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Abstract
Quantitative games are two-player zero-sum games played on directed weighted graphs. Total-
payoff games – that can be seen as a refinement of the well-studied mean-payoff games – are
the variant where the payoff of a play is computed as the sum of the weights. Our aim is to
describe the first pseudo-polynomial time algorithm for total-payoff games in the presence of
arbitrary weights. It consists of a non-trivial application of the value iteration paradigm. Indeed,
it requires to study, as a milestone, a refinement of these games, called min-cost reachability
games, where we add a reachability objective to one of the players. For these games, we give an
efficient value iteration algorithm to compute the values and optimal strategies (when they exist),
that runs in pseudo-polynomial time. We also propose heuristics to speed up the computations.
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Verifying and Reasoning about Programs
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1 Introduction

Games played on graphs are nowadays a well-studied and well-established model for the
computer-aided design of computer systems, as they enable automatic synthesis of systems
that are correct-by-construction. Of particular interest are quantitative games, that allow
one to model precisely quantitative parameters of the system, such as energy consumption.
In this setting, the game is played by two players on a directed weighted graph, where the
edge weights model, for instance, a cost or a reward associated to the moves of the players.
Each vertex of the graph belongs to one of the two players who compete by moving a token
along the graph edges, thereby forming an infinite path called a play. With each play is
associated a real-valued payoff computed from the sequence of edge weights along the play.
The traditional payoffs that have been considered in the literature include total-payoff [10],
mean-payoff [7] and discounted-payoff [17]. In this quantitative setting, one player aims at
maximising the payoff while the other tries to minimise it. So one wants to compute, for each
player, the best payoff that he can guarantee from each vertex, and the associated optimal
strategies (i.e., that guarantee the optimal payoff no matter how the adversary is playing).

Such quantitative games have been extensively studied in the literature. Their associated
decision problems (is the value of a given vertex above a given threshold?) are known to be
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in NP ∩ co-NP. Mean-payoff games have arguably been best studied from the algorithmic
point of view. A landmark is Zwick and Paterson’s pseudo-polynomial time (i.e., polynomial
in the weighted graph when weights are encoded in unary) algorithm [17], using the value
iteration paradigm that consists in computing a sequence of vectors of values that converges
towards the optimal values of the vertices. After a fixed, pseudo-polynomial, number of steps,
the computed values are precise enough to deduce the actual values of all vertices. Better
pseudo-polynomial time algorithms have later been proposed, e.g., in [1, 4, 6], also achieving
sub-exponential expected running time by means of randomisation.

In this paper, we focus on total-payoff games. Given an infinite play π, we denote
by π[k] the prefix of π of length k, and by TP(π[k]) the (finite) sum of all edge weights
along this prefix. The total-payoff of π, TP(π), is the inferior limit of all those sums, i.e.,
TP(π) = lim infk→∞TP(π[k]). Compared to mean-payoff (and discounted-payoff) games,
the literature on total-payoff games is less extensive. Gimbert and Zielonka have shown [10]
that optimal memoryless strategies always exist for both players and the best algorithm
to compute the values runs in exponential time [9], and consists in iteratively improving
strategies. Other related works include energy games where one player tries to optimise its
energy consumption (computed again as a sum), keeping the energy level always above 0
(which makes difficult to apply techniques solving those games in the case of total-payoff);
and a probabilistic variant of total-payoff games, where the weights are restricted to be
non-negative [5]. Yet, we argue that the total-payoff objective is interesting as a refinement
of the mean-payoff. Indeed, recall first that the total-payoff is finite if and only if the
mean-payoff is null. Then, the computation of the total-payoff enables a finer, two-stage
analysis of a game G: (i) compute the mean payoff MP(G); (ii) subtract MP(G) from all
edge weights, and scale the resulting weights if necessary to obtain integers. At that point,
one has obtained a new game G′ with null mean-payoff; (iii) compute TP(G′) to quantify
the amount of fluctuation around the mean-payoff of the original game. Unfortunately, so
far, no efficient (i.e., pseudo-polynomial time) algorithms for total-payoff games have been
proposed, and straightforward adaptations of Zwick and Paterson’s value iteration algorithm
for mean-payoff do not work, as we demonstrate at the end of Section 2. In the present
article, we fill in this gap by introducing the first pseudo-polynomial time algorithm for
computing the values in total-payoff games.

Our solution is a non-trivial value iteration algorithm that proceeds through nested fixed
points (see Algorithm 2). A play of a total-payoff game is infinite by essence. We transform
the game so that one of the players (the minimiser) must ensure a reachability objective: we
assume that the game ends once this reachability objective has been met. The intuition
behind this transformation, that stems from the use of an inferior limit in the definition of the
total-payoff, is as follows: in any play π whose total-payoff is finite, there is a position ` in the
play after which all the partial sums TP(π[i]) (with i > `) will be larger than or equal to the
total-payoff TP(π) of π, and infinitely often both will be equal. For example, consider the
game depicted in Figure 1(a), where the maximiser player (henceforth called Max) plays with
the round vertices and the minimiser (Min) with the square vertices. For both players, the
optimal value when playing from v1 is 2, and the play π = v1v2v3 v4v5 v4v3 (v4v5)ω reaches
this value (i.e., TP(π) = 2). Moreover, for all k > 7: TP(π[k]) > TP(π), and infinitely
many prefixes (π[8], π[10], π[12], . . .) have a total-payoff of 2, as shown in Figure 1(b).

