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ABSTRACT
Arrays of sensors freely located along an axis are considered
in this paper that are used to localize a near-field emitting
source. Using Taylor expansion and a suitable coordinate sys-
tem, simple, yet rich to interpret, Cramer-Rao bounds relative
to the direction and range parameters are derived. Our analy-
sis allows in particular to unveil a family of non-uniform lin-
ear arrays with better near field estimation capabilities, com-
pared to the well-established uniform linear arrays.

Index Terms— Direction of arrival, range, near-field, an-
tenna arrays, performance analysis, Cramer-Rao bound.

1. INTRODUCTION

Antenna arrays is a major field of statistical signal processing
and direction finding is among the most investigated topics
[1]. The complexity of the antenna array near-field propaga-
tion model explains the limited research and the scarcity of
results, the existing literature being mostly concerned with
antenna arrays far-field analysis and applications. A recent
interest in parameter estimation of near-field sources has
just emerged, focusing on the Cramer-Rao Bounds (CRB) of
DOA and range estimated by means of the Uniform Linear
Array (ULA) [2, 3] and the Uniform Circular Array (UCA)
[4], respectively. Despite the importance and wide use of
the ULA and the UCA, these results are of limited interest,
especially if one thinks about the developing interest about
irregular array geometries and methods to design advanta-
geous (w.r.t. the ULA) non-uniform linear arrays [5]. This
paper addresses linear arrays with freely spaced sensors and
shows that there is a room to outperform the ULA from the
viewpoint of near-field source localization.

Our Taylor expansion of the CRB is based on the exact
time delay formula, similarly as [2, 3], but uses a different
coordinate system. It judiciously leads to more compact and
more interpretable CRB expressions that apply to arbitrary
linear arrays. For instance, we identify a class of centro-
symmetric linear arrays with better near-field estimation ca-
pabilities. They include, but are not limited to, the ULA.
In fact, within centro-symmetric linear arrays, we identify

some geometric parameters that characterize linear (but non-
uniform) arrays with better estimation than the ULA for near-
field sources, while being equivalent for far-field sources.

The paper is organized as follows. Sec. 2 presents the
near-field signal model and coordinate system. Sec. 3 is dedi-
cated to the derivation of simple and interpretable closed-form
expressions of the CRB on DOA and range. Then, Sec. 4 is
focused on the special class of centro-symmetric arrays and
key-geometric parameters that determine their performance.
This ultimately leads to non-uniform centro-symmetric arrays
that achieve better accuracy than the ULA for localizing near-
field sources. A conclusion is given is Sec. 5.

2. SIGNAL MODEL

We consider a linear antenna array of P sensors C1, · · · , CP

located along the x-axis, at coordinates x1, · · · , xP , respec-
tively, as shown on Fig. 1. The array centroid is assumed to be
at the origin O, which allows for a more compact expressions
of the CRB, compared to [2, 6]. A source S emits a narrow-
band signal s(t) (with wavelength λ) in the direction of the
antenna array. It is at a distance r from the origin O and forms
an angle θ with [O, y). At time t, the source originates at sen-
sor p the snapshot yp(t) = exp (iτp) s(t)+np(t), where np(t)
represents the ambient additive noise, while τp=̂2π(SO −
SCp)/λ is also equal to

τp = 2π
r

λ
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)
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Fig. 1. Source in the near-field of the arbitrary linear array.



Based on N snapshots {yp(t)}p=1,...,P ;t=t1,...,tN , es-
timates of both range r and DOA θ are obtained using a
variety of algorithms. Some are capable of achieving the
CRB [7]. Indeed, we adopt the stochastic CRB as our
evaluation criterion, assuming the usual statistical proper-
ties about np(t) and s(t): (i) np(t) and s(t) are indepen-
dent, (ii) {np(t)}p=1,...,P ;t=t1,...,tN are independent, zero-
mean circular Gaussian distributed with variance σ2

n, (iii)
{s(t)}t=t1,...,tN are assumed to be independent zero-mean
circular Gaussian distributed with variance σ2

s (the so-called
unconditional or stochastic model).

