one can take WG

M∅
= ∪i∈IWix

−1
i .

For g ∈ G we define ġ the left coset Hg and we define:

XG
M∅

:= {ẋ|x−1 ∈ WG
M∅

}.

3 The G-spaces XP , the constant terms and the

maps cP,Q

3.1 The G-spaces XP

One has (cf. [CD], Lemma 9.4):

Let P = MU be a σ-parabolic subgroup of G. The union of the (P,H)
open double cosets in G is equals to G′ := P H ∩ G. The set G′ is also
equal to the set of g ∈ G such that g−1.P is a σ-parabolic subgroup.

(3.1)

Let us prove:

Let P = MU be a σ-parabolic subgroup of G and g ∈ G such that g.AM
is σ-split. Then g.P is a σ-parabolic subgroup of G.

(3.2)

One has P = Pν for some ν ∈ a′M in the sense of [CD], (2.14). Then g.Pν = Pµ where
µ is the conjugate of ν by g. Our hypothesis implies that σ(µ) = −µ. This implies
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that g.Pν is a σ-parabolic subgroup as Pµ and σ(Pµ) = P−µ are opposite parabolic
subgroups.

One easily extends [CD], Equation (7.1), by replacing A∅ by AM , the proof being
identical:

Let P = MU be a σ-parabolic subgroup of G. Let y, y′ be AM -good
elements of G such that PyH = Py′H . Then there exist m ∈ M,h ∈ H
such that y′ = myh.

(3.3)

We define an equivalence relation ≈M on XG
M∅

by x ≈M x′ if and only if Px−1H =

Px′−1H , which by the above equation is equivalent to xM = x′M , as x−1, x′−1 are
A∅-good. Let X

G
M be a set of representatives of the equivalences classes of this relation.

Let us define
WG

M := {y ∈ WG
M∅

|(y−1)̇ ∈ XG
M}.

From the above and from (2.12) one has:

The set XG
M is a set of representatives of the open (H,P )-double cosets in

G.
(3.4)

Lemma 1 Let P =MU be a semistandard σ-parabolic subgroup of G.
(i) The set of elements g of G such that g.AM is σ-split is denoted XLev

M ⊂ G. It is
left invariant by H. Its quotient by H on the left is denoted by XM ⊂ H\G. One has
XG
M ⊂ XM and:

XM = ∪x∈XG
M
xM ⊂ H\G,

the union being disjoint.
(ii) For each x ∈ XG

M , xM is closed in X.
(iii) We endow XM with the topology induced by the topology of X. Then for each x ∈
XG
M , x.M is open and closed in XM . Moreover the canonical map (M ∩ x−1.H\M) →

xM , (M ∩ x−1.H)m 7→ xm, is an homeomorphism.
(iv) For all x ∈ XM , xP is open in X and XMP = XMU is the union of the open orbits
of P in X.

Proof :

(i) If g ∈ XLev
M , g.P is a σ-parabolic subgroup (cf. (3.2)). From (2.8) one has g−1 ∈ G′.

One deduces from (2.12) and the definition of the relation ≈M that g−1 ∈ PyH for
some y ∈ WG

M . From (3.3), one deduces that there exists m ∈ M,h ∈ H such that
g−1 = myh. The equality of (i) follows immediately. From (3.3), if x, x′ are distinct
elements of XG

M , the sets HxP and Hx′P are disjoint. The disjointness follows.
(ii) Changing H into x−1.H , one is reduced to prove (ii) when x is equal to 1̇. If (mn)
is a sequence in M such that (ṁn) converges in X to l, then (σ(mn)

−1mn) converges.
The Cartan decomposition for M ∩H\M (cf. [BenO] Theorem 1.1) allows to extract
a subsequence of (mn) denoted again by (mn) such that mn = hnxanωn, where (ωn)
converges, an ∈ A∅, x

−1 ∈M is A∅-good and hn ∈M ∩H . Then using (2.11) one has:

σ(mn)
−1mn = σ(ω−1

n ) σ(x−1)xa2nωn, n ∈ N.

Hence (a2n) is convergent and (an) is bounded. Extracting again a subsequence we
can assume that (an) is convergent. This implies that (M ∩ H)mn is convergent in
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((M ∩H)\M) is convergent in M ∩H\M and l is element of 1̇M . This proves (ii).
(iii) The fact that xM is closed follows from (ii). As XGM is finite, (i) implies that xM
is open in XM . The last assertion follows from [BD], Lemma 3.1 (iii).
(iv) From (3.1) and (3.2) and the definition of XM , one sees that HxP is open in G.
This achieves to prove the first assertion of (iv). The second follows from this and from
(3.4).

Definition 1 Let P = MU be a σ-parabolic subgroup of G. Then XM is a P−-space
with the given action of M and with the trivial action of U−. We define:

XP = XM ×P− G.

Then XM identifies to a subset of XP . If x ∈ XM , its image in XP will be denoted by
xP .

If x, x′ ∈ XM the notation x ≈M x′ will mean that x, x′ are in the same M-orbit in XM .
The following assertion follows from the definition of XP .

Let x, x′ ∈ XM . The following conditions are equivalent:
(i) xPG = x′PG.
(ii) xM = x′M in other words x ≈M x′.

(3.5)

We define HP := U−(M ∩H). If y ∈ G, let us denote by σy the rational involution of
G defined by:

σy(g) = y−1σ(ygy−1)y,

whose fixed point set is equal to y−1.H Moreover σy depends only on ẏ.

Let x ∈ XM ⊂ H\G. The stabilizer of xP in G is equal to (x−1.H)P :=
U−(M ∩ x−1.H).

(3.6)

Definition 2 Let a ∈ AM . From (3.5) any element y ∈ XP is of the form y = xP g
for a unique element x ∈ XG

M and some element g ∈ G, which is defined up to the left
action of U−(M ∩ x−1.H) . We see easily from (3.6) that a.y := xPag is well defined.
It defines a left action of AM on XP which commutes to the right G-action.

From the equality in Lemma 1, one deduces the following equality:

Lemma 2 (i) One has:
XP = ∪x∈XG

M
xPG, (3.7)

the union being disjoint.
(ii) For x ∈ XG

M , xPP is the unique open orbit in xPG.
(iii) Let (XM)P the image of XM in XP or equivalently the set {xP |x ∈ XM}. The
union of the open P -orbits in XP is equal to (XM)PP = (XM)PU and the map from
XMP = XMU to (XM)PP defined by xu 7→ xPu is a bijective P -equivariant map.
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Proof :

One deduces (i) from the equality in Lemma 1.
(ii) It follows from (3.6) that xPG is isomorphic to U−(M∩x−1.H)\G. Then (ii) follows
from the fact that there is a unique open (U−, P )-double coset in G.
The first part of (iii) is clear. It follows from (3.6) that the map XM × U → (XM)PP ,
(x, u) 7→ (xPu) is bijective. One checks easily that it is P -equivariant.
Let P be a standard σ-parabolic subgroup of G. Let us prove:

{a ∈ A∅||α(a)|F ≥ C, α ∈ ∆(P∅ ∩M)} = A+
∅ (P∅, C)AM . (3.8)

The right hand side is clearly included in the left hand side of the equality to prove.
Let a be an element of the left hand side. Let b ∈ AM be strictly P -dominant. Then
for large n ∈ N, one has abn ∈ A+

∅ (P∅, C). Our claim follows.

Proposition 1 There exists a compact subset Ω of G such that for all σ-parabolic
subgroup P of G containing M∅, one has:

XP = ∪x∈XG
M∅

xPA
+
∅ AMΩ.

Proof :

The claim is true for P = G from the Cartan decomposition for symmetric space (cf.
[BenO] Theorem 1.1). In general one has G = P−K0 hence

XP = XMP
−K0 = XMK0 = ∪x∈XG

M
xPMK0.

The M-space xM ⊂ H\G is a symmetric space for M for the involution σx restricted
to M . As x is A∅ good, P∅ ∩M is a σx-parabolic subgroup of M (cf. [CD] Lemma
2.2). From the Cartan decomposition for this symmetric space, it is enough to prove
the following lemma.

Lemma 3 The open orbits of P∅∩M in xM are the orbits y(P∅∩M), where y describes
the set of elements in XG

M∅
such that y ≈M x.

By conjugating on the left by x−1 and changing H into x−1.H one is reduced to prove
the lemma for x = 1̇. Any open (P∅ ∩M)-orbit in (M ∩ H)\M is of the form (M ∩
H)z(P∅ ∩M) where z−1 is A∅-good and element of M (cf. (2.12)). As HP is open, the
product map H × P → HP is open (cf. [BD], Lemma 3.1 (iii)). Hence, as HzP∅ =
H((H ∩M)z(P∅∩M))U , one sees that HzP∅ is open. Then (2.12) implies the existence
of an element y of XG

M∅
such that:

HzP∅ = HyP∅. (3.9)

As z ∈M , z is AM -good. As y is also AM -good, it follows from (3.3) that z = hym′ for
some m′ ∈M , h ∈ H and one has y ≈M z. Let us prove:

(HzP∅) ∩HM = Hz(P∅ ∩M).
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Let p ∈ P∅ and let us write p = p′u with p′ ∈ P∅ ∩M and u ∈ U . Let us show that
zp′u ∈ HM if and only if u = 1. Let m′ := zp′ ∈M . If zp′u ∈ HM , there exist h ∈ H ,
m ∈M such that m′u = hm. Then one has

h = m′m−1(m.u)

Hence both sides of the equality are elements of H ∩P = H ∩M . It follows that u = 1.
Our claim follows.

As z ∈ M , ż ≈M 1̇. Taking into account y ≈M z, one has y ≈M 1̇ and one shows
similarly that:

(HyP∅) ∩HM = Hy(P∅ ∩M). (3.10)

From this and (3.9) one sees that:

Hy(P∅ ∩M) = Hz(P∅ ∩M).

This shows that any open P∅ ∩M-orbit in 1̇M has the required form.
Reciprocally from (3.10) one sees that for all y ∈ XG

M∅
such that y ≈M 1̇, y(P∅ ∩M)

is open in XM as it is equal to the intersection of an open set of X with the open subset
1̇M of XM (cf. Lemma 1 (iii)). This proves the Lemma.

Remark 1 1) There is a minor change with [SV]. Here we are interested to X = H\G
but Sakellaridis and Venkatesh study the bigger space (H\G)(F). The space X appears
as one of the finitely many G-orbits in X(F) and every G-orbit in X(F) is of the same
type than X.
2) If P = MU is a standard σ-parabolic subgroup of G, we define ΘP as the set of
simple A∅-roots in the Lie algebra of M which are simple for P∅. Notice that ΘP∅

= ∅.
We could define also AΘP

= AP . Then AΘP
plays here the role AX,ΘP

in [SV].

3.2 Constant term

Let J be a totally discontinuous group acting continuously on a totally disconnected
topological space Y . We will say that the action is smooth if the stabilizer of any
element of Y is open and we will denote by C∞(Y ) the space of functions which are
fixed by the right action of some compact open subgroup of G.

Let us recall (cf. [D], Proposition 3.14) the following result.

Let P = MU be a σ-parabolic subgroup of G. Let (π, V ) be a smooth
G-submodule of C∞(H\G). The map f → fP is the unique morphism of
P -modules from V to the space C∞((M ∩H)\M) endowed with the right

action of M tensored by δ
1/2
P and the trivial action of U , such that:

For all compact open subgroup, J , of G there exists C > 0 , such that for
all f ∈ V J :

f(a) = δ
1/2
P (a)fP (a), a ∈ AM(P−, C) = AM ∩A+

∅ (P
−, C),

where A+
∅ (P

−, C) has been defined in (2.10).
We have a similar statement by replacing the preceding equality by

f(a) = δ
1/2
P (a)fP (a), a ∈ A+

∅ (P
−, C)

(3.11)
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We have slightly modified the statement of l.c. by replacing A0 by AM and A∅ but
unicity still holds due to [D] Equation (3.8). It is useful to introduce:

f̃P = δ
1/2
P fP . (3.12)

Let us assume that V is of finite length. Let (δ, E) be the unormalized
Jacquet module of V . Then there exists a finite family of complex charac-
ters χ1, . . . , χr of AM such that

(δ(a)− χ1(a)) . . . (δ(a)− χr(a)) = 0, a ∈ AM

From the interwining properties of the map f 7→ fP , one deduces

(ρ(a)− χ1(a)) . . . (ρ(a)− χr(a))f̃P = 0, a ∈ AM .

(3.13)

Theorem 1 Let P = MU ⊂ Q = LV be two standard σ-parabolic subgroups of G. If
C ≥ 0, let A+

∅ (P,Q,C) be the set of a ∈ A+
∅ such that |α(a)|F ≥ C for all roots α of A∅

in the Lie algebra of U ∩ L.
(i) There exists a unique G-equivariant map cP,Q from C∞(XQ) to C

∞(XP ) satisfying
the following property:
For all compact open subgroups J of G, there exists C > 0 such that for all f ∈ C∞(XQ)
which is right J-invariant, one has:

(cP,Qf)(xPa) = f(xQa), a ∈ A+
∅ (Q,P, C), x ∈ XG

M∅
. (3.14)

The map does not depend on the choice of WG
M∅

.
(ii) Let R be an other standard σ-parabolic subgroup of G such that Q ⊂ R. Then one
has:

cP,R = cP,Q ◦ cQ,R.