Based on this observation, we transform a total-payoff game G, into a new game that has
the same value as the original total-payoff game but incorporates a reachability objective
for Min. Intuitively, in this new game, we allow a new action for Min: after each play prefix
π[k], he can ask to stop the game, in which case the payoff of the play is the payoff TP(π[k])
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Figure 1 (a) A total-payoff game, and (b) the evolution of the partial sums in π.

of the prefix. However, allowing Min to stop the game at any moment would not allow to
obtain the same value as in the original total-payoff game: for instance, in the example of
Figure 1(a), Min could secure value 1 by asking to stop after π[2], which is strictly smaller
that the actual total-payoff (2) of the whole play π. So, we allow Max to veto to stop the
game, in which case both must go on playing. Again, allowing Max to turn down all of Min’s
requests would be unfair, so we parametrise the game with a natural number K, which is
the maximal number of vetoes that Max can play (and we denote by GK the resulting game).
For the play depicted in Figure 1(b), letting K = 3 is sufficient: trying to obtain a better
payoff than the optimal, Min could request to stop after π[0], π[2] and π[6], and Max can
veto these three requests. After that, Max can safely accept the next request of Min, since
the total payoff of all prefixes π[k] with k > 6 are larger than or equal to TP(π) = 2. Our
key technical contribution is to show that for all total-payoff games, there exists a finite,
pseudo-polynomial, value of K such that the values in GK and G coincide (assuming all
values are finite in G: we treat the +∞ and −∞ values separately). Now, assume that, when
Max accepts to stop the game (possibly because he has exhausted the maximal number K of
vetoes), the game moves to a target state, and stops. By doing so, we effectively reduce the
computation of the values in the total-payoff game G to the computation of the values in the
total-payoff game GK with an additional reachability objective (the target state) for Min.

In the following, such refined total-payoff games – where Min must reach a designated
target vertex – will be called min-cost reachability games. Failing to reach the target vertices
is the worst situation for Min, so the payoff of all plays that do not reach the target is +∞,
irrespective of the weights along the play. Otherwise, the payoff of a play is the sum of the
weights up to the first occurrence of the target. As such, this problem nicely generalises the
classical shortest path problem in a weighted graph. In the one-player setting (considering
the point of view of Min for instance), this problem can be solved in polynomial time by
Dijkstra’s and Floyd-Warshall’s algorithms when the weights are non-negative and arbitrary,
respectively. In [11], Khachiyan et al. propose an extension of Dijkstra’s algorithm to handle
the two-player, non-negative weights case. However, in our more general setting (two players,
arbitrary weights), this problem has, as far as we know, not been studied as such, except that
the associated decision problem is known to be in NP∩ co-NP [8]. A pseudo-polynomial time
algorithm to solve a very close problem, called the longest shortest path problem has been
introduced by Björklund and Vorobyov [1] to eventually solve mean-payoff games. However,
because of this peculiar context of mean-payoff games, their definition of the length of a
path differs from our definition of the payoff and their algorithm cannot be easily adapted
to solve our min-cost reachability problem. Thus, as a second contribution, we show that
a value iteration algorithm enables us to compute in pseudo-polynomial time the values of
a min-cost reachability game. We believe that min-cost reachability games bear their own
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potential theoretical and practical applications1. Those games are discussed in Section 3.
In addition to the pseudo-polynomial time algorithm to compute the values, we show how
to compute optimal strategies for both players and characterise them: there is always a
memoryless strategy for the maximiser player, but we exhibit an example (see Figure 2(a))
where the minimiser player needs (finite) memory. Those results on min-cost reachability
games are exploited in Section 4 where we introduce and prove correct our efficient algorithm
for total-payoff games.

Finally, we briefly present our implementation in Section 5, using as a core the numerical
model-checker PRISM. This allows us to describe some heuristics able to improve the practical
performances of our algorithms for total-payoff games and min-cost reachability games on
certain subclasses of graphs. More technical explanations and full proofs may be found in an
extended version of this article [2].

2 Quantitative games with arbitrary weights

We denote by Z the set of integers, and Z∞ = Z ∪ {−∞,+∞}. The set of vectors indexed
by V with values in S is denoted by SV . We let 4 be the pointwise order over ZV∞, where
x 4 y if and only if x(v) 6 y(v) for all v ∈ V .

We consider two-player turn-based games on weighted graphs and denote the two players
by Max and Min. A weighted graph is a tuple 〈V,E, ω〉 where V = VMax]VMin is a finite set of
vertices partitioned into the sets VMax and VMin of Max and Min respectively, E ⊆ V × V is a
set of directed edges, ω : E → Z is the weight function, associating an integer weight with each
edge. In our drawings, Max vertices are depicted by circles; Min vertices by boxes. For every
vertex v ∈ V , the set of successors of v by E is denoted by E(v) = {v′ ∈ V | (v, v′) ∈ E}.
Without loss of generality, we assume that every graph is deadlock-free, i.e., for all vertices v,
E(v) 6= ∅. Finally, throughout this article, we let W = max(v,v′)∈E |ω(v, v′)| be the greatest
edge weight (in absolute value) in the game graph. A finite play is a finite sequence of vertices
π = v0v1 · · · vk such that for all 0 6 i < k, (vi, vi+1) ∈ E. A play is an infinite sequence of
vertices π = v0v1 · · · such that every finite prefix v0 · · · vk, denoted by π[k], is a finite play.