3. TAYLOR EXPANSION OF THE CRB

To derive the stochastic CRB on θ and r, we use the general
matrix expression of the stochastic CRB given for several pa-
rameters per source [8] and adapted to a single source. This
gives CRB(θ, r) = F−1 with

F =
2Nσ4

s

σ2
n(σ

2
n + Pσ2

s)

[
PDHD−DHaaHD

]
, (1)

where a = [eiτ1 , ..., eiτP ]T is the steering vector and D the
derivative [∂a∂θ ,

∂a
∂r ]. A long proof (proofs can be found in [9])

leads to the following expression of the 2× 2 matrix F:
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p (with in particular, S1 = 0) are purely
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, ϵ=̂ 1

r maxp |xp| and o(ϵk) sat-
isfying limϵ→0 o(ϵ

k)/ϵk = 0.
From [F]1,2, the DOA is decoupled from the range to the

second-order in ϵ iff S3 = 0. This class of arrays that will be
studied in details in Sec. 4 will have many advantages. For
the moment, we give results for arbitrary values of S3.

From the above, the following expressions of the CRB on
the DOA and range are obtained after tedious derivations.
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In these CRB expressions, terms in 1/r vanish if S3 = 0
in (2) and if S3 = S5 = 0 in (3). This is not a marginal
scenario as it concerns in particular the ULA. To cover these
cases, we prove that, for arrays with S3 = 0, we have
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(4)
For those satisfying both S3 = 0 and S5 = 0, we have
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4. CENTRO-SYMMETRIC ARRAYS

We define centro-symmetric arrays as those linear arrays with
sensors disposed symmetrically w.r.t. the origin, ones with
coordinates of the form ±x(1),±x(2), · · ·, with, possibly, a
sensor at the origin. Obviously, such an array verifies Si =
0 for any odd i. The opposite is not always true. Actually
we prove that1 an array is centro-symmetric iff Si = 0 for
any odd i less or equal to P . We will rather focus on the
closed-form expressions (4)-(5) to analyze the impact of the
array geometry (in terms of the non-zero S2, S4 and S6) on
the array estimation performance for both DOA and range, of
both far-field and near-field sources.

4.1. Relations between far-field and near-field DOA per-
formance

We start by recalling the stochastic DOA CRB in the far-field
propagation model [11, rel. (5)] given for arbitrary linear ar-
rays by

CRBFF(θ) =
c

cos2(θ)PS2
. (6)

Compared to (4), we realize that arrays for which S3 = 0 (in-
cluding centro-symmetric arrays) achieve CRBFF(θ) when
the source-to-array distance tends to infinity. At the same
time, θ and r estimates are decoupled, as pointed out ear-
lier. Other advantages of centro-symmetric arrays include
a larger domain of validity of our approximations as a re-
sult of the convergence in 1/r2 compared to 1/r for non
centro-symmetric arrays. More unusual is the behavior of
non centro-symmetric arrays (and, in general, those with a
non-zero S3). Because 1 PS4 − S2

2 > 0, such arrays verify

lim
r→∞

CRB(θ) > CRBFF(θ).

1Proofs, detailed in [9], about S2, S4 and S6 are based on the Newton-
Girard Formula [10, pp. 69-74] that allows iterative calculation of Si.



Now, w.r.t. [F]1,2, θ and r are coupled to the second-order
in ϵ. More precisely, the square of [F]1,2 and the term [F]2,2
tend to zero with the same speed. This is in contrast to the
case S3 = 0, for which the square of [F]1,2 tends to zero more
rapidly than [F]2,2 when r tends to ∞. Consequently, from
the practical point-of-view, as far as only the DOA parameter
is considered, the far-field propagation model, although ap-
proximative, may be preferable to the exact near-field model
for non centro-symmetric arrays with S3 ̸= 0.

To illustrate the different behavior of centro-symmetric
and non centro-symmetric arrays in the near-field region, we
test in Fig. 2 antenna arrays of P = 4 sensors. On the one
hand, the ULA with a constant inter-sensors spacing d and for
which S3 = S5 = 0. On the other hand, the minimum hole
and redundancy linear array (MHRLA) with inter-spacings d,
3d, 2d [12] and for which S3 ̸= 0. Thanks to a larger aper-
ture, the MHRLA exhibits a lower far-field CRB, for instance,
CRBMHRLA

FF (θ)/CRBULA
FF (θ) ≈ 0.22. However, due to the

coupling of θ and r in the the matrix F of the MHRLA, we
have limr→∞ CRB(θ) > CRBFF(θ) for this array. Further-
more, this figure confirms that the domain of validity of our
approximations is much larger for the centro-symmetric than
for non centro-symmetric arrays.
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Fig. 2. Approximative [(from (2), (4)) ] and exact [deduced from
(1)] ratios CRB(θ)/CRBFF(θ) for 4-sensors ULA and MHRLA
and a source at θ = 50◦.