(iii) Let V be a smooth G-submodule of finite length of C∞(XQ). Then there exists a
finite family of complex characters χ1, . . . , χr such that for all f ∈ V:

((λ(a)− χ1(a)) . . . (λ(a)− χr(a))cP,Qf)(xPg) = 0, x ∈ XG
M , g ∈ G, a ∈ AM .

For the proof we will need two lemmas.

Lemma 4 Let x ∈ XM .
(i)If f ∈ C∞(XQ) and g ∈ G, let fxQ,g be the map l 7→ f(xQlg) viewed as a map on
(x−1.H) ∩ L\L. We define a function fxQ,P−∩L on G by g 7→ (fxQ,g)

˜
P−∩L(1), where we

use the notation (3.12). It is left invariant by (x−1.H)P and it is right J-invariant if f
is right J-invariant.
(ii) The point (i) allows to define a map cP,Q,x : C

∞(XQ) → C∞(xPG) by

(cP,Q,xf)(xPg) = fxQ,P−∩L(g).

It intertwines the right regular representations of G on C∞(XQ) and C
∞(xPG).

(iii) One has
(cP,Q,xf)(xPmg) := (fxQ,g)

˜
P−∩L(m), m ∈M.
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(iv) For all compact open subgroup J of G, there exists C > 0 such that for all x ∈ XG
M∅

,
for all f ∈ C∞(XQ) which is right J-invariant, one has:

(cP,Q,xf)(xPa) = f(xQa), a ∈ A+
∅ (P,Q,C), x ∈ XG

M∅
.

(v) We have unicity of the G-maps satisfying the condition above on the sets AM ∩
A+

∅ (P,Q,C).

Proof :

(i) Due to the intertwining properties of the constant term map (cf. (3.11)) the map ϕ 7→
ϕ̃P−∩L intertwines the right regular representations of P− ∩L on C∞((x−1.H) ∩L)\L)
and on C∞((x−1.H)∩M)\M), where U−∩L acts trivially on the latter space. Also one
remarks that fxQ,vg = fxQ,g for g ∈ G, v ∈ V . Altogether this shows (i) and that the map
cP,Q,x is well defined. The map cP,Q,x intertwines the right regular representations of
G as the equality (cP,Q,x(ρ(g)f))(xPg

′) = (cP,Q,xf)(xP g
′g) follows from the definitions.

This achieves to prove (ii).
(iii) By (ii), it is enough to prove this for g = 1. The intertwining properties of the map
ϕ 7→ ϕ̃P−∩L described above allows to prove (iii).
(iv) By (iii) and from the second equality of (3.11) for P− ∩ L, one deduces (iv).
(v) As cP,Q,x is a G-map, (v) follows from the second characterization in (3.11) of the
constant term.

Lemma 5 Let x, y ∈ XM . If x ≈M y, one has cP,Q,x = cP,Q,y.

From Lemma 4 (v), it is enough to prove the following assertion.

Let J be a compact open subgroup of G. There exists C > 0 such that for
all f ∈ C∞(XQ) which is J-invariant

(cP,Q,xf)(yPa) = f(yQa), a ∈ AM ∩A+
∅ (P,Q,C).

(3.15)

Let m ∈ M such that y = xm. Then yP = xPm, yQ = xQm. By the interwinining
properties of cP,Q,x and the commutation of a ∈ AM with m, one has

(cP,Q,xf)(yPa) = cP,Q,x(ρ(m)f)(xPa), a ∈ AM . (3.16)

One remarks that ρ(m)f is fixed by m.J . Hence as x satisfies Lemma 4 (iv) , there
exists C > 0 such that for all f ∈ C∞(XQ) right invariant by J :

cP,Q,x(ρ(m)f)(xPa) = (ρ(m)f)(xQa), a ∈ AM ∩A+
∅ (P,Q,C).

As (ρ(m)f)(xQa) = f(yQa), together with (3.16) this proves (3.15) and the lemma.

Proof of Theorem 1
(i) We define cP,Q(f) for f ∈ C∞(XQ) by:

(cP,Qf)(xQg) := (cP,Q,xf)(xQg), x ∈ XG
M

14



From Lemma 4 (iv) and (v), one sees that this is well defined and that it has the required
properties including unicity. Also from Lemma 5, cP,Q does not depend on the choice
of XG

M in XG
M∅

. Also, as changing our choice of XG
M∅

involves only right multiplcation

by elements of M∅, one sees that cP,Q even does not depend of the choice of XG
M∅

.
(ii) follows easily from the unicity statement in (i).
(iii) We use the notation of Lemma 4 (i). The map f 7→ fxQ,1 is a Q−-map from V to
a Q−-submodule of C∞((x−1.H) ∩ L\L) endowed with the right action of L and the
trivial action of V . This submodule is a quotient of the unormalized Jacquet module of
V for Q−. Hence it is an L-module of finite length. Then (iii) follows from the definition
of cP,Q above and from (3.13) applied to L instead of G.

4 Neighborhoods at infinity of XQ and mappings

expXP ,XQ

4.1 Choice of measures

We fix on G (resp., H , resp., the unipotent radical of a semistandard σ-parabolic
P = MU of G) the Haar measure such that its intersections with K0 is of volume 1.
From this we deduce a measure on H\G. We choose the Haar measure onM such that:

∫
G

f(g)dg =

∫
U×M×U−

f(umu−)δP (m)−1dudmdu−, f ∈ C∞
c (G). (4.1)

Also there exists a constant γ(P ) such that:
∫
G

f(g)dg = γ(P )

∫
U−×M×K0

f(u−mk)du−dmdk. (4.2)

The set XMU is an open subset of H\G (cf. Lemma 1 (iv)) which is right invariant by
P . Hence the measure on H\G induces a right P -invariant measure on XMU . But the
map XM × U → XMU , (x, u) 7→ xu is a homeomorphism. As the Haar measure on U
has been fixed, there is a canonical measure mXM

on XM such that:

∫
XMU

f(y)dy =

∫
XM×U

f(xu)dmXM
(x)du, f ∈ Cc(XP ). (4.3)

One checks easily that this measure satisfies:
∫
XM

f(xm)dmXM
(x) = δP (m)−1

∫
XM

f(x)dmXM
(x), m ∈M (4.4)

Let x ∈ XM . As U−P is open in G, xPP is an open set in XP which depends only on
xM . By looking to the stabilizer of x and xP one sees that the map xp 7→ xPp is a well
defined continuous bijection between xP and xPP which depends only on xM hence
on xPP . Thus, our choice of P -invariant measure on xP induces and ”by transport
de structure” a P -invariant measure on xPP . We fix on xPG the G-invariant measure
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which agrees with this measure on xPP . Hence we have a right invariant measure by G
onXP . We want to deduce frommXM

anM-invariant measure onXM . This will depend
on our choice of XG

M . If x ∈ XG
M , the map (M∩x−1.H)\M → xM , (M∩x−1.H)m 7→ xm

is a homeomorphism (cf. e.g. [BD] Lemma 3.1 (iii)). The measure on XM determines
a measure on (M ∩ x−1.H)\M . Let us show:

The function δP is trivial on M ∩ x−1.H . (4.5)

The group P is a σx-parabolic subgroup of G (cf. [CD], Lemma 2.2 (iii) where one has
to change x in x−1). This implies that δP is antiinvariant by σx and hence trivial on the
fixed points of σx. This proves our claim. This determines ‘par transport de structure”
a function denoted δP,x on xM . Multiplying the restriction to xM of the canonical
quasiinvariant measure mXM

by δP,x one gets an M-invariant measure on xM and on
(M ∩ x−1.H)\M . Hence one has:

Our choice of XG
M determines an M-invariant measure on XM . (4.6)

It allows to identify C∞(XM) to a subspace of the dual of C∞
c (XM) (we will see later

that this subspace of the dual is the full smooth dual, cf. after (8.1)).
One deduces also a measure on x−1.H by conjugacy. Together with our choice

of measure on M and on (M ∩ x−1.H)\M , this determines a measure on (M ∩
x−1.H)\x−1.H .

We introduce a unitary action L of AM (cf. (4.4) for unitarity) on the space L2(XP )
called normalized action:

Laf(x) = δ
1/2
P (a)f(ax), x ∈ XP , (4.7)

where ax is the left action of a ∈ AM on x ∈ XP of Defintion 2.

4.2 Compact open subgroups with a σ-factorization

First we give a definition.

A compact open subgroup J of G is said to have a σ-factorization (resp.
strong σ-factorization) for standard σ-parabolic subgroups of G if it satis-
fies the following conditions:
(i) For every standard σ-parabolic subgroup P = MU of G the product
map JU− × JM × JU → J is bijective, where JU− = J ∩ U−, JM = J ∩M ,
JU = J ∩ U.
(ii) Let A ⊂ A∅ be the maximal σ-split torus of the center of M and let
A− (resp. A−

∅ ) be the set of its P -(resp. P∅)-antidominant elements. For
all a belonging to A− (resp. A−

∅ for the strong σ-factorization) one has

aJUa
−1 ⊂ JU , a

−1JU−a ⊂ JU−.

(iii) One has J = JHJP , where JH = J ∩H, JP = J ∩ P .
(iv) For every σ-parabolic subgroup P = MU of G which contains P∅,
J ∩M enjoys the same properties that J for M and P∅ ∩M .

(4.8)
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From [CD] Prop 2.3, there exist arbitrary small compact open subgroups of G with a
σ-factorization. We will need the following lemma later.

Lemma 6 There exists a basis of neighborhood of the identity in G, (J ′
n)n∈N, made of

a decreasing sequence of compact open subgroups of G with a strong σ-factorization and
such that for all n ∈ N, J ′

n is a normal subgroup of J ′
0.

Proof :

We keep the notation of [CD] Prop 2.3, Then, as the basis of u∅ and u−∅ is made of
weight vectors a∅, one has:

Λg = Λu⊕ Λm⊕ Λu−,

where Λu = Λg∩u, Λm = Λg∩m, Λu− = Λg∩u− and Λu (resp., Λu− ) is stable by the

adjoint action of A−
∅ (resp., A+

∅ ). Then one shows as in the proof of [CD] Proposition 2.3,
where only (ii) has to be modified, that there exists a basis of neighborhoods (Jn)n∈N of
the identity in G made of a decreasing sequence of compact open subgroups of G with
a strong σ-factorization.

As Λg is compat and open in g, there exists n0 ∈ N such that the adjoint action of
Jn0

preserves Λg. Hence by l.c. Lemma 10.1 (iii), there exists N ∈ N such that for all
n greater than N, Jn0

normalizes Jn. The sequence (J ′
n) defined by J ′

n = JN+n has the
required properties.

4.3 Statement of Theorem 2

Theorem 2 Let P = MU ⊂ Q = LV two standard σ-parabolic subgroups of G. Let
K be a compact open subgroup of G having a strong σ-factorization. Let Ω be as in
Proposition 1. We may and will assume that K ⊂ Ω and that Ω is biinvariant by K. Let
J be a compact open subgroup of G such that for all ω in Ω, x−1 ∈ WG

M∅
, (xω).J ⊂ K.

We define for C > 0 and x ∈ XG
M :

NXQ
(x, P, C) := ∪y∈XG

M∅
,y≈MxyQA

+
∅ (P,Q,C)Ω.

Then there exists C > 0 such that:
(i) The union

NXQ
(P,C) := ∪x∈XG

M
NXQ

(x, P, C)

is disjoint.
(ii) The subset NXQ

(P,C) of XQ is right J-invariant. We view NXQ,J(P,C) :=
NXQ

(P,C)/J as a subset of XQ/J . The map NXQ,J(P,C) → XP/J which asso-
ciates xPaωJ to xQaωJ with x ∈ XG

M∅
, a ∈ A+

∅ (P,Q,C), ω ∈ Ω is well defined on
NXQ,J(P,C). It is denoted expXP ,XQ,J .The image by expXP ,XQ,J of NXQ,J(P,C) is equal
to NXP ,J(P,C)
(iii) The map expXP ,XQ,J is injective on NXQ,J(P,C).
(iv) As a map from a set of J-invariant subsets of XQ to a set of J-invariant subsets
of XP , expXP ,XQ,J preserves volumes.

From the definitions, one sees:
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Corollary 1 If a ∈ AL is Q-dominant and z ∈ NQ,J(P,C), one sees from the defini-
tions that az ∈ NXQ,J((P,C) and that:

expXP ,XQ,J(az) = aexpXP ,X,J(z), z ∈ NXQ,J(P,C)

First reduction for the proof of Theorem 2
We will reduce the proof of the theorem to the case where Q = G. The proof when
Q = G will be done in section 6. Let us assume that the theorem has been proved for
Q = G. Let us prove it for arbitrary Q.