The total-payoff of a finite play π = v0v1 · · · vk is obtained by summing up the weights
along π, i.e., TP(π) =

∑k−1
i=0 ω(vi, vi+1). In the following, we sometimes rely on the mean-

payoff to obtain information about total-payoff objectives. The mean-payoff computes the
average weight of π, i.e., if k > 1, MP(π) = 1

k

∑k−1
i=0 ω(vi, vi+1), and MP(π) = 0 when

k = 0. These definitions are lifted to infinite plays as follows. The total-payoff of a play π is
given by TP(π) = lim infk→∞TP(π[k]).2 Similarly, the mean-payoff of a play π is given by
MP(π) = lim infk→∞MP(π[k]). A weighted graph equipped with these payoffs is called a
total-payoff game or a mean-payoff game, respectively.

A strategy for Max (respectively, Min) in a game G = 〈V,E, ω,P〉 (with P one of the
previous payoffs), is a mapping σ : V ∗VMax → V (respectively, σ : V ∗VMin → V ) such that for
all sequences π = v0 · · · vk with vk ∈ VMax (respectively, vk ∈ VMin), (vk, σ(π)) ∈ E. A play
or finite play π = v0v1 · · · conforms to a strategy σ of Max (respectively, Min) if for all k
such that vk ∈ VMax (respectively, vk ∈ VMin), vk+1 = σ(π[k]). A strategy σ is memoryless

1 An example of practical application would be to perform controller synthesis taking into account energy
consumption. On the other hand, the problem of computing the values in certain classes of priced timed
games has recently been reduced to computing the values in min-cost reachability games [3].

2 Our results can easily be extended by substituting a lim sup for the lim inf. The lim inf is more natural
since we adopt the point of view of the maximiser Max, hence the lim inf is the worst partial sum seen
infinitely often.
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if for all finite plays π, π′, we have σ(πv) = σ(π′v) for all v. A strategy σ is said to be
finite-memory if it can be encoded in a deterministic Moore machine, 〈M,m0, up, dec〉, where
M is a finite set representing the memory of the strategy, with an initial memory content
m0 ∈M , up : M × V →M is a memory-update function, and dec : M × V → V a decision
function such that for every finite play π and vertex v, σ(πv) = dec(mem(πv), v) where
mem(π) is defined by induction on the length of the finite play π as follows: mem(v0) = m0,
and mem(πv) = up(mem(π), v). We say that |M | is the size of the strategy.

For all strategies σMax and σMin, for all vertices v, we let Play(v, σMax, σMin) be the
outcome of σMax and σMin, defined as the unique play conforming to σMax and σMin and
starting in v. Naturally, the objective of Max is to maximise its payoff. In this model
of zero-sum game, Min then wants to minimise the payoff of Max. Formally, we let
ValG(v, σMax) and ValG(v, σMin) be the respective values of the strategies, defined as (recall that
P is either TP or MP): ValG(v, σMax) = infσMin P(Play(v, σMax, σMin)) and ValG(v, σMin) =
supσMax

P(Play(v, σMax, σMin)). Finally, for all vertices v, we let ValG(v) = supσMax
ValG(v, σMax)

and ValG(v) = infσMin ValG(v, σMin) be the lower and upper values of v respectively. We may
easily show that ValG 4 ValG . We say that strategies σ∗Max of Max and σ∗Min of Min are optimal
if, for all vertices v: ValG(v, σ∗Max) = ValG(v) and ValG(v, σ∗Min) = ValG(v) respectively. We
say that a game G is determined if for all vertices v, its lower and upper values are equal. In
that case, we write ValG(v) = ValG(v) = ValG(v), and refer to it as the value of v. If the game
is clear from the context, we may drop the index G of all previous values. Mean-payoff and
total-payoff games are known to be determined, with the existence of optimal memoryless
strategies [17, 10].

Total-payoff games have been mainly considered as a refinement of mean-payoff games [10].
Indeed, if the mean-payoff value of a game is positive (respectively, negative), its total-payoff
value is necessarily +∞ (respectively, −∞). When the mean-payoff value is 0 however,
the total-payoff is necessarily different from +∞ and −∞, hence total-payoff games are
particularly useful in this case. Deciding whether the total-payoff value of a vertex is positive
can be achieved in NP ∩ co-NP. In [9], the complexity is refined to UP ∩ co-UP, and values
are shown to be effectively computable solving nested fixed point equations with a strategy
iteration algorithm working in exponential time in the worst case.

Our aim is to give a pseudo-polynomial algorithm solving total-payoff games. In many
cases, (e.g., mean-payoff games), a successful way to obtain such an efficient algorithm
is the value iteration paradigm. Intuitively, value iteration algorithms compute successive
approximations x0, x1, . . . , xi, . . . of the game value by restricting the number of turns that
the players are allowed to play: xi is the vector of optimal values achievable when the players
play at most i turns. The sequence of values is computed by means of an operator F , letting
vi+1 = F(vi) for all i. Good properties (Scott-continuity and monotonicity) of F ensure
convergence towards its smallest or greatest fixed point (depending on the value of x0), which,
in some cases, happens to be the value of the game. Let us briefly explain why such a simple
approach fails with total-payoff games. In our case, the operator F is such that F(x)(v) =
maxv′∈E(v) ω(v, v′) + x(v′) for all v ∈ VMax and F(x)(v) = minv′∈E(v) ω(v, v′) + x(v′) for all
v ∈ VMin. This definition matches the intuition that xi are optimal values after i turns.