4.2. Near-field performance

We have favored centro-symmetric arrays verifying S3 = 0
mainly because they do not suffer degradation in the DOA
CRB when source tends to be in the antenna far-field. Among
those arrays with S3 = 0, those with identical S2 achieve the
same far-field DOA CRB. Now, out from these ones, we will
be able to identify better ones, on the basis of the DOA and
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Fig. 3. Near-field DOA estimation performance, as expressed by
fθ(κ), as function of the geometry of the centro-symmetric array, as
expressed by parameter κ.

range (near-field) CRBs. The following rewriting of (4-5) will
be helpful for this purpose
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appear as two key geometric parameters that determine the
near-field accuracy of the antenna array. They also can be
proved to verify the following interesting properties 1

η ≤ κ ≤ 1

and
η ≃ 4

5
(
3
κ − 5

2

) for P ≫ 1.

While S2 determines the array far-field DOA estimation
performance, κ and η are all what matters for near-field DOA
and range estimation performance. In practice, only κ is im-
portant, in regard of the predominant terms in (7) and (8). It
affects (8) through the increasing function 1/(1/κ − 1), and
affects (7) through function fθ(κ)

fθ(κ)=̂
1

κ

[(
1 +

4

1− κ

)
sin2(θ) + 1

]
,



illustrated in Fig. 3. Considering DOA estimation, choosing
κ loosely close to 1/2 ensures limited degradation in all look
directions. If κ is close to (but lower than) 1/2, then it also
ensures better estimation of the range parameter as well.

4.3. Comparison with the ULA

To better illustrate the impact of κ on the estimation per-
formance of both DOA and range, we compare the 6-
sensors ULA (with sensors placed at ±0.1195, ±0.3586
and ±0.5976) against a non-ULA array of 6 sensors located
at ±0.1281, ±0.2396 and ±0.6528. Both arrays exhibit the
same S2 = 1 (and, hence, have identical far-field DOA esti-
mation CRBs). However, κ is equal to 0.577 for the ULA and
to 0.45 for the non-ULA.

In Fig. 4, we report the ratios

CRB(θ)|non−ULA

CRB(θ)|ULA
and

CRB(r)|non−ULA

CRB(r)|ULA
,

calculated using the exact CRB expressions and the approx-
imate CRB expressions in (7) and (8). There, we can see
that while we obtain similar DOA performance (with a slight
degradation), the non-ULA array has better range estimation
capabilities. From (7), all centro-symmetric linear arrays
characterized by a given size P and a given value of S2 verify

lim
r→∞

CRB(θ)|non−ULA

CRB(θ)|ULA
= 1.

However, from (8), the κ-dependent function

RP (κ) =̂ lim
r→∞

CRB(r)|non−ULA

CRB(r)|ULA
=

1
κULA

− 1
1
κ − 1
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Fig. 4. DOA and range CRBs of the non-ULA (κ = 0.45) normal-
ized to that of the equivalent ULA (κ = 0.577) for θ = 40◦. Both
arrays are made of P = 6 sensors and are such that S2 = 1.

can be seen as an indicator of improvement (over the ULA)
whenever it is lower than one. For instance, if P ≫ 1,

RP (κ) =
4

5

1
1
κ − 1

.

This ratio is illustrated in Fig. 5 for the domain2 [0.3, 0.7] of κ
outside which DOA near-field performance degrades severely
(as clear from Fig. 3). It can be seen from Fig. 5 that the (far-
field) range CRB can be reduced by a much as 50% by an-
tenna arrays with a κ moderately lower than that of the ULA.
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Fig. 5. Centro-symmetric non-ULA versus ULA: Compared range
estimation performance of far-field sources.

5. CONCLUSION

Accurate, simple and interpretable closed-form expressions
of the CRB for both angle and range parameters of a near-field
narrow-band source have been obtained for arbitrary linear ar-
rays using the exact expression of the time delay parameter.
They show the exact geometric condition for the antenna ar-
ray to have an attractive behavior in its near-field: better preci-
sion and faster convergence to the far-field DOA CRB. Such a
class of centro-symmetric arrays includes, but is not restricted
to the ULAs. Furthermore, it is proved that appropriately de-
signed centro-symmetric non-ULA can largely improve the
range estimates without deteriorating the DOA estimates un-
der near-field conditions.

2In fact, extreme values of κ (i.e., 0 and 1) are achieved by impractically
co-localized sensors, either at the origin, or at the same distance (and on both
sides) from the origin.
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