We will define expXP ,XQ,J and prove part (ii) of Theorem 2. We define N ′
XQ,J

(P,C) =

expXQ,X,J(NX,J(P,C)) which is well defined for C large. Then, from (3.8), the definition
of the left AL-action (cf. Definition 2) and the definition of expXQ,X,J one has:

NXQ,J(P,C) = ALN
′
X,J(P,C).

Let y ∈ NXQ,J(P,C). By the above equality and the definition of N ′
XQ,J

(P,C), there

exist a ∈ AL and z ∈ NX,J(P,C) such that y = aexpXQ,X,J(z). Let us prove that
aexpXP ,X,J(z) does not depend on the choice of a and z as above.

Let us assume that there exists a′ ∈ AL and z′ ∈ NX,J(P,C) with y =
a′expXQ,X,J(z

′). By choosing b ∈ AL sufficiently Q-dominant we can assume that ba, ba′

are Q-dominant. As z ∈ NX,J(P,C) one may write z = xazωJ for some x ∈ XG
M∅

,

az ∈ A+
∅ (P,C), ω ∈ Ω. By abuse of notation, as it may depends on this writing, one

defines baz := xbaazωJ . One defines similarly b′a′z′. Then baz, ba′z′ ∈ NX,J(P,C).
From our hypothesis one has:

baexpXQ,X,J(x) = ba′expXQ,X,J(x
′).

From Corollary 1 of Theorem 2 for Q = G, one has:

baexpXQ,X,J(z) = expXQ,X,J(baz), ba
′expXQ,X,J(z) = expXQ,X,J(ba

′z′).

From the injectivity in (iii) for Q = G, one deduces:

baz = ba′z′.

One sees from the definition of expXP ,X,J in (ii) that:

expXP ,X,J(baz) = baexpXP ,X,J(z), expXP ,X,J(ba
′z′) = ba′expXP ,X,J(z

′).

As baz = ba′z′, one deduces from this the equality:

aexpXP ,X,J(z) = a′expXP ,X,J(z
′).

This proves our claim and it allows to define

expXP ,XQ,J(y) := aexpXP ,X,J(z).

Let y = xQaωJ ∈ NXQ,J(P,C) with x ∈ XG
M∅

, a ∈ A+
∅ (P,Q,C). By choosing b′ ∈ AL

sufficiently Q-dominant, one has a′ := b′a ∈ A+
∅ (P,C). Let b = b′−1 and y′ = xQa

′ωJ
One has y = by′ and y′ = expXQ,X,J(xa

′ωJ). Our definition of expXP ,XQ,J shows that:

expXP ,XQ,J(xQaωJ) = bxPa
′ω.J = xPaωJ.
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This achieves to prove that expXP ,XQ,J is defined by the formula given in the theorem.
This implies that the the image of NXQ,J(P,C) is clearly NXP ,J(P,C). This achieves
the proof of Theorem 2 (ii) and Corollary 1 follows.
(iii) Let y, y′ ∈ NXQ,J(P,C) with expXP ,XQ,J(y) = expXP ,XQ,J(y

′). One wants to prove
that y = y′. By multiplying y and y′ by a sufficiently Q-dominant element of AL, one
may assume that y, y′ ∈ N ′

XQ,J
(P,C). Then y = expXQ,X,J(z), y

′ = expXQ,X,J(z
′) with

z, z′ ∈ NX,J(P,C). From our definition of expXP ,XQ,J , one deduces the equality:

expXP ,X,J(z) = expXP ,X,J(z
′).

From the injectivity of expXP ,X,J one sees that z = z′, hence y = y′. This achieves to
prove (iii).
(iv) One has the equality

volXP
(axJ) = δP (a)volXP

(xJ), x ∈ XP , a ∈ AP .

Using this equality for P and Q, using Theorem 2 for Q = G and P successively equal
to P and Q, and our definition of expXP ,XQ,J one deduces (iv) for all Q.

It remains to prove (i). One has yPG = xPG if and only if x ∈ XG
M and y ∈ XM

is such that x ≈M y (cf. Lemma 1). From the ”if part” and the definition above of
expXP ,XQ,J , the image of NXQ,(x, P, C) by expXQ,XP ,J is contained in xPG. Then the
”only if part ” implies (i).

The following proposition is an easy consequence from the definition in part (ii) of
the Theorem above.

Proposition 2 With the notation of Theorem, 2, one has

expXP ,XQ,J(expXQ,X,J(xJ)) = expXP ,X,J(xJ), x ∈ NX,J(P,C)

The following assertion is an immediate corollary of the Cartan decomposition for XQ.

Let C > 0. The complementary set in XQ of the union of NXQ
(P,C) when

P describes the maximal standard σ-parabolic is a compact set modulo
the action of AL.

(4.9)

5 Eisenstein integrals and some results of Nathalie

Lagier

5.1 Eisenstein integrals

Let P = MU be a semi standard σ-parabolic subgroup of G. Let (δ, E) be a unitary
irreducible smooth representation of M . Let χ ∈ X(M)σ and let δχ = δ ⊗ χ and let us
denote by Eχ the space of δχ. Let (i

G
P δχ, i

G
PEχ) be the normalized parabolically induced

representation.
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The intertwining linear map from iGP δ̌ to (iGP δ)
ˇwhich associates to v̌ ∈ iGP δ̌

the linear form on iGP δ given by the absolutely converging integrals:

v 7→

∫
U−

〈v̌(u−), v(u−)〉du−, v ∈ iGP δ

is an isomorphism.

(5.1)

The restriction of functions to K0 determines a bijection between iGPEχ and iK0

K0∩P
E. If

v is an element of iK0

K0∩P
E, vχ will denote its unique extension to an element of iGPEχ.

Let V(δ,H) = ⊕x∈XG
M
V(δ, x,H) where V(δ, x,H) = (E ′)M∩x−1.H . (5.2)

Let η = (ηx)x∈XG
M
∈ V(δ,H). Let Jχ be the subspace of elements of iGPEχ whose support

is contained in PWG
MH which is the union of the open (P,H) double cosets in G. One

defines a linear form on Jχ by

〈ξ̃(P, δχ, η), v〉 =
∑
x∈XG

M

∫
M∩x−1.H\x−1.H

〈ηx, v(yx
−1)〉dy, v ∈ Jχ.

From [BD], Theorem 2.7, one sees that

There exists a non zero product q of functions on X(M)σ of the form
χ 7→ χ(m) − c, for some m ∈ M and c ∈ C∗, such that if q(χ) 6= 0,
ξ̃(P, δχ, η) extends to a unique H-invariant linear form on iGPEχ, denoted
by ξ(P, δχ, η). Moreover for every v element of iK0

K0∩P
E, the map χ 7→

q(χ)〈ξ(P, δχ, η, vχ〉 extends to a polynomial function on X(M)σ.

(5.3)

When ξ(P, δχ, η) is defined, one defines for v ∈ iGPEχ:

E(P, δχ, η, v)(ġ) = 〈ξ(P, δχ, η), (i
G
P δχ)(g)v〉, g ∈ G.

Now, one uses ( 9.4) which extends results of [BD] and [L] when the characteristic of F
is equal to zero to the case where this characteristic is different from 2. From (9.4), [L],
Theorem 4 (ii), [BD], Theorem 2.14 and Equation (2.33), one sees that if χ ∈ X(M)σ
is such that Re(χδ

−1/2
P ) is strictly P -dominant, ξ(P, δχ, η) is defined and one has:

E(P, δχ, η, v)(ġ) =
∑
x∈XG

M

∫
M∩x−1.H\x−1.H

〈ηx, v(yx
−1g)〉dy, g ∈ G, v ∈ iGPEχ (5.4)

the integrals being convergent.
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5.2 Some results of Nathalie Lagier

One has the following assertion which follows from [W], Theorem IV.1.1. Let P =
MU,P ′ =MU ′ be two σ-parabolic subgroups of G with Levi subgroup M .

There exists R > 0 such that if χ ∈ X(M)σ satisfies

〈Re(χ), α〉 > R, α ∈ ∆(P ) ∩∆(P ′−),

the following integrals are convergent:

(A(P ′, P, δχ)v)(g) :=

∫
U∩U ′\U ′

v(u′g)du′, v ∈ iGPEχ

Then A(P ′, P, δχ) is an intertertwining operator between iGP δχ and iGP ′δχ.

(5.5)

The following results are due to Nathalie Lagier (cf. [L], Theorem 5). We use the
notation and hypothesis of the preceding subsection.

Let P be a standard σ-parabolic subgroup of G. Let (an) be a sequence in AM
such that (an) →P ∞ i.e. such that for every root α of AM in the Lie algebra of U ,
(|α(an)|F ) tends to infinity.

Let (δ, E) be a smooth unitary irreducible representation of M and let µδ be its

central character. Let χ ∈ X(M)σ. Let us assume that the real part of χ̃ := χδ
−1/2
P is

strictly P -dominant and satisfies (5.5) for P ′ = P−. Let v ∈ iGPEχ and g ∈ G. Recall
that we have choosen XG

M ⊂ XG
M∅

such that 1̇ ∈ XG
M . Then one has:

If η ∈ V(δ, x,H) with x ∈ XG
M different from 1̇, one has:

limn→∞χ̃(a
−1
n )µδ(a

−1
n )E(P, δχ, η, v)(1̇ang) = 0.

(5.6)

and

If η ∈ V(δ, 1, H), i.e. η ∈ E ′M∩H , one has the equality of

limn→∞χ̃(a
−1
n )µδ(a

−1
n )E(P, δχ, η, v)(1̇ang)

with
〈η, (A(P−, P, δχ)v)(g)〉,

(5.7)

Let ε be the trivial representation of M∅. Let χ ∈ X(M∅)σ such that the real part

of χ̃ := χδ
−1/2
P is strictly P∅-dominant. Let η be the linear form on C corresponding

to 1 and let x ∈ XG
M . We consider the Eisenstein integrals for x−1.H\G. Then x−1

might be viewed has an element of a set XG
M for x−1.H . We view η has an element of

E ′M∩H = V(ε, 1, H) and of E ′M∩xx−1.H = V(ε, x−1, x−1.H). Let v ∈ iGP∅
χ. We denote

by Ex(P∅, η, v) the Eisenstein integral for x−1.H\G. Then one has:

E(P∅, χ, η, v)(xg) = Ex(P∅, χ, η, v)((x
−1.H)g), g ∈ G,
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as it follows easily from (5.4). Using this, it follows from [L], Theorem 6:

Let ε be the trivial representation of M∅. Let χ ∈ X(M∅)σ such that

the real part of χ̃ := χδ
−1/2
P is strictly P∅-dominant. Let P = MU be a

standard σ-parabolic subgroup of G. Let (an) be a sequence in AM such
that (an) →P ∞.
Let η be the linear form on C corresponding to 1. Let x ∈ XG

M . We view η
as an element of V(ε, 1, H). For v ∈ V := iGPCχ, let Ev := E(P∅, χ, ηx, v).
Then the sequence (χ̃(a−1

n )Ev(xan)) has a limit. If x /∈ 1̇P this limit is
equal to zero. Moerover if x = 1̇, one has:

lim
n→∞

(χ̃(a−1
n )Ev(1̇an) = l(v), v ∈ V

where l is a non zero linear form on V .

(5.8)

Actually l is explicit but what is important for us here is that it is non zero.

5.3 Applications of the results of N. Lagier

Lemma 7 Let P =MU be a standard σ-parabolic subgroup of G. Let (an) be a sequence
in AM such that (an) →P ∞. If (gn) is a sequence in G converging to g ∈ G and such
that for all n ∈ N, 1̇angn = 1̇an, then g is an element of HP = U−(M ∩H).

Proof :

One applies (5.7). We use the notation of this result. If J is a compact open subroup
of G, for n large enough gnJ = gJ . Hence, if v ∈ iGPEχ,

E(P, δχ, η, v)(1̇angn) = E(P, δχ, η, v)(1̇ang),

for n large enough.
First, let δ be the trivial representation of M . One applies (5.7) to v and (iGPχ(g))v

in order to deduce from the preceding equality

(A(P−, P, χ)v)(g) = (A(P−, P, χ)v)(1), v ∈ iGPCχ

for χ sufficiently P -dominant. If χ is such that A(P−, P, χ) is bijective, one deduces
the following equality:

v(g) = v(1), v ∈ iGP−Cχ. (5.9)

Let us show that this implies g ∈ U−M . Let us write g = p−k with k ∈ K0 and
p− ∈ P− . If k /∈ K0 ∩ P

−, there exists v ∈ iGPCχ such that v(k) = 0 and v(1) = 1, as
the space of restrictions to K0 of the elements of iGP−Cχ is equal to iK0

K0∩P−C. This is a
contradiction to (5.9). Hence g = u−m with u− ∈ U− and m ∈M .
Then applying (5.7) to any (δ, E, η), we get similarly the equality:

< δ′(m)η, e >=< η, e >, e ∈ E.