Then, consider the example of Figure 1(a), limited to vertices {v3, v4, v5} for simplicity.
Observe that there are two simple cycles with weight 0, hence the total-payoff value of
this game is finite. Max has the choice between cycling into one of these two cycles. It
is easy to check that Max’s optimal choice is to enforce the cycle between v4 and v5,
securing a payoff of −1 from v4 (because of the lim inf definition of TP). Hence, the values
of x3, x4 and x5 are respectively 1, −1 and 0. In this game, we have F(x3, x4, x5) =
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Figure 2 Two weighted graphs.

(
2 +x4,max(−2 +x3,−1 +x5), 1 +x4

)
, and the vector (1,−1, 0) is indeed a fixed point of F .

However, it is neither the greatest nor the smallest fixed point of F , since if x is a fixed
point of F , then x+ (a, a, a) is also a fixed point, for all constant a ∈ Z. If we try to initialise
the value iteration algorithm with value (0, 0, 0), which could seem a reasonable choice, the
sequence of computed vectors is: (0, 0, 0), (2,−1, 1), (1, 0, 0), (2,−1, 1), (1, 0, 0), . . . that is
not stationary, and does not even contain (1,−1, 0). Thus, it seems difficult to compute the
actual game values with an iterative algorithm relying on the F operator, as in the case
of mean-payoff games.3 Notice that, in the previous example, the Zwick and Paterson’s
algorithm [17] to solve mean-payoff games would easily conclude from the sequence above,
since the vectors of interest are then the one divided by the length of the current sequence,
i.e., (0, 0, 0), (1,−0.5, 0.5), (0.33, 0, 0), (0.5,−0.25, 0.25), (0.2, 0, 0), . . . indeed converging
towards (0, 0, 0), the mean-payoff values of this game.

Instead, as explained in the introduction, we propose a different approach that consists
in reducing total-payoff games to min-cost reachability games where Min must enforce a
reachability objective on top of his optimisation objective. The aim of the next section is to
study these games, and we reduce total-payoff games to them in Section 4.

3 Min-cost reachability games

In this section, we consider min-cost reachability games (MCR games for short), a variant of
total-payoff games where one player has a reachability objective that he must fulfil first, before
optimising his quantitative objective. Without loss of generality, we assign the reachability
objective to player Min, as this will make our reduction from total-payoff games easier to
explain. Hence, when the target is not reached along a path, its payoff shall be the worst
possible for Min, i.e., +∞. Formally, an MCR game is played on a weighted graph 〈V,E, ω〉
equipped with a target set of vertices T ⊆ V . The payoff T -MCR(π) of a play π = v0v1 . . .

is given by T -MCR(π) = +∞ if the play avoids T , i.e., if for all k > 0, vk /∈ T , and
T -MCR(π) = TP(π[k]) if k is the least position in π such that vk ∈ T . Lower and upper
values are then defined as in Section 2. By an indirect consequence of Martin’s theorem [12],
we can show that MCR games are also determined. Optimal strategies may however not
exist, as we will see later.

As an example, consider the MCR game played on the weighted graph of Figure 2(a),
where W is a positive integer and v3 is the target.

We claim that the values of vertices v1 and v2 are both −W . Indeed, consider the
following strategy for Min: during each of the first W visits to v2 (if any), go to v1; else, go to
v3. Clearly, this strategy ensures that the target will eventually be reached, and that either
(i) edge (v1, v3) (with weight −W ) will eventually be traversed; or (ii) edge (v1, v2) (with
weight −1) will be traversed at least W times. Hence, in all plays following this strategy, the

3 In the context of stochastic models like Markov decision processes, Strauch [14] already noticed that in
the presence of arbitrary weights, the value iteration algorithm does not necessarily converge towards
the accurate value: see [13, Ex. 7.3.3] for a detailed explanation.
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payoff will be at most −W . This strategy allows Min to secure −W , but he cannot ensure a
lower payoff, since Max always has the opportunity to take the edge (v1, v3) (with weight
−W ) instead of cycling between v1 and v2. Hence, Max’s optimal choice is to follow the edge
(v1, v3) as soon as v1 is reached, securing a payoff of −W . The Min strategy we have just
given is optimal, and there is no optimal memoryless strategy for Min. Indeed, always playing
(v2, v3) does not ensure a payoff 6 −W ; and, always playing (v2, v1) does not guarantee to
reach the target, and this strategy has thus value +∞.

Let us note that Björklund and Vorobyov introduce in [1] the longest shortest path problem
(LSP for short) and propose a pseudo-polynomial time algorithm to solve it. However, their
definition has several subtle but important differences to ours, such as definition of the payoff
of a play (equivalently, the length of a path). As an example, in the game of Figure 2(a), the
play π = (v1v2)ω (that never reaches the target) has length −∞ in their setting, while, in our
setting, {v3}-MCR(π) = +∞. Moreover, even if a pre-treatment would hypothetically allow
one to use the LSP algorithm to solve MCR games, our solution is simpler to implement
with the same worst-case complexity and heuristics only applicable to our value iteration
solution. We now present our contributions for MCR games:

I Theorem 1. Let G = 〈V,E, ω, T -MCR〉 be an MCR game.
1. For v ∈ V , deciding whether Val(v) = +∞ can be done in polynomial time.
2. For v ∈ V , deciding whether Val(v) = −∞ is as hard as mean-payoff, in NP∩ co-NP and

can be achieved in pseudo-polynomial time.
3. If Val(v) 6= −∞ for all vertices v ∈ V , then both players have optimal strategies. Moreover,

Max always has a memoryless optimal strategy, while Min may require finite (pseudo-
polynomial) memory in his optimal strategy.

4. Computing all values Val(v) (for v ∈ V ), as well as optimal strategies (if they exist) for
both players, can be done in (pseudo-polynomial) time O(|V |2|E|W ).

To prove the first item it suffices to notice that vertices with value +∞ are exactly those
from which Min cannot reach the target. Therefore the problem reduces to deciding the
winner in a classical reachability game, that can be solved in polynomial time [16], using the
classical attractor construction: in vertices of value +∞, Min may play indifferently, while
Max has an optimal memoryless strategy consisting in avoiding the attractor.

To prove the second item, it suffices first to notice that vertices with value −∞ are exactly
those with a value < 0 in the mean-payoff game played on the same graph. On the other
hand, we can show that any mean-payoff game can be transformed (in polynomial time)
into an MCR game such that a vertex has value < 0 in the mean-payoff game if and only
if the value of its corresponding vertex in the MCR game is −∞. The rest of this section
focuses on the proof of the third and fourth items. We start by explaining how to compute
the values in pseudo-polynomial, and we discuss optimal strategies afterward.

Computing the values. From now on, we assume, without loss of generality, that there is
exactly one target vertex denoted by t, and the only outgoing edge from t is a self loop
with weight 0: this is reflected by denoting MCR the payoff mapping {t}-MCR. Our value
iteration algorithm for MCR games is given in Algorithm 1. To establish its correctness, we
rely mainly on the operator F , which denotes the function ZV∞ → ZV∞ mapping every vector
x ∈ ZV∞ to F(x) defined by F(x)(t) = 0 and

F(x)(v) =


max
v′∈E(v)

(
ω(v, v′) + x(v′)

)
if v ∈ VMax \ {t}

min
v′∈E(v)

(
ω(v, v′) + x(v′)

)
if v ∈ VMin \ {t}
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Algorithm 1: Value iteration for min-cost reachability games
Input: MCR game 〈V,E, ω,MCR〉, W largest weight in absolute value

1 X(t) := 0
2 foreach v ∈ V \ {t} do X(v) := +∞
3 repeat
4 Xpre := X
5 foreach v ∈ VMax \ {t} do X(v) := maxv′∈E(v)

(
ω(v, v′) + Xpre(v′)

)
6 foreach v ∈ VMin \ {t} do X(v) := minv′∈E(v)

(
ω(v, v′) + Xpre(v′)

)
7 foreach v ∈ V \ {t} such that X(v) < −(|V | − 1)W do X(v) := −∞
8 until X = Xpre
9 return X

More precisely, we are interested in the sequence of iterates xi = F(xi−1) of F from the initial
vector x0 defined by x0(v) = +∞ for all v 6= t, and x0(t) = 0. The intuition behind the
sequence (xi)i>0 is that xi is the value of the game if we impose that Min must reach the target
within i steps (and get a payoff of +∞ if he fails to do so). Formally, for a play π = v0v1 · · ·
vi · · · , we let MCR6i(π) = MCR(π) if vk = t for some k 6 i, and MCR6i(π) = +∞
otherwise. We further let Val6i(v) = infσMin supσMax

MCR6i(Play(v, σMax, σMin)) (where σMax
and σMin are respectively strategies of Max and Min). We can show that the operator F
allows one to compute the sequence (Val6i)i>0, i.e., for all i > 0: xi = Val6i.

Let us first show that the algorithm is correct when the values of all nodes are finite.
Thanks to this characterisation, and by definition of Val6i, it is easy to see that, for all
i > 0: xi = Val6i < Val = Val. Moreover, F is a monotonic operator over the complete
lattice ZV∞. By Knaster-Tarski’s theorem, the fixed points of F form a complete lattice and
F admits a greatest fixed point. By Kleene’s fixed point theorem, using the Scott-continuity
of F , this greatest fixed point can be obtained as the limit of the non-increasing sequence of
iterates (F i(x))i>0 starting in the maximal vector x defined by x(v) = +∞ for all v ∈ V .
As x0 = F(x), the sequence (xi)i>0 is also non-increasing (i.e., xi < xi+1, for all i > 0)
and converges towards the greatest fixed point of F . We can further show that the value
of the game Val is actually the greatest fixed point of F . Moreover, we can bound the
number of steps needed to reach that fixed point (when all values are finite – this is the
point where this hypothesis is crucial), by carefully observing the possible vectors that can
be computed by the algorithm: the sequence (xi)i>0 is non-increasing, and stabilises after at
most (2|V | − 1)W |V |+ |V | steps on Val.

Thus, computing the sequence (xi)i>0 up to stabilisation yields the values of all vertices
in an MCR game if all values are finite. Were it not for line 7, Algorithm 1 would compute
exactly this sequence. We claim that Algorithm 1 is correct even when vertices have values
in {−∞,+∞}. Line 7 allows to cope with vertices whose value is −∞: when the algorithm
detects that Min can secure a value small enough from a vertex v, it sets v’s value to −∞.
Intuitively, this is correct because if Min can guarantee a payoff smaller than −(|V | − 1)×W ,
he can force a negative cycle from which he can reach t with an arbitrarily small value.
Hence, one can ensure that, after i iterations of the loop, xi−1 < X < Val, and the sequence
still converges to Val, the greatest fixed point of F . Finally, if some vertex v has value +∞,
one can check that X(v) = +∞ is an invariant of the loop. From that point, one can prove
the correctness of the algorithm. Thus, the algorithm executes O(|V |2W ) iterations. Since
each iteration can be performed in O(|E|), the algorithm has a complexity of O(|V |2|E|W ),
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as announced in Theorem 1. As an example, consider the min-cost reachability game of
Figure 2(a). The successive values for vertices (v1, v2) (value of the target v3 is always 0)
computed by the value iteration algorithm are the following: (+∞,+∞), (+∞, 0), (−1, 0),
(−1,−1), (−2,−1), (−2,−2), . . . , (−W,−W + 1), (−W,−W ). This requires 2W steps to
converge (hence a pseudo-polynomial time).