The abstract Plancherel formula (cf. [Ber], section 0.2) for H ∩ M\M implies m ∈
M ∩H .
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Lemma 8 Let P = MU,P ′ = M ′U ′ be two standard σ-parabolic subgroups of G. Let
(an) (resp., (a′n)) be a sequence in AM (resp. AM ′) such that (an) →P ∞ ( resp.
(a′n) →P ′ ∞). Let J be a compact open subgroup of G. Let us assume that there exists
g, g′ ∈ G such that for all n ∈ N, 1̇angJ = 1̇a′ng

′J . Then, taking possibly subsequences,
one has:
(i) for all χ such that the real part of χ̃ := χδ

−1/2
P is strictly P∅-dominant χ̃(a−1

n a′n) has
a non zero limit.
(ii) The sequence (a−1

n a′n) is bounded.
(iii) One has P = P ′.
(iv) If Q is a σ-parabolic subgroup of G such that P ⊂ Q, one has 1̇QangJ = 1̇Qa

′
ng

′J
for n large.

Proof :

(i) For all n ∈ N, there exists jn ∈ J such that

1̇ang = 1̇a′ng
′jn. (5.10)

As J is compact, one may take a subsequence and we may assume that (jn) converges
to j ∈ J . Let g′′ = g′jg−1. One will apply the result (5.8). With its notations, let
v ∈ iGP∅

Cχ and let us denote by Ev the function E(P∅, χ, η, v). As Ev is right invariant

by an open compact subgroup of G, one has Ev(1̇a
′
ng

′jng
−1) = Ev(1̇a

′
ng

′′) for n large.
From (5.8), one has:

limnχ̃(a
−1
n )Ev(1̇an) = l(v), limnχ̃(a

′
n
−1
)Ev(1̇a

′
ng

′jng
−1) = l′(v) (5.11)

where l, l′ are non zero linear forms on iGP∅
Eχ. Also from (5.10) one has:

1̇an = 1̇a′ng
′jng

−1 (5.12)

Let us show that there exists v1 ∈ V = iGP∅
Cχ such that l(v1) and l

′(v1) are non zero.
Let v ∈ V such that l(v) 6= 0. Then l does not vanish on v + Ker(l). If l′ vanished
identically on v+Ker(l) it would vanish on V , a contradiction which shows that l′ does
not vanish identically on v +Ker(l). This proves our claim.

For such a v1, one sees from (5.11) and (5.12) that:

The sequence (χ̃(ana
′
n
−1)) tends to a non zero limit. (5.13)

This proves (i).
(ii) By varying χ such that χ = Reχ and such that Reχ describes a basis of a∗∅ one gets
(ii).
(iii) If P is different from P ′, by exchanging possibly the role of P and P ′, there exists
a simple root α of A∅ in the Lie algebra of U which is not a root in the Lie algebra of
U ′, hence which is a root in the Lie algebra ofM ′. Then |α(a′n)|F = 1 and |α(ana

′
n
−1)|F

is unbounded. This would contradict (ii). Hence P = P ′ and (iii) is proved.
(iv) From (ii), one writes a′n = anbn where the sequence (bn) in AM is bounded. Taking
a subsequence we can assume that (bn) converges to b ∈ AM .
Taking into account (5.10), one has 1̇an = 1̇ancn where cn = bng

′jng
−1. One deduces
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from Lemma 7 that the limit c of (cn) is in HP . One has a′ng
′J = ancngJ . Hence for n

large one has:
1̇Pa

′
ng

′J = 1̇PancngJ = 1̇PancgJ

As c ∈ HP and as an ∈ AM normalize HP , one deduces that, for n large:

1̇Pa
′
ng

′J = 1̇PangJ.

This proves (iv) for Q = P .
Let g, g′ ∈ G. In view of Theorem 1, applied to the right transtlates of f by g, g′,

there exists N ∈ N such that for all n ∈ N greater than N and for all f ∈ C∞(HQ\G)
which is J-invariant (cP,Qf)(1̇Pang) = f(1̇Qang) and (cP,Qf)(1̇Pa

′
ng

′) = f(1̇Qa
′
ng

′). Let
f be the characteristic function of 1̇QangJ ⊂ XQ. Let n be an integer greater than N
and let x = ang, x

′ = a′ng
′. From the above remark, one has:

(cP,Qf)(1̇Px) = f(1̇Qx) = 1,

(cP,Qf)(1̇Px
′) = f(1̇Qx

′).

From (iv) for Q = P , one has 1̇Px
′J = 1̇PxJ . By J-invariance, this implies:

(cP,Qf)(1̇Px
′) = (cP,Qf)(1̇Px).

Hence, one has
f(1̇Qx

′) = 1

and x′ ∈ 1̇QxJ . This implies 1̇QxJ = 1̇Qx
′J .

Lemma 9 Let P = MU,P ′ = M ′U ′ be two standard σ-parabolic subgroups of G. Let
(an) (resp., (a′n)) be a sequence in AM (resp., AM ′) such that (an) →P ∞ (resp.,
(a′n) →P ′ ∞). Let g, g′ ∈ G and x, y ∈ XG

M∅
. Let us assume that the sequences (xangJ)

and (ya′ng
′J) are equal. Then one has P = P ′, xP = yP and y = xm for some m ∈M .

Proof :

Let χ ∈ X(M∅)σ such that χ = |χ| and such that Re(χ̃) is strictly P∅-dominant. By
exchanging possibly the role of x and y, and by taking a subsequence, one may assume
that χ̃(an) ≥ χ̃(a′n). Changing H into x−1.H , one is reduced to the case where x = 1̇.
Using the notation and the result of (5.8), one sees that there exists a non zero linear
form l on Vχ := iGP∅

Cχ such that for all v ∈ Vχ, one has:

limnχ̃(an)
−1Ev(1̇ang) = l(v). (5.14)

Let v ∈ Vχ such that l(v) 6= 0. One chooses jn ∈ J such that 1̇ang = ya′ng
′jn. By

extracting a subsequence, one may assume that (jn) converges to j ∈ J . One has:

Ev(1̇ang) = Ev(ya
′
ng

′j) for n large (5.15)

and χ̃(an) ≥ χ̃(a′n). Let us assume y /∈ 1̇P ′. Then from (5.8)

limnχ̃(a
′
n)

−1Ev(ya
′
ng

′j) = 0.
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Together with (5.15) this contradicts (5.14). Hence y ∈ 1̇P ′ which implies (cf. (3.3))
y = 1̇m′ for some m′ ∈ M ′. This implies the equality ya′ng

′ = 1̇a′nm
′g′ as a′n ∈ AM ′.

Hence one has 1̇angJ = 1̇a′nm
′g′J . Using Lemma 8, one sees that P = P ′. Hence

M =M ′ and the lemma follows.

6 End of proof of Theorem 2

6.1 Definition of expXP ,X,J

We have to deal only with the case Q = G i.e. XQ = X . If it does not exist a
constant C > 0 satisfying (i) of Theorem 2 for Q = G, there would exist x, y ∈ XG

M∅
,

and sequences (an), (a
′
n) ∈ A∅, (ωn), (ω

′
n) ∈ Ω such that xP 6= yP , (|α(an)|F) tends to

infinity for all roots α of A∅ in the Lie algebra of U and such that:

xanωnJ = ya′nω
′
nJ, n ∈ N.

By extracting subsequences, one may assume that ωn (resp., ω′
n) converges to ω (resp.

ω′). Let Q = LV be the standard σ-parabolic subgroup of G such that for α ∈ ∆(P∅),
the sequence (|α(an)|F) is unbouded if and only if α ∈ ∆(Q,A∅). Clearly one has
Q ⊂ P .

By extracting subsequences, one will show that one can write an = bncn where the
sequence (bn) in AL satisfies (bn) →Q ∞ and where the sequence (cn) converges in G.
Let (δ1, . . . , δp) be the union of ∆(Q,A∅) viewed as subset of a′∅ and of a basis of a′G
viewed as a subset of a′∅ (cf. (2.9)). Let us look to the map φ : A∅ → Rp given by
a 7→ (δ1(H∅(a)), . . . , δp(H∅(a)). Its image is a lattice of dimension p as the image a∅,F of
A∅ by H∅ is a lattice of dimension equal to the dimension of a∅. Its restriction to AL has
the same property as it factors through HL and (δ1, . . . , δp) might be viewed as a basis
of a′L. Hence φ(AL) is of finite index in φ(A∅). Hence one can find x1, . . . , xq ∈ A∅ such
that for all a ∈ A∅ there exists b ∈ AL and i ∈ {1, . . . , q} such that φ(a) = φ(bxi). This
allows to define bn and cn = an(bn)

−1. One has cn = xin for some in ∈ {1, . . . , q}. Then
extracting a subsequence one may even assume that (cn) is constant hence it converges.
Moreover as φ(bn) = φ(an)− φ(xin) one has (bn) →Q ∞

Hence, for n large, xanωnJ = xbncωJ where c is the limit of (cn) . We introduce
similarly Q′, b′n and c′n. From Lemma 9 applied to G one deduces Q′ = Q and HxQ =
HyQ. Hence, as Q ⊂ P , one has xP = yP . A contradiction which shows that there
exists C > 0 which satisfies (i). It is clear that any constant greater than such a
constant enjoys the same property.
Let us assume that there is no constant satisfying (i) which satisfies also (ii). Proceeding
as above, there would exist sequences (bn) in AL , (b′n) in AL, c, c

′ ∈ G, two standard
σ-parabolic subgroups Q = LV,Q′ = L′V ′ ⊂ P of G and x, y ∈ WG

M∅
such that,

(bn) →Q ∞, (b′n) →Q′ ∞, and

xbncJ = yb′ncJ.

xP bncJ 6= yP b
′
ncJ.

(6.1)
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From Lemma 9, one sees that Q = Q′ and x ≈L y. In particular y = xl for some l ∈ L
and, as l commutes to the elements b′n of AL, one has:

xbncJ = xb′nlc
′J.

Conjugating x−1, one gets an equality of left x−1.H cosets. From Lemma 8 (i), applied
to x−1.H instead of H , one deduces that (b′nbn

−1) is bounded. Hence, by taking a
subsequence one can assume that it has a limit. Then from Lemma 8 (iii) one gets for
n large:

(x−1.H)P bncJ = (x−1.H)P b
′
nlc

′J.

Hence there exists a sequence in J , (jn) such that

(x−1.H)P bncjn = (x−1.H)P b
′
nlc

′.

Hence bncjnc
′−1l−1b′n ∈ (x−1.H)P . As the stabilizer of xP is equal to (x−1.H)P , one

deduces from this the equality:

xP bncjn = xP b
′
nlc

As x = yl and l ∈ L ⊂ M , one has xP = yP l. As l ∈ L commutes to b′n ∈ AL, one
deduces from this the equality

xP bncJ = yP b
′
nc

′J,

for n large. This contradicts our hypothesis (6.1). Hence there exists C > 0 which
satisfies (i) and (ii).

6.2 Injectivity of expXP ,X,J

Let us prove that one can choose C > 0 such that expXP ,X is injective on NXQ,J(P,C).
Let us assume that every constant C > 0 satisfying conditions (i), (ii) of Theorem
2 does not satisfy condition (iii). From the finiteness of XG

M∅
and proceeding as in

section 6.1, one sees that there would exist x, x′ ∈ XG
M∅

, two σ-parabolic subgroups
Q = LV,Q′ = L′V ′ ⊂ P of G, a sequence (an) in AL, a sequence (a′n) in AL′ such that
(an) →Q ∞, (a′n) →Q′ ∞ and two elements d and d′ of A∅Ω such that:

xandJ 6= x′a′nd
′J

and
xPandJ = x′Pa

′
nd

′J.

Let fn be the characteristic function of xandJ . For n0 large enough one can use Theorem
1 (iv) for the right translates of fn0

by d and d′ and one has, by setting a = an0
, f = fn0

,
etc.:

f(xad) = (cP,Gf)(xPad), f(x
′a′d′) = (cP,Gf)(x

′
Pa

′d′)

But, by our assumptions f(xad) = 1 and xPadJ = x′Pa
′d′J . Hence, by J invariance,

one has:
f(x′a′d′) = 1
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which implies
xadJ = x′a′d′J.

This is a contradiction to our hypothesis. This achieves to prove that there exists a
constant C > 0 such that the properties (i), (ii) and (iii) of Theorem 2 are satisfied.

6.3 Volumes

The following lemma will allow to finish the proof of Theorem 2.

Lemma 10 Let K be a compact open subgroup of G with a strong σ-factorization for
standard σ-parabolic subgroups (cf. (4.8)). Let P = MU be a standard σ-parabolic
subgroup of G. Let a ∈ A∅ which is P∅-dominant. Then
(i)

HaK = HaKMKU .

where KM = K ∩M,KU = K ∩ U .
(ii)

volX 1̇aK = volXP
1̇PaK.