Computing optimal strategies for both players. We now turn to the proof of the third
item of Theorem 1, supposing that every vertex v of the game has a finite value Val(v) ∈ Z
(the case where Val(v) = +∞ is delt with the attractor construction).

Observe first that, Min may need memory to play optimally, as already shown by the
example in Figure 2(a), where the target is v3. Nevertheless, let us briefly explain why
optimal strategies for Min always exist, with a memory of pseudo-polynomial size. We extract
from the sequence (xi)i>0 defined above (or equivalently, from the sequence of vectors X of
Algorithm 1) the optimal strategy σ∗Min as follows. Let k be the first index such that xk+1 = xk.
Then, for every play π ending in vertex v ∈ VMin, we let σ∗Min(π) = argminv′∈E(v)

(
ω(v, v′) +

xk−|π|−1(v′)
)
, if |π| < k, and σ∗Min(π) = argminv′∈E(v)

(
ω(v, v′) + x0(v′)

)
otherwise (those

argmin may not be unique, but we can indifferently pick any of them). Since σMin only requires
to know the last vertex and the length of the prefix up to k, and since k 6 (2|V |−1)W |V |+|V |
as explained above, σ∗Min needs a memory of pseudo-polynomial size only. Moreover, it can
be computed with the sequence of vectors X in Algorithm 1. It is not difficult to verify by
induction that this strategy is optimal for Min. While optimal, this strategy might not be
practical, for instance, in the framework of controller synthesis. Implementing it would require
to store the full sequence (xi)i>0 up to convergence step k (possibly pseudo-polynomial) in a
table, and to query this large table each time the strategy is called. Instead, an alternative
optimal strategy σ′Min can be construct, that consists in playing successively two memoryless
strategies σ1

Min and σ2
Min (σ2

Min being given by the attractor construction). To determine when
to switch from σ1

Min to σ2
Min, σ′Min maintains a counter that is stored in a polynomial number

of bits, thus the memory footprints of σ′Min and σ∗Min are comparable. However, σ′Min is easier
to implement, because σ1

Min and σ2
Min can be described by a pair of tables of linear size, and,

apart from querying those tables, σ′Min consists only in incrementing and testing the counter
to determine when to switch. Moreover, this succession of two memoryless strategies allows
us to also get some interesting strategy in case of vertices with values −∞: indeed, we can
still compute this pair of strategies, and simply modify the switching policy to run for a
sufficiently long time to guarantee a value less than a given threshold. In the following, we
call such a strategy a switching strategy.

Finally, we can show that, contrary to Min, Max always has a memoryless optimal strategy
σ∗Max defined by σ∗Max(π) = argmaxv′∈E(v) (ω(v, v′) + Val(v′)) for all finite plays π ending in
v ∈ VMax. For example, in the game of Figure 2(a), σ∗Max(πv2) = v3 for all π, since Val(v3) = 0
and Val(v1) = −W . Moreover, the previously described optimal strategies can be computed
along the execution of Algorithm 1. Finally, we can show that, for all vertices v, the pair of
optimal strategies we have just defined yields a play Play(v, σ∗Max, σ

∗
Min) which is non-looping,

i.e., never visits the same vertex twice before reaching the target. For instance, still in the
game of Figure 2(a), Play(v1, σ

∗
Max, σ

∗
Min) = v1v2v

ω
3 .

4 An efficient algorithm to solve total-payoff games

We now turn our attention back to total-payoff games (without reachability objective), and
discuss our main contribution. Building on the results of the previous section, we introduce
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Figure 3 MCR game G3 associated with the total-payoff game of Figure 2(a).

the first (as far as we know) pseudo-polynomial time algorithm for solving those games in
the presence of arbitrary weights, thanks to a reduction from total-payoff games to min-cost
reachability games. The MCR game produced by the reduction has size pseudo-polynomial
in the size of the original total-payoff game. Then, we show how to compute the values of
the total-payoff game without building the entire MCR game, and explain how to deduce
memoryless optimal strategies from the computation of our algorithm.

Reduction to min-cost reachability games. We provide a transformation from a total-
payoff game G = 〈V,E, ω,TP〉 to a min-cost reachability game GK such that the values of G
can be extracted from the values in GK (as formalised below). Intuitively, GK simulates the
game where players play in G; Min may propose to stop playing and reach a fresh vertex t
acting as the target; Max can then accept, in which case we reach the target, or refuse at most
K times, in which case the game continues. Structurally, GK consists of a sequence of copies
of G along with some new states that we now describe formally. We let t be a fresh vertex,
and, for all n > 1, we define the min-cost reachability game Gn = 〈V n, En, ωn, {t}-MCR〉
where V nMax (respectively, V nMin) consists of n copies (v, j), with 1 6 j 6 n, of each vertex
v ∈ VMax (respectively, v ∈ VMin) and some exterior vertices (ex, v, j) for all v ∈ V and
1 6 j 6 n (respectively, interior vertices (in, v, j) for all v ∈ V and 1 6 j 6 n). Moreover,
V nMax contains the fresh target vertex t. Edges are given by

En = {(t, t)} ]
{(

(v, j), (in, v′, j)
)
| (v, v′) ∈ E, 1 6 j 6 n

}
]
{(

(in, v, j), (v, j)
)
| v ∈ V, 1 6 j 6 n

}
]
{(

(ex, v, j), t
)
| v ∈ V, 1 6 j 6 n

}
]
{(

(in, v, j), (ex, v, j)
)
| v ∈ V, 1 6 j 6 n

}
]
{(

(ex, v, j), (v, j − 1)
)
| v ∈ V, 1 < j 6 n

}
.