Proof :

(i) As KM∅
KU∅

= K ∩ P∅ and KMKU = K ∩ P , it is enough to prove (i) when P = P∅.
Let us assume this in the sequel. If u− ∈ KU−, as a is P∅-dominant, one has a.u− =
au−a−1 ∈ KU− ⊂ K = KHKMKU (cf. (4.8) (ii) and (iii)). Hence one has:

Hau− = H(a.u−)a ∈ HKMKUa.

But KMKUa = a(a−1.KM)(a−1.KU). As M =M∅ and a ∈ A∅, a
−1.KM = KM . As a is

P∅-dominant a−1.KU ⊂ KU (cf. (4.8) (ii)). Altogether, this shows:

HaKU− ⊂ HaKMKU

One deduces (i) from the equality K = KU−KMKU .
Let us prove (ii). Let P be a standard σ-parabolic subgroup of G. As U− ⊂ HP and
K = KU−KMKU , and a.KU− ⊂ U−, (cf. (4.8) (ii) ) one has:

1̇PaK = 1̇PaKMKU .

Then (ii) follows from (i), from the fact that aKMKU ⊂ P and from our choice of
measure on XP (cf. section 4.1).

End of proof of Theorem 2
Let K and J as in the theorem. The proof of (iv) reduces to prove the statement for
subsets of N(x, P, C)/J for x ∈ XG

M . Using our choices of volumes and translating sets
on the left by x−1 and changing H in x−1.H , one is reduced to the case x = 1. For K
and J as in the theorem, we have:

ω.J ⊂ K,ω ∈ Ω.
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Let ω ∈ Ω and one sets J ′ := ω.J ⊂ K. As Ω is compact and is left K-invariant, Ω/J
is finite and J ′ varies in a finite set. Let us assume that C > 0 satisfies Theorem 2 (i),
(ii) and (iii) for all groups J ′ . One has to prove that for a ∈ A+

∅ (P,C):

volX(1̇aωJ) = volXP
(1̇PaωJ).

As the measures on X and XP are right invariant by G, in order to prove this equality,
it is enough to prove the equality:

volX(1̇aJ
′) = volXP

(1̇PaJ
′).

Let Ka (resp., K ′
a) be the stabilizer in K of 1̇a (resp., 1̇Pa). We need the following

fact. Let K1 be a closed subgroup of K. Let us assume that a Haar measure is given
on K and let K1\K be endowed with the image of this measure. Let X ⊂ K and Y its
image in K1\K . Then volK1\K(Y ) = volK(K1X). From this applied to K1 = Ka and
K1 = K ′

a and from Lemma 10 (ii), it is enough to prove the equality:

KaJ
′ = K ′

aJ
′.

The image of the set 1̇aK ′
aJ

′ by the map expXP ,X,J ′ is equal 1̇PaJ
′, as it follows from

the definition in Theorem 2 and the equality 1̇PaK
′
aJ

′ = 1̇PaJ
′. From the definition of

expXP ,X,J ′, this image is also equal to the image of 1̇aJ ′. Hence from the part (iii) of
Theorem 2, one deduces the equality:

1̇aJ ′ = 1̇aK ′
aJ

′

Looking to the orbit of 1̇a under K one deduces from this the inclusion:

K ′
aJ

′ ⊂ KaJ
′.

We recall that K ⊂ Ω. To prove the reverse inclusion let us remark that 1̇aKaJ
′ is

equal to 1̇aJ ′. From the definition of expXP ,X,J ′ one deduces the equality:

1̇PaKaJ
′ = 1̇PaJ

′

which implies as above:
KaJ

′ ⊂ K ′
aJ

′.

This implies the required equality. This finishes the proof of of the theorem.

7 Bernstein maps and Scattering Theorem

7.1 Constant term and exp-mappings

The following proposition is an immediate corollary of Theorems 1 and 2.
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Proposition 3 Let P ⊂ Q be two standard σ-parabolic subgroups of G. Let J be
a compact open subgroup of G small enough to satisfy the conditions of Theorem 2.
There exists C > 0 such that expXP ,XQ,J is well defined on NXQ,J(P,C) and satisfies
for all J-invariant function f on XQ:

(cP,Qf)(expP,Q,J(xJ)) = f(xJ), xJ ∈ NXQ,J(P,C).

.

Remark 2 In [SV], for G-split andX spherical, the exp-mappings are introduced before
the maps cP,Q, by means of wonderful compactifications, and the maps cP,Q are defined
by the relation above.

7.2 Bernstein maps eQ,P

We thank Joseph Bernstein for having suggested to us the proof of the following The-
orem.

Theorem 3 Let P = MU ⊂ Q = LV two standard σ-parabolic subgroups of G. The
right G-invariant measure on XP allows to identify C∞

c (XP ) to a subspace of the dual
of C∞(XP ). Let eQ,P be the restriction of the transpose map of cP,Q to C∞

c (XP ).
Let J and let C > 0 be as in Theorem 2 .
(i) Let xJ ∈ NXQ,J(P,C) and y = expXP ,XQ,J(xJ). Then the image by eQ,P of the
characteristic function of yJ ⊂ XP is the characteristic function of xJ ⊂ XQ.
(ii) For f ∈ C∞

c (XP ) supported in expXP ,XQ,J(NXQ,J(P,C)), eQ,Pf has its support in
NXQ,J(P,C) and

(eQ,Pf)(xJ)) = f(expXP ,XQ
(xJ)), xJ ∈ NXQ,J(P,C).

(iii) The map eQ,P has its image in C∞
c (XQ)

J .

Proof :

(i) We fix a compact open subgroup J and C as in the preceding proposition from which
we use the notations. Let xJ ∈ NXQ,J(P,C) ⊂ XQ/J . Let f be the characteristic
function of expXP ,XQ,J(xJ) which is a J-invariant function on XP . Let g ∈ C∞(XQ).
One has

〈eQ,Pf, g〉 = 〈f, cP,Qg〉

and by the preceding proposition one sees:

〈eQ,Pf, g〉 = g(xJ).

This implies that eQ,Pf is the characteristic function of xJ . This proves (i).
(ii) follows by linear combinations.
(iii) Let a ∈ AM be strictly P -dominant. Let y ∈ XP . From the Cartan decomposition
for XP one sees that for n large, any is of the form any = expXP ,XQ,J(xnJ) ∈ XP/J for
some xnJ ∈ NXQ,J(P,C) ⊂ XQ/J .
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For n ∈ Z, let fn be the characteristic function of anyJ ⊂ XP . One has just seen
that for n large in N, eQ,P (fn) is in C

∞
c (X)J . Let us assume that it is not true for all

n ∈ N. Then there would exists N ∈ N such that eQ,P (fn) ∈ C∞
c (X)J for n > N and

such that eQ,P (fN) /∈ C∞
c (X)J .

We want to apply Theorem A of [AAG] in order to prove that the C∞
c (G)J-module

C∞
c (XP )

J is finitely generated. For this it is necessary to see that one may apply it to
each homogeneous space xPG which is isomorphic to U−(M∩x−1.H)\G. The first thing
to prove is that for each parabolic subgroup R of G, the number of (U−(M∩x−1.H), R)-
double cosets is finite. By using conjugacy, one can assume that R contains A0. By the
Bruhat decomposition, one has G = ∪iPxiR, where (xi) is a finite family of elements
of G normalizing A0. It is enough, to prove our claim, to show that for each i, Ri :=
(xi.R)∩M has a finite number of orbits in the symmetric space (M ∩ x−1.H)\M . But
Ri is a parabolic subgroup of L and our claim follows from [HW], Corollary 6.16.

The second thing to prove, in order to apply Theorem A of [AAG] is that :

For each finite length smooth G-module V , the dimension of the space
V ′U−(M∩x−1.H) is finite.

(7.1)

But this dimension is precisely the dimension of j(V )′M∩x−1.H) where j(V ) is the Jacquet
module of V with respect to P−. This space is finite dimensional (cf. [D], Theorem
4.4.)

Now, one can apply Theorem A of [AAG] to conclude that the C∞
c (G)J-module

C∞
c (XP )

J is finitely generated. Moreover the algebra C∞
c (G)J is Noetherian (cf. [R]

Corollary of Theorem VI.10.4).
Hence, it follows that an ascending chain of C∞

c (G)J-submodules of C∞
c (XP )

J is sta-
tionnary.
We apply this to the C∞

c (G)J -submodules of C∞
c (XP )

J , Mn, generated by f0, . . . f−n.
Hence there exists n ∈ N and φ0, . . . φn ∈ C∞

c (G)J such that:

f−n−1 = f0 ∗ φ0 + . . .+ f−n ∗ φn

Using that the right G-action and the left AM -action commute (cf. Definition 2)
and applying the left action of an+1+N to the above identity, one gets:

fN = fn+1+N ∗ φ0 + . . .+ f1+N ∗ φn

From Theorem 1, cP,Q is a morphism of G-modules. Hence it is also the case for eQ,P .
Hence eQ,P (fN ) is in C

∞
c (XQ)

J . From the definition of N , we get a contradiction. Hence
in particular, eQ,Pf is in C∞

c (XQ)
J . The theorem follows by linearity.

Let (π, V ) be a smooth representation of a parabolic subgroup P = MU of G. One
denotes by (πP , VP ) the tensor product of the quotient of V by the M-submodule
generated by the π(u)v − v, u ∈ U, v ∈ V , with the representation of M on C given by

δ
−1/2
P . We call it the normalized Jacquet module of V along P . We denote the natural
projection map from V to VP by jP and sometimes πP will be denoted jP (π).
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Lemma 11 Let P be a semistandard σ-parabolic subgroup of G.
(i)If f ∈ C∞

c (X) has its support in XMP we define, using (4.5), fP ∈ C∞(XM) by

fP (xm) = δ
1/2
P (m)

∫
U

f(ẋmu)du, x ∈ XG
M , m ∈M

Then fP ∈ C∞
c (XM).

(ii) The map f 7→ fP goes through the quotient to an intertwining map between the
normalized Jacquet module C∞

c (XMP )P of the P -module C∞
c (XMP ) and C

∞
c (XM).

(iii) This intertwining map is bijective and its inverse define an intertwining injective
map mX

P : C∞
c (XM) → C∞

c (X)P .
(iv) One can replace X by XP in (i), (ii) and (iii) and one gets an injective intertwining
map mP : C∞

c (XM) → C∞
c (XP )P

Proof :

(i) follows easily from the definition.
(ii) It is clear that our map goes through the quotient to a map between the normalized
Jacquet module C∞

c (XMP )P of the P -module C∞
c (XMP ). On the other hand, for

f ∈ C∞
c (XMP ) one has:

(ρ(m0)f)
P (xm) = δ

1/2
P (m)

∫
U

f(xmm0m
−1
0 um0)du

One makes the change of variable u′ = m−1
0 um0 to achieve to prove the intertwining

property of (ii).
As an U -space, XMP is isomorphic to XM×U where U acts trivially on the first factor.
This implies easily (iii).
(iv) is proved similarly.

Proposition 4 We denote by jP (eP ) the map between the normalized Jacquet modules
C∞
c (XP )P and C∞

c (X)P determined by eP := eG,P . Then

jP (eP ) ◦mP = mX
P .

Proof :

One has to prove;
jP (eP )(mP (f)) = mX

P (f) (7.2)

for all f ∈ C∞
c (xM) and x ∈ XG

M . Changing H to x−1.H , one is reduced to prove (7.2)
for x = 1. One writes the Cartan decomposition for M ∩H\M :

M ∩H\M = ∪x∈XM
M∅

xA+
∅ (P∅, P, 0)ΩM ,

where ΩM is a compact set of M and XM
M∅

is the analog of XG
M∅

. The M-module

of compactly supported smooth functions on 1̇M is the linear span the characteristic
functions of 1̇xaωJ where J describes a basis of neighborhood of 1 in M made of
compact open subgroup of M , x ∈ XM

M∅
, ω ∈ ΩM , a ∈ A+

∅ (P∅, P, 0) . As mP , m
X
P , eP
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are M-equivariant, one has to prove (7.2) for every f among a set of generators of this
M-module Again we reduce to x = 1. Taking into account (3.8), one can write a = a′b
with a′ ∈ A+

∅ . and b ∈ AM . As b commutes to J , one is reduced to prove (7.2) for the

characteristic functions of 1̇aωJ , with a ∈ A+
∅ and ω ∈ ΩM .

As ωJ = ωJω−1ω, the characteristic functions of 1̇aJ ′ where J ′ describes the set of
ω.J for J as above, a ∈ A+

∅ , ω ∈ ΩM is a set of generators of C∞
c (1̇M).

Let (J ′
n) be as in Lemma 6. By continuity and compacity, there exists a neighbor-

hood Vof 1 in M such that:
ω.V ⊂ (J ′

0)M , ω ∈ ΩM

One can assume that all the groups J above are contained in V. Hence all the groups
J ′ are contained in (J ′

0)M . For such a group, let n ∈ N such that (J ′
n)M ⊂ J ′. Then

as J ′ is the disjoint union of the left (J ′
n)M -cosets, the characteristic function of 1̇aJ ′

is a linear combination of the characteristic functions of 1̇aj′(J ′
n)M where j′ describes

J ′. But as J ′
n is normal in J ′

0 ( cf. Lemma 6 ) and J ′ ⊂ (J ′
0)M , (J ′

n)M is normal in J ′.
Hence 1̇aj′J ′

n = 1̇aJ ′
nj

′. Hence, again by M-equivariance, one has to prove (7.2) for f
equal to the characteristic function of 1̇a(J ′

n)M , n ∈ N, a ∈ A+
∅ .

For simplicity we write J instead of J ′
n and let g = vol(JU)δP (a)

1/211̇aJM and let
f = 11̇P aJMJU

∈ Cc∞(XP ). Then f
P = g. Then, by definition of mP , one has:

mP (g) = jP (f)

where jP (f) is the image of f in the normalized Jacquet module of C∞
c (XP ). Similarly

the characteristic function h of 1̇aJMJU satisfies hP = g. Hence one has:

mX
P (g) = jP (h)

and
(jP (eP ))(mP (g)) = jP (eP (f)).

It remains to prove:
(jP (eP ))(mP (g)) = mX

P (g)

i.e.
(jP (eP ))(jP (f)) = jP (h)

For this, it is enough to prove:
eP (f) = h.

One has
1̇aJMJU = 1̇aJ

from Lemma 10. As JU− is normalized by a ∈ A+
∅ (cf. Lemma 6), one has

1̇PaJMJU = 1̇PaJ

Then the required equality follows from Theorem 3 (i).
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7.3 Discrete spectrum

An irreducible subrepresentation of C∞(X), (π, V ), is said discrete if the action of AG is
unitary and the elements of V are square integrable mod AG. Obviously if ψ is element
of the group X(G)σ,u of unitary elements of X(G)σ, the representation πψ of G in the
space Vψ := {ψv|v ∈ V } is a also a discrete series. Moreover πψ is isomorphic to π⊗ψ.
Let χ be a unitary character of AG and let L2(X,χ)disc the sum of all X-discrete series
on which AG acts by χ.

Theorem 4 Let J be a compact open subgroup of G and χ a unitary character of AG.
Then the space L2(X,χ)Jdisc of J-invariants of L

2(X,χ)disc is finite dimensional.

Proof :

One will see that the proof of Theorem 9.2.1 of [SV] adapts by changing Z(G)0 to AG,
and, for a standard σ-parabolic subgroup P = MU of G by changing Z(XP ) to AM
acting on the left. .

Let A+
P be the set of P -dominant elements of AP . Let N ′

P be equal to NX,J(P,C)
for C > 0 large enough in such a way that the exp-maps are defined and such that
the identity of Proposition 3 holds. Let NP = N ′

P \Q⊂P,Q∈P,Q 6=P N
′
Q. Then the NP

covers X . We remark that expXP ,X,J(N
′
P ) is stable by the left action of A+

P as well as
N ′′
P := expXP ,X,J(NP ). One sees from the definitions that there is a finite subset ΩP

of XP/J , such that N ′′
P = A+

PΩP . Let (Â)JM
C

be the set of complex characters of AM
which are trivial on AM ∩ J . Let P be the set of standard σ-parabolic subgroups of
G. We choose a map R : P → N, P 7→ rP and we define SR :=

∏
P∈P((Â)

JM
C

)rP . An
element of x ∈ SR is denoted [(χi)i=1,...,rP ]P∈P . We consider for a ∈ AM ,

∏
i=1,...,rP

(La − χi(a)) (7.3)

Let x ∈ SR. We consider the subspace Vx ⊂ C∞(X)J of J-invariant functions on X , f ,
such that for all standard σ-parabolic subgroup P of G and a ∈ AM , cP,Gf is annihilated
by (7.3). Then Vx is invariant by the Hecke algebra of C∞

c functions on G which are
right and left invariant by G: this is due to the fact that cP,G is a G-morphism and that
the right action of G on C∞(XP ) commutes with the left action of AP .

Recall that from our hypothesis on C that:

(cP,Gf)(expXP ,X,J(x) = f(x), x ∈ NP .

Then Vx is finite dimensional, as it is shown in the proof of Theorem 9.2.1 of [SV]. The
rest of the proof is entirely analogous to the proof of this Theorem.

Corollary 1 Let J be a compact open subgroup of G. There exists finetely many dis-
crete series for X, (πi, Vi), i = 1, . . . , n such that any discrete series, (π, V ) for X is of
the form (πi)χ where χ is element of the group X(G)σ,u of unitary elements of X(G)σ
and i ∈ {1, . . . , n}.
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Proof :

Looking to Lie algebras one sees that restriction map from the group X(G)σ,u of unitary
elements of X(G)σ to the group X(AG)u of unitary elements of X(AG) is surjective.
On the other hand the action by multiplication of X(AG)u on (ÂG)

J
u has finitely many

orbits (cf. 2.6). Hence one is reduced to the case where the restriction of the central
character of π is one of the representatives of these orbits. Then the corollary follows
immediately from the Theorem.
The proof of the following Lemma is immediate.

Lemma 12 Let δP,XG
M

be the function on XM such that, for all x ∈ WG
M , its restriction

to xM is equal to the function δP,x occuring in (4.6). For a function f on XP we
associate the map T (f) on G with values in the space of functions on XM defined by:

(T (f)(g))(x) = δ
−1/2

P,WG
M

(x)f(xg), x ∈ XM , g ∈ G

(i) One has

T (f)(mg) = (ρ⊗ δ
1/2
P )(m)f(g), m ∈M, g ∈ G.

(ii) The map T induces a bijective G-intertwining map between C∞
c (XP ) and

iGP−C∞
c (XM) (resp., C∞(XP ) and i

G
P−C∞(XM)).

(iii) Let χ be a unitary character of AM . The map T induces a bijective isometric
G-intertwining map between L2(XP ) and the unitarily induced representation from P−

to G of L2(XM) ( resp., L2(XP , χ)disc and the unitarily induced representation from P−

to G of L2(XM , χ)disc).

Proof :

(i) is immediate.
(ii) From (i), it remains only to prove the bijectivity. The inverse map to T is easily
described using the fact that XP = XM ×P− G.
(iii) follows easily from the definition of the scalar product on unitary induced repre-
sentations from P to G (cf. (5.1)) and from the definition of the M-invariant measure
on XM (cf. (4.6) and (4.3)).

Lemma 13 L2(XP )disc is unitarily equivalent to the unitary induced representation
from P− to G of (L2(XM)disc)

Proof :

The Lemma follows from the analog of Corollary 9.3.4 in [SV] and of of Lemma 12 (iii).
Notice that this Corollary follows from l.c. Equation (9.1). To establish its analog, one
remarks that AM acts freely on the left on XP .

Lemma 14 The G-space XP satisfies the discrete series conjecture 9.4.6 of [SV] for
the parabolic subgroup P− and the torus of unitary unramified characters of P−, D∗ :=
X(M)σ,u.
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Proof :

From Corollary 1 of Theorem 4, there is a denumerable family of X(M)σ,u-orbits of
discrete series. Then the Lemma follows from Lemma 13.

7.4 Bernstein maps

The proof of the following theorem is entirely analogous to the proof of Theorem 11.1.2
in [SV].

Theorem 5 For every pair of standard σ-parabolic subgroups of G, P ⊂ Q, there exists
a canonical G-equivariant map iP,Q : L2(XP ) → L2(XQ) characterized by the property
that for any Ψ ∈ C∞

c (XP ) and any a element of the set A++
P of strictly P -dominant

elements of AP , we have:

limn→∞(iQ,PLanΨ− eQ,PLanΨ) = 0

where the limit is in L2(XQ).

Then as a corollary of Theorem 5 and of the analog of Proposition 11.6.1 of [SV],
one has the following analog of l.c Corollary 11.6.2. The proof requires the criteria for
discrete series of symmetric spaces due to Kato and Takano [KT2]:

Proposition 5 Let L2(X)P the image of L2(XP )disc under iP := iG,P . Then one has:

L2(X) =
∑
P∈Pst

L2(X)P .

7.5 Scattering theory

From Lemma 14, one proves the analogous of Proposition 13.2.1 in [SV] in which we use
AM and AL instead of AX,Θ and AX,Ω and where P = MU , Q = LV are σ-parabolic
subgroups of G. This is a step for the analogous of Proposition 13.3.1 in l.c. . We will
only recall part (2) of it.

Proposition 6 Let P =MU,Q = LV two standard σ-parabolic subgroups of G. If the
dimensions of AM and AL are distinct, L2(X)P is orthogonal to L2(X)Q.

Let ΘP (resp., ΘQ) be the set of elements of Σ(P∅) which are trivial on AM (resp.
AL). We define W (P,Q) as the set of elements of w ∈ W (A∅) such that w(ΘP ) =
ΘQ. In particular if w ∈ W (AM , AL), it induces an isomorphism between AM and
AL. If W (P,Q) is non trivial we say that P and Q are σ-associated. Let c(P ) =∑

Q∈P CardW (P,Q).
The proof of the anolog of l.c. Theorem 14.3.1 (Tiling property of scattering mor-

phisms) is entirely similar. Then one proves the following theorem like Theorem 7.3.1
of l.c. is proved in section 14 of l.c.. Notice that one needs for this proof to establish
part of this Theorem for spaces XP , but this works like for X . We recall that iP is the
map iG,P .
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Theorem 6 (Scattering Theorem) Let P = MU , Q = LV , R three standard σ-
parabolic subgroups of G.
(i) If P and Q are not σ-associated, (iQ)

t ◦ iP = 0.
(ii) If P and Q are σ-associated, there exist AM ×G-equivariant isometries

Sw : L2(XP ) → L2(XQ), w ∈ W (P,Q)

where AM acts on L2(XQ) via the isomorphism AM → AL induced by w, with the
following properties:

iQ ◦ Sw = iP ,

Sw′ ◦ Sw = Sw′w, w ∈ W (P,Q), w′ ∈ W (Q,R),

(iQ)
t ◦ iP =

∑
w∈W (P,Q)

Sw.

Let us denote by (iP )
t
disc the composition of (iP )

t with the orthogonal projection to the
discrete spectrum. Finally the map

∑
P∈P

(iP )
t
disc

c(P )1/2
: L2(X) → ⊕P∈PL

2(XP )disc

is an isometric isomorphism onto the subspaces of vectors (fP )P∈P ∈ ⊕P∈PL
2(XP )disc

satisfying:
SwfP = fQ, w ∈ W (P,Q).

In the next section we will eplicit the maps iP .

8 Explicit Plancherel formula

8.1 Injectivity of the map a′/W (A) → ã′/W (Ã)

Lemma 15 (i) Let A be a maximal σ-split torus and let Ã be a maximal split torus
containing A. It is σ-stable (cf. [HH], Lemma 1.9).
(ii) The set of non zero weights of A (resp., Ã) in the Lie algebra of G is a root system
∆(A) ( resp., ∆(Ã)) which appears as a subset of a′(resp., ã′).
The set ∆(A) is equal to the set of non zero restrictions of elements ∆(Ã).
(iii) Let W (A) (resp. W (Ã)) be the quotient of the normalizer of A (resp., Ã), NG(A)
(resp. NG(Ã)), by its centralizer, CG(A) (resp., CG(Ã)).
Then W (A) (resp., W (Ã)) identifies with the Weyl group of ∆(A) (resp., ∆(Ã)) and
is the set of restrictions to a of the elements of W (Ã) which normalizes a.
(iv) Let µ, ν ∈ a

′ which are conjugate by an element of W (Ã), then they are conjugate
by an element of W (A).

Proof :

(i) follows from [HH], Lemma 2.4.
(ii) and (iii) follows from [HW], Propositions 5.3 and 5.9.
(iv) It is clear that one may replace µ and ν by a conjugate element byW (A). Hence one
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may assume that µ and ν are dominant for some choice of a set positive roots of ∆(A),
∆+(A). Then we choose a set of positive roots for ∆+(Ã) whose non zero restrictions
are precisely the elements of ∆+(A). Hence µ and ν are dominant for ∆+(Ã) and
conjugate by an element of W (Ã). Hence they are equal, which proves (iv).

Remark 3 It follows from (iv) of the previous lemma that the map a′/W (A) →
ã′/W (Ã) is injective. This allows to apply the analog of Lemma 14.2.2 of [SV].