All edge weights are zero, except edges
(
(v, j), (in, v′, j)

)
that have weight ω(v, v′).

For example, considering the weighted graph of Figure 2(a), the corresponding reachability
total-payoff game G3 is depicted in Figure 3 (where weights 0 have been removed). The next
proposition formalises the relationship between the two games.

I Proposition 2. Let K = |V |(2(|V | − 1)W + 1). For all v ∈ V and k > K,
ValG(v) 6= +∞ if and only if ValG(v) = ValGk ((v, k));
ValG(v) = +∞ if and only if ValGk ((v, k)) > (|V | − 1)W + 1.

The bound K is found by using the fact (informally described in the previous section) that
if not infinite, the value of a min-cost reachability game belongs in [−(|V |−1)×W+1, |V |×W ],
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Figure 4 MCR game GY associated with the total-payoff game of Figure 2(a).

and that after enough visits of the same vertex, an adequate loop ensures that Gk verifies
the above properties.

Value iteration algorithm for total-payoff games. By Proposition 2, an immediate way to
obtain a value iteration algorithm for total-payoff games is to build game GK , run Algorithm 1
on it, and map the computed values back to G. We take advantage of the structure of GK
to provide a better algorithm that avoids building GK . We first compute the values of the
vertices in the last copy of the game (vertices of the form (v, 1), (in, v, 1) and (ex, v, 1)), then
of those in the penultimate (vertices of the form (v, 2), (in, v, 2) and (ex, v, 2)), and so on.

We formalise this idea as follows. Let Zj be a vector mapping each vertex v of G to the
value Zj(v) of vertex (v, j) in GK . Then, let us define an operator H such that Zj+1 = H(Zj).
The intuition behind the definition of H(Y ) for some vector Y , is to extract from GK one copy
of the game, and make Y appear in the weights of some edges as illustrated in Figure 4. This
game, GY , simulates a play in G in which Min can opt for ‘leaving the game’ at each round
(by moving to the target), obtaining max(0, Y (v)), if v is the current vertex. Then H(Y )(v)
is defined as the value of v in GY . By construction, it is easy to see that Zj+1 = H(Zj) holds
for all j > 1. Furthermore, we define Z0(v) = −∞ for all v, and have Z1 = H(Z0). One can
prove the following properties of H: (i) H is monotonic, but may not be Scott-continuous;
(ii) the sequence (Zj)j>0 converges towards ValG .

We are now ready to introduce Algorithm 2 to solve total-payoff games. Intuitively, the
outer loop computes, in variable Y, a non-decreasing sequence of vectors whose limit is ValG ,
and that is stationary (this is not necessarily the case for the sequence (Zj)j>0). Line 1
initialises Y to Z0. Each iteration of the outer loop amounts to running Algorithm 1 to
compute H(Ypre) (lines 3 to 10), then detecting if some vertices have value +∞, updating Y
accordingly (line 11, following the second item of Proposition 2). One can show that, for all
j > 0, if we let Y j be the value of Y after the j-th iteration of the main loop, Zj 4 Y j 4 ValG ,
which ensures the correctness of the algorithm.

I Theorem 3. If a total-payoff game G = 〈V,E, ω,TP〉 is given as input, Algorithm 2
outputs the vector ValG of optimal values, after at most K = |V |(2(|V | − 1)W + 1) iterations
of the external loop. The complexity of the algorithm is O(|V |4|E|W 2).

The number of iterations in each internal loop is controlled by Theorem 1. On the example
of Figure 2(a), only 2 external iterations are necessary, but the number of iterations of each
internal loop would be 2W . By contrast, for the total-payoff game depicted in Figure 2(b),
each internal loop requires 2 iterations to converge, but the external loop takes W iterations
to stabilise. A combination of both examples would experience a pseudo-polynomial number
of iterations to converge in both the internal and external loops, matching the W 2 term of
the above complexity.
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Algorithm 2: A value iteration algorithm for total-payoff games.
Input: Total-payoff game G = 〈V,E, ω,TP〉, W largest weight in absolute value

1 foreach v ∈ V do Y(v) := −∞
2 repeat
3 foreach v ∈ V do Ypre(v) := Y(v); Y(v) := max(0,Y(v)); X(v) := +∞
4 repeat
5 Xpre := X
6 foreach v ∈ VMax do X(v) := maxv′∈E(v)

[
ω(v, v′) + min(Xpre(v′),Y(v′))

]
7 foreach v ∈ VMin do X(v) := minv′∈E(v)

[
ω(v, v′) + min(Xpre(v′),Y(v′))