8.2 Coinvariants

Let P =MU be a semistandard σ-parabolic subgroup of G. Let us prove:

Using our G-invariant measure on XP , the smooth dual of C∞
c (XP ) is

isomorphic to C∞(XP ).
(8.1)

An element of the smooth dual of C∞
c (XP ) is fixed by some compact open subgroup

J of G and is the composition of the J-average with a linear form on the space of
J-fixed elements of C∞

c (XP ). A basis of this later space is given by the characteristic
functions of J-cosets. Hence a linear form on this space is given by integration of a
J-fixed element of C∞(XP ). This proves (8.1).

Similarly one has:

Using our choice of an M-invariant measure on XM (cf. (4.6)), we will
identify the smooth dual of C∞

c (XM) with C∞(XM). This identification
depends on our choice of XG

M .
(8.2)

Let (π, V ) be a smooth representation of G of finite length. Let us define the space of
coinvariants:

C∞
c (XP )π := HomC(HomG(C

∞
c (XP ), π), π). (8.3)

As HomG(C
∞
c (XP ), π) is finite dimensional (cf. (7.1)), one has:

HomG(C
∞
c (XP )π, π) = HomG(C

∞
c (XP ), π).

Definition 3 If π is a smooth admissible representation of G, there is a canonical
projection

C∞
c (XP ) → C∞

c (XP )π → 0.

If π = iGP−δ, we denote this map itP,δ

The canonical map from C∞
c (XP ) to C

∞
c (XP )π is defined as follows. If f ∈ C∞

c (XP ),
one defines φ ∈ C∞

c (XP )π by associating to each T ∈ Hom(C∞
c (XP ), π), the element

φ(T ) := T (f) of the space of π. It is easy to see that this map is surjective.
Let (δ, E) be a unitary irreducible smooth representation of M . Let T ∈

HomM(C∞
c (XM), δ). Due to (8.2), the transpose map T t might be viewed as an el-

ement T̃ t of Hom(δ̌, C∞(XP )). Let us define ηT = (ηT,x)x∈XG
M

∈ V(δ̌, H) ( cf. (5.2) for

the notation) by:
ηT,x(ě) := T̃ t(ě)(x), ě ∈ Ě. (8.4)
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One defines HomM(C∞
c (XM), δ)disc as the space of T ∈ HomM(C∞

c (XM), δ) such that
the image of T̃ t is a discrete series for XM . Let us define:

C∞
c (XP )δ := (HomM(C∞

c (XM), δ)disc)′ ⊗ iGP−δ. (8.5)

C∞
c (XP )δ[δ] = (HomM(C∞

c (XM), δ)disc)′ ⊗ δ. (8.6)

Hence we have:
C∞
c (XP )δ = iGP−C∞

c (XP )δ[δ]. (8.7)

It can be viewed as as quotient of C∞
c (XP ) as follows (cf. [ SV] before Equation (15.12)).

From the Lemma 12, one has an injective map defined by induction:

0 → HomM(C∞
c (XM), δ)disc → HomG(C

∞
c (XP ), i

G
P−δ).

Hence, using the transpose map and taking into account the notation (8.3) one has a
surjective map:

C∞
c (XP )iG

P−δ
= HomG(C

∞
c (XP , i

G
P−δ)′ ⊗ iGP−δ) → C∞

c (XP )δ → 0.

Together with Definition 3, this shows that

C∞
c (XP )δ is a quotient of C∞

c (XP ). (8.8)

The smooth dual of C∞
c (XP )δ is denoted C

∞(XP )
δ̌ and one has

C∞(XP )
δ̌ = HomM(C∞

c (XM), δ)disc ⊗ iGP− δ̌.

From (8.8) it can be viewed as a subspace of C∞(XP ).

8.3 Eisenstein integral maps and their transpose

Definition 4 We use the fact that the Eisenstein integral associated to δχ are well
defined for χ in the complementary set of the zero set of a non zero polynomial function
on X(M)σ. For such a χ, we define a map called Eisenstein integral map:

EP,δχ ∈ HomG(HomM(C∞
c (XM), δ̌χ)

disc ⊗ iGP δχ, C
∞(X)).

by
EP,δχ(T ⊗ v) = E(P, δχ, ηT , v), T ∈ HomM(C∞

c (XM), δ̌χ)
disc, v ∈ iGP δχ.

We keep the notation of the preceding subsection. Let us denote by ev1 the map

ev1 : (HomM(C∞
c (XM), δ̌χ)

disc)′ ⊗ iGP δ̌χ → (HomM(C∞
c (XM), δ̌χ)

disc)′ ⊗ Ě

defined by:

ev1(θ ⊗ v) = θ ⊗ v(1), θ ∈ (HomM(C∞
c (XM), δ̌)disc)′, v ∈ iGP δ̌χ.
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If φ ∈ C∞
c (XM), let qδ(φ) be the canonical element of (HomM(C∞

c (XM), δ̌)disc)′ ⊗
Ě defined as follows. The later space appears as the smooth dual of
HomM(C∞

c (XM), δ̌)disc)⊗ E and we define

〈qδ(φ), T ⊗ e〉 := 〈e, T (φ)〉, e ∈ E, T ∈ HomM(C∞
c (XM), δ̌)disc.

Identifying the smooth dual of C∞
c (XM) to C∞(XM) (cf. (8.2)), one has also:

〈qδ(φ), T ⊗ e〉 = 〈T̃ t(e), φ〉. (8.9)

Let us denote, by abuse of notation, the restriction of the transpose map of EP,δχ to
C∞
c (X) by Et

P,δχ
.

Lemma 16 One has

Et
P,δχ ∈ HomG(C

∞
c (X), (HomM(C∞

c (XM), δ̌χ)
disc)′ ⊗ iGP δ̌χ)

and
ev1((EP,δχ)

t(f)) = qδ(f
P ), f ∈ C∞

c (X).

Proof :

Let e ∈ E, T ∈ HomM(C∞
c (XM), δ̌)disc. Let J be a compact open subgroup of G with

a σ-factorization for P and such that JM fixes e and f and let vχ := vP,Je,δχ
the element

of iGP δχ which is invariant by J , whose support is equal to PJ and whose value at 1 is
equal to e (for the existence see e.g. [CD] Equation (3.2)). Notice that, from (4.8), one
has:

vχ has its support equal to PJU− = PJH ⊂ PH (8.10)

We will compute in two ways:

I := 〈Et
P,δχ(f), T ⊗ vχ〉

We take into account the expression of the duality of iGP δ and i
G
P δ̌ (cf. (5.1) and (8.10)).

This leads to our first expression of I:

I = vol(JU−)〈ev1(E
t
P,δχ(f)), T ⊗ e〉 (8.11)

In order to compute I in an other way we use a transposition:

I =

∫
H\G

f(ġ)EP,δχ(T ⊗ vχ)(ġ)dġ.

For Reχ sufficiently P -dominant, one has from (5.4) and the definition of ηT (cf.(8.4)):

I =

∫
H\G

f(ġ)
∑
x∈XG

M

∫
M∩x−1.H\x−1.H

T̃ t(vχ(yx
−1g))(x)dydġ.
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One makes the change of variable g′ = x−1.g and then the Fubini theorem that one can
use because f is compactly supported. One gets:

I =
∑
x∈XG

M

∫
(M∩x−1.H)\G

f(x.g)T̃ t(vχ(gx
−1))(x)dġ.

We make the change of variable g′′ = gx−1. We use the integration formula (4.1) and
our choice of measure on M ∩ x−1.H\M . As vχ has its support in PJU− and f and vχ
are J-invariant, one gets:

I = vol(JU−)
∑
x∈XG

M

∫
M∩x−1H\M

δP (m
−1)

∫
U

f(xum)duT̃ t(vχ(m))(x)dm.

But the change variable u′ = m−1um shows that:

I = vol(JU−)
∑
x∈XG

M

∫
M∩x−1H\M

∫
U

f(xmu)duT̃ t(vχ(m))(x)dm.

From the intertwining property of T one has:

T̃ tt(vχ(m))(x)) = δ
1/2
P (m)T̃ t(e)(xm).

With our choices of measures one deduces:

I = vol(JU−)
∑
x∈XG

M

∫
M∩x−1H\M

fP (ẋm)T̃ t(e)(ẋm)dm

In other words
I = vol(JU−)〈fP , T̃ t(e)〉,

and (8.9) implies:
I = vol(JU−))〈qδ(f

P ), T ⊗ e〉.

From (8.11) and Lemma 16 (i) one deduces the equality:

ev1((EP,δχ)
t(f)) = qδ(f

P ).

8.4 Canonical quotient and the small Mackey restriction

We follow the terminology of [SV], section 15. Let τ be a finite length smooth repre-
sentation of M . If the intertwining integral:

A(P, P−, τ) : iGP−τ → iGP τ

is well defined, the canonical quotient is the composition:

(iGP−τ)P
jP (A(P,P−,τ))

−→ (iGP τ)P → τ
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where the right map is the evaluation at 1 (cf. [SV] Equation (15.8)). If τ =
C∞
c (XP )δ[δ], the canonical quotient in this case is denoted cδ and taking into account

(8.7) one has:
cδ : (C

∞
c (XP )δ)P → C∞

c (XP )δ[δ].

Let (π, V ) be a smooth representation of G. The Mackey restriction (cf. [SV] section
15.4.3) is the map

Mack : HomG(C
∞
c (X), π) → HomM(C∞

c (XM), πP )

obtained by taking the Jacquet functor to any element T of HomG(C
∞
c (X), π), and

restricting it to C∞
c (XM) which is identied by mX

P (cf Lemma 16 (iii) with a subspace
of the normalized Jacquet module of C∞

c (X).
If π = iGP−τ , and the intertwining integral A : iGP−τ → iGP τ is bijective the small

Mackey restriction is the composition of the canonical quotient with the Mackey re-
striction Mack:

sMack : HomG(C
∞
c (X), π) → HomM(C∞

c (XM), τ)

If π = C∞
c (XP )δ, we denote by sMackδ the small Mackey restriction. If T ∈

HomG(C
∞
c (X), π),

sMackδ(T ) ∈ HomM(C∞
c (XM), HomM(C∞

c (XM), δ)disc)′ ⊗ δ)

8.5 Normalized Eisenstein integrals

Definition 5 Let P be a semistandard σ-parabolic subgroup of G. We define the nor-
malized integral

E0
P,δχ ∈ HomG(HomM(C∞

c (XM), δχ)
disc ⊗ iGP−δχ), C

∞(X))

by:
E0
P,δχ := EP,δχ ◦ (Id⊗ A(P−, P, δχ)

−1)

which is rational in χ ∈ X(M)σ.

By the formula of the transpose of intertwining integrals (cf. [W] IV.1(11) and denoting
by (E0

P,δχ
)t the restriction of the transpose of E0

P,δχ
to C∞

c (X), one has

(E0
P,δχ)

t = (Id⊗ A(P, P−, δχ)
−1) ◦ (EP,δχ)

t.

From this it follows

sMack((E0
P,δχ)

t) ∈ Hom(C∞
c (XM), HomM(C∞

c (XM), δχ)
disc)′ ⊗ δχ)

is equal to
ev1jP (A(P, P

−, δ) ◦ (E0
P,δ)

t).

From Lemma 16, one deduces:

The map sMack((E0
P,δχ

)t) is equal to the map qδχ . (8.12)
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Our definition of normalized Eisenstein integrals differs from the one in
[SV], Equation (15.30) for G-split and X spherical. Here we do not use the
Radon transform, but we use that the opposite of a σ-parabolic subgroup
is a σ-parabolic subgroup. From (8.12), our Eisenstein integrals maps have
the same small Mackey restrictions restrictions than the ones defined in
l.c. (cf. (15.36)).

(8.13)

8.6 Explicit Plancherel formula

Let

L2(XM)disc =

∫ ⊕

M̂

Ǐδdν(δ)

where Ǐ is a unitary representation of M isomorphic to a direct sum of copies of δ.
From Lemma 13 , one has

L2(XP )disc =

∫ ⊕

M̂

Ȟδdν(δ)

where Ȟδ is the unitarily induced representation from P− to G of Ǐδ. Let Ȟ∞
δ be its

space of smooth vectors. With the notation of (8.5), its space of smooth vectors is equal
to C∞(XP )

δ.
Let f ∈ C∞

c (XP ) and let us write its discrete component

fdisc =

∫
M̂

f δdνdisc(δ),

where f δ ∈ C∞(XP )
δ. Its image by the Bernstein morphism iP (f) satisfies:

iP (fdisc) =

∫
M̂

iP,δ(f)dν(δ).

for some maps iP,δ : Ȟ
∞
δ → C∞(X) defined for almost all δ (cf. [SV] Equation (15.6)).

One has the analog of Lemma 15.4.4 of [SV]. As the analogous of section 15.6 of
[SV] is identical, together with (8.12), this leads to the analog of Th 15.5.5 in [SV]:

Proposition 7 The small Mackey restriction of sMack((E0
P,δ)

t) and itP,δχ are equal for
almost all χ ∈ X(M)σ,u.