]
8 foreach v ∈ V such that X(v) < −(|V | − 1)W do X(v) := −∞
9 until X = Xpre

10 Y := X
11 foreach v ∈ V such that Y(v) > (|V | − 1)W do Y(v) := +∞
12 until Y = Ypre
13 return Y

Optimal strategies. In Section 3, we have shown, for any min-cost reachability game, the
existence of a pair of memoryless strategies permitting to reconstruct a switching optimal
strategy for Min (if every vertex has value different from −∞, or a strategy ensuring any
possible threshold for vertices with value −∞). If we apply this construction to the game
GValG , we obtain a pair (σ1

Min, σ
2
Min) of strategies (remember that σ2

Min is a strategy obtained by
the attractor construction, hence it will not be useful for us for total-payoff games). Consider
the strategy σMin, obtained by projecting σ1

Min on V as follows: for all finite plays π and
vertex v ∈ VMin, let σMin(πv) = v′ if σ1

Min(v) = (in, v′). We can show that σMin is optimal for
Min in G. Notice that σ1

Min, and hence σMin, can be computed during the last iteration of
the value iteration algorithm, as explained in the case of min-cost reachability. A similar
construction can be done to compute an optimal strategy of Max.

5 Implementation and heuristics

In this section, we report on a prototype implementation of our algorithms.4 For convenience
reasons, we have implemented them as an add-on to PRISM-games [5], although we could
have chosen to extend another model-checker as we do not rely on the probabilistic features
of PRISM models (i.e., we use the PRISM syntax of stochastic multi-player games, allowing
arbitrary rewards, and forbidding probability distributions different of Dirac ones). We then
use rPATL specifications of the form 〈〈C〉〉Rmin /max=?[F∞ϕ] and 〈〈C〉〉Rmin /max=?[Fc⊥] to
model respectively min-cost reachability games and total-payoff games, where C represents
a coalition of players that want to minimise/maximise the payoff, and ϕ is another rPATL
formula describing the target set of vertices (for total-payoff games, such a formula is not
necessary). We have tested our implementation on toy examples. On the parametric one
studied after Theorem 3, obtained by mixing the graphs of Figure 2 and repeating them for
n layers, results obtained by applying our algorithm for total-payoff games are summarised in
Table 1, where for each pair (W,n), we give the time t in seconds, the number ke of iterations
in the external loop, and the total number ki of iterations in the internal loop.

4 Source and binary files, as well as some examples, can be downloaded from http://www.ulb.ac.be/di/
verif/monmege/tool/TP-MCR/.

http://www.ulb.ac.be/di/verif/monmege/tool/TP-MCR/
http://www.ulb.ac.be/di/verif/monmege/tool/TP-MCR/
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Table 1 Results of value iteration on a parametric example.

without heuristics with heuristics
W n t ke ki t ke ki

50 100 0.52s 151 12,603 0.01s 402 1,404
50 500 9.83s 551 53,003 0.42s 2,002 7,004
200 100 2.96s 301 80,103 0.02s 402 1,404
200 500 45.64s 701 240,503 0.47s 2,002 7,004
500 1,000 536s 1,501 1,251,003 2.37s 4,002 14,004

We close this section by sketching two techniques that can be used to speed up the
computation of the fixed point in Algorithms 1 and 2. We fix a weighted graph 〈V,E, ω〉.
Both accelerations rely on a topological order of the strongly connected components (SCC
for short) of the graph, given as a function c : V → N, mapping each vertex to its component,
verifying that (i) c(V ) = {0, . . . , p} for some p > 0, (ii) c−1(q) is a maximal SCC for all q,
(iii) and c(v) > c(v′) for all (v, v′) ∈ E.5 In case of an MRC game with t the unique target,
c−1(0) = {t}. Intuitively, c induces a directed acyclic graph whose vertices are the sets
c−1(q) for all q ∈ c(V ), and with an edge (S1, S2) if and only if there are v1 ∈ S1, v2 ∈ S2
such that (v1, v2) ∈ E.

The first acceleration heuristic is a divide-and-conquer technique that consists in applying
Algorithm 1 (or the inner loop of Algorithm 2) iteratively on each c−1(q) for q = 0, 1, 2, . . . , p,
using at each step the information computed during steps j < q (since the value of a
vertex v depends only on the values of the vertices v′ such that c(v′) 6 c(v)). The second
acceleration heuristic consists in studying more precisely each component c−1(q). Having
already computed the optimal values Val(v) of vertices v ∈ c−1({0, . . . , q − 1}), we ask
an oracle to precompute a finite set Sv ⊆ Z∞ of possible optimal values for each vertex
v ∈ c−1(q). For MCR games and the inner iteration of the algorithm for total-payoff games,
one way to construct such a set Sv is to consider that possible optimal values are the one of
non-looping paths inside the component exiting it, since, in MCR games, there exist optimal
strategies for both players whose outcome is a non-looping path (see Section 3).

We can identify classes of weighted graphs for which there exists an oracle that runs in
polynomial time and returns, for all vertices v, a set Sv of polynomial size. On such classes,
Algorithms 1 and 2, enhanced with our two acceleration techniques, run in polynomial time.
For instance, for all fixed positive integers L, the class of weighted graphs where every
component c−1(q) uses at most L distinct weights (that can be arbitrarily large in absolute
value) satisfies this criterion. Table 1 contains the results obtained with the heuristics on the
parametric example presented before. Observe that the acceleration technique permits here
to decrease drastically the execution time, the number of iterations in both loops depending
not even anymore on W . Even though the number of iterations in the external loop increases
with heuristics, due to the decomposition, less computation is required in each internal loop
since we only apply the computation for the active component.
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