Also by the uniqueness result of [BD] recalled in (5.3), for almost all χ ∈ X(M)σ,u,
every element F of HomG(C

∞
c (X), iGP−δχ) is given in term of the normalized Eisenstein

integral i.e. is of the form

F = E(P, δχ, ηT , v) ◦ A(P
−, P, δχ)

−1

for a unique T ∈ HomM(C∞
c (XM), δ̌χ). Using (8.12) or rather its immediate general-

ization by replacing HomM(C∞
c (XM), δ̌χ)

disc by HomM(C∞
c (XM), δ̌χ) one sees that the

small Mackey restriction of F is equal to T . Hence one has:

42



Proposition 8 The small Mackey restriction

sMack : HomG(C
∞
c (X), iGP−δχ) → HomM(C∞

c (XM), δχ)

is injective for almost all χ ∈ X(M)σ,u.

Corollary 2 For almost all χ inX(M)σ,u, one has:

iP,δχ = E0
P,δχ.

Theorem 7 Let f ∈ C∞
c (XP ) and let us write its discrete component

fdisc =

∫ ⊕

M̂

f δdνdisc(δ),

where f δ ∈ C∞(XP )
δ.

Its image by the Bernstein morphism iP (f) satisfies:

iP (f)(x) =

∫
M̂

E0
P,δ(f

δ)(x)dν(δ), x ∈ X.

In combination with the scattering theorem (cf. Theorem 6), one deduces:

Theorem 8 The norm on L2(X)P , ‖.‖P , admits the decomposition:

‖Φ‖2P =
4

Card(W (AP , AP ))

∫
M̂

‖E0t
P,δ(Φ)‖

2
δdν(δ),

where the measure and norms on the right hand side of the equality are the discrete part
of the Plancherel decomposition of L2(XP ).

9 Appendix: Rational representations

In this section we establish some results on rational representations of G which are
needed to extend the results of [L] and [BD], which are established when F is of char-
acteristic zero, to the case where F is simply of characteristic different from 2.

9.1 Rational representations and parabolic subgroups

Let G be a reductive algebraic group defined over a non archimedean local field F,
whose group of F-points is equal to G. We will use similar notations for the subgroups
of G.
Let A0 be a maximal split torus of G and let P0 be a minimal parabolic subgroup of G.
Let P be a parabolic subgroup of G which contains P0. Let T be a maximal F-torus of
G which contains A0. Let B be a Borel subgroup of G, which contains T and contained
in the opposite parabolic subgroup to P0 which contains A0, P

−
0 . One denotes by Σ(T )

the set of roots of T in the Lie algebra of G. One denotes by Λ(T ) (resp., Λ(T )rac)
the weight lattice (resp., the root lattice) of T with respect to G. We adopt similar
notations for A0. Let Γ be the absolute Galois group of F which acts on these lattices.
Let Λ+(T ) be the set of dominant weights for T relative to B. Let Λ+(A0) (resp.,
Λ+(A0)rac) the set of dominant elements for P−

0 of Λ+(A0) (resp., Λ(A0)rac).
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Definition 6 One denotes by Λ+
M(T ) the set of elements λ of Λ+(T )such that G has

a rational finite dimensional irreducible representation, defined over F, with highest
weight λ relative to B, (πλ, Vλ), with the following property:

Any non zero vector of weight λ under T , vλ, transforms under M by a
rational character of M , denoted Λ.

(9.1)

The subset of λ ∈ Λ+
M(T ) which satisfies the following property is denoted by Λ++

M (T ).

There exists exists v′λ in the dual V ′
λ of Vλ, invariant by U and such that the

coefficient cλ(g) = |〈πλ(g)vλ, v
′
λ〉|F is equal to zero on the complementary

subset in G of UMU−.
(9.2)

The goal of this subsection is to produce sufficiently many elements of Λ+
M(T ).

Proposition 9 (i) Let Tan be the anisotropic component of T . There exists n ∈ N∗

such that any element λ of nΛ+(A0) extends uniquely to an element µ of Λ(T )rac trivial
on Tan.
(ii) If λ is orthogonal to the simple roots of A0 in the Lie algebra of U−

0 ∩M then µ is
element of Λ+

M(T ).
(iii) If moreover λ is not orthogonal to the other simple roots of A0 in the Lie algebra
of U−

0 , µ is an element of Λ++
M (T ).

For the proof we need several lemmas.
Let β be an element of the set, Σ(A0), of roots of A0 in the Lie algebra of G. One

defines:
β :=

∑
α∈Σ(T ),α|A0

=β

α.

One sees easily that:

There exists n′ ∈ N
∗ such that, for all β ∈ Σ(A0), there exists n

′
β ∈ N

∗such
that n′

ββ |A0

= n′β. (9.3)

We fix, once for all, such integers n′ and n′
β

Lemma 17 Every element λ of n′Λrac(A0) extends uniquely to an element µ of Λrac(T )
trivial on the anisotropic component Tan of T , invariant by Γ and by W (M0, T ).

Let us denote by (n′Λrac(A0))
˜ the lattice generated by the n′

ββ, β ∈ Σ(A0). From their
definition, one sees that the elements of (n′Λrac(A0))

˜ are invariant under Γ and are
elements of Λrac(T ). One remarks that every element µ of (n′Λrac(A0))

˜ is invariant by
the Weyl group of M 0 relative to T , W (M0, T ).
Let us show any element µ is trivial on Tan. One can choose T such that it contains a
maximal torus defined over F, T1, of the derived group of M 0. Actually, by conjugacy,
one sees that any T has this property. Moreover T contains the maximal anisotropic
torus Can of the center ofM0. The product T1CanA0 is a torus. For reasons of dimension
it is a maximal torus of G. Hence T = T1CanA0. Notice that T1Can is the anisotropic
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component Tan of T . As µ isW (M 0, T )-invariant, the restriction of µ to T1 is trivial. As
Can is anisotropic, the invariance by Γof µ shows that its restriction to à Can is trivial.
This proves the existence part of the Lemma. As T = TanA0 the unicity follows.

Lemma 18 (i) There exists n ∈ N such that nΛ(A0) ⊂ n′Λrac(A0).
(ii) If λ ∈ nΛ+(A0), its extension µ to T given by the preceding lemma is the highest
weight of a rational representation of G, defined over F, denoted (πµ, Vµ).

Proof :

(i) The lattice n′Λrac(A0) is contained in the lattice Λ(A0). As these lattices are of the
same rank, there exists n ∈ N∗ such that nΛ(A0) ⊂ n′Λrac(A0).
(ii) From (i) and the preceding lemma, if λ ∈ nΛ+(A0), µ is in Λrac(T ) ⊂ Λ(T ).
Moreover if α is a root of T in the Lie algebra of G, 〈µ, α〉 = 〈λ, α|A0

〉. Hence µ is a
dominant weight. From the preceding Lemma, it is invariant by Γ. Then [T], Theorem
3.3 and Lemma 3.2 implies (ii).

Lemma 19 Let λ ∈ nΛ+(A0) and µ as in Lemma 17. Then, with the notation of the
preceding lemma, M0 acts on a non zero highest weight vector of (πµ, Vµ) by a rational
character of M0 again denoted by µ.

Proof :

As πµ is defined over F, it is enough to prove that vµ transforms under a rational
character of M0. In order to prove this, one can work with the algebraic closure. The
invariance of µ by W (M 0, T ) (cf. Lemma 17), the fact that the space of weight µ in Vµ
is of dimension one (cf. [Hu], Proposition 33.2) together with the Bruhat decomposition
of M 0 allow to prove the Lemma.

Proof of Proposition 9
Let λ ∈ nΛ+(A0) be as in the statement of Proposition 9 (ii) i.e. λ is orthogonal to the
simple roots of A0 in the Lie algebra of U−

0 ∩M . Let µ be as in Lemma 17. Let (πµ, Vµ)
be as in Lemma 18, and let vµ be a non zero highest weight vector. One has to prove
that vµ transforms under M by a rational character of M that we will still denote by
µ. It is enough to prove that the line Fµ is stable by the action of M . One shows,
using the preceding Lemma, by a proof analogous to the one of [Hu], Proposition 31.2
and using the density of U−

0 M0U0 in G, that the A0-weight space of Vµ for the weight
λ is one dimensional. The Weyl group, W (M,A0), of M relative to A0 fixes λ from the
hypothesis on λ. One finishes the proof of our assertion on the actionM on vµ by using
the Bruhat decomposition of M relative to P−

0 ∩M . Hence µ ∈ Λ+
M(T ).

Now we assume moreover that λ is not orthogonal to the other simple roots of A0

in the Lie algebra of U−
0 , µ is an element of Λ++

M (T ). One sees like in l.c. that the
weights of A0 in Vµ are of the form ν = λ+

∑
β∈∆(P0)

cββ, where for all β in the set of

simple roots ∆(P0) of A0 in the Lie algebra of U0, cβ ∈ N (we recall that B is contained
in P−

0 ). We consider the hyperplane of Vµ generated by the A0-weight spaces for the
weights distinct from λ. From what we have just established on the weights of A0 in Vµ
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and from [Hu], Proposition 27.2, one sees that this hyperplane is stable by U . Hence
the linear form on Vµ, v

′
µ, which vanishes on this hyperplane and which takes the value

1 on vµ transforms under a rational character of the unipotent group U . This implies
that v′µ is invariant by U .
Let cµ be the real valued function on G defined by:

cµ(g) = |〈πµ(g)vµ, v
′
µ〉|F, g ∈ G.

Let us show that our hypothesis on λ implies that cµ vanishes on the complimentary
subset of UMU− in G. From the Bruhat decomposition for P−

0 an element of this
complimentary subset can be written g = uwmu−, where w represents an element of
W (G,A0) which is not in W (M,A0). Then cµ(g) is proportional to |〈πµ(w)vµ, v

′
µ〉|F .

But πµ(w)vµ is of weight wλ under A0. This weight is distinct of λ as λ is not orthogonal
to the simple roots of A0 in the Lie algebra U−

0 which are not roots of A0 in M . This
implies that |〈πλ(w)vλ, v

′
λ〉|F is equal to zero. Hence cµ(g) is equal to zero as wanted.

This achieves the proof of the Proposition.

9.2 H-distinguished rational representations of G

Proposition 9 allows to extend the results of [BD] section 2.7 and especially Propositions
2.9, 2.11 to a non archimedean local field, F, of characteristic different from 2. Let
Σ(G,A0) (resp., Σ(P0, A0) or Σ(P0) the set of roots of A0 in the Lie algebra of G (resp.,
P0). We denote by ∆(P0) the set of simple roots of Σ(P0).

Let P = MU be a standard σ-parabolic subgroups of G. We will use the notation
of the main body of the article. Let us assume that A∅ ⊂ A0, which is automatically
σ-stable, and P0 ⊂ P∅. Let {α1, . . . , αm0

} be the simple roots of Σ(P0) written in such
a way that {α1, . . . , αm∅

} are the simple roots in the Lie algebra of U∅, {α1, . . . , αm} are
the simple roots in the Lie algebra of U . One has the fondamental weights of Σ(P0, A0),
δ1, . . . , δl.
Let i = 1, . . . , m and λi = nδi with n as in Proposition 9. From this proposition, there
exists a unique rational character of T , µ, trivial on Tan and whose restriction to A0

is equal to λi and such that λi ∈ Λ+
M(T ) and µ is the highest weight of an irreducible

finite dimensional rational representation of G, denoted by (πµ, Vµ). Moreover if vµ is
a non zero highest weight vector in Vµ, the space Fvµ is P -invariant. We denote again
by µ the rational character of M which describes the action of M on vµ. One denotes
by v′µ the unique element of V ′

µ of weight µ−1 under M and such that 〈v′µ, vµ〉 = 1.

Let ν := µ(µ−1 ◦ σ) ∈ Λ(T ) and let (π̃ν , Ṽν) be the rational representation of G
(πµ⊗ (π′

µ ◦σ), Vµ⊗V ′
µ). Let ṽν := vµ⊗ v′µ which is of weight ν under the representation

π̃ν restricted to M . Then there exists a non zero H-invariant vector, under π̃ν in
Ṽ ′
ν = (Vµ ⊗ V ′

µ)
′ ≃ V ′

µ ⊗ Vµ ≃ EndVµ, namely the identity that we will denote e′ν,H . It
satisfies 〈e′ν,H , ṽν〉 = 1.

Let us show that ν = 2µ. As σ preserves Tan, the character µ−1 ◦ σ of T is trivial
on Tan. Its restriction to A0 is equal to λ. From the unicity statement of µ, it is equal
to µ. This proves our claim.
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From this it follows that

Proposition 2.9 and 2.11 of [BD] extend to a non archimedean local field,
F, of characteristic different from 2. This shows that the results of [BD],
section 2.8, 2.9 are valid for such a field . Also, the Lemma 1 (resp., section
3.2) in [L] is true also for such a field F due to Proposition 2.3 of [CD]
(resp., the Proposition 9 of the present article). Hence the results of [L]
are valid for such a field F.

(9.4)
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