
HAL Id: hal-01273391
https://hal.science/hal-01273391

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software product lines evolution for valuable reusability
Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury

To cite this version:
Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury. Software product lines evolution for
valuable reusability. 21th LAAS international science conference, Apr 2015, Beyrouth, Lebanon. �hal-
01273391�

https://hal.science/hal-01273391
https://hal.archives-ouvertes.fr


1 
 

Software product lines evolution for valuable reusability 

 

GHABACH Eddy1,2, BLAY-FORNARINO Mireille2,EL KHOURY Franjieh1,3,  

BAZ Badih1 

 

Université Saint-Esprit de Kaslik (Liban) 1, Université Nice Sophia Antipolis – i3s (France) 2 

Université Lyon 1 (France) 3 

ghabach@i3s.unice.fr,blay@i3s.unice.fr,franjiehkhoury@hotmail.com, 

franjiehelkhoury@usek.edu.lb, badih.baz@usek.edu.lb 

 

Nowadays, adopting software product line (SPL) development approach becomes a successful 

strategic decision in software development since the rapid time to market necessity is 

guaranteed by SPLs due to assets reusability [1,2]. However, the expansion of the market 

segment implies a boost of user’s requirements that should be satisfied by quickly developing 

new products [1]. Thus, an agile evolution of SPLs becomes a necessity. 

The general purpose of a SPL is the automated construction of a new product based on the 

reusability of existing features [2]. A feature is a characteristic defined by the domain experts 

[3] that abstracts a set of software-related resources called assets. Thus, a feature model (FM) 

represents all the products of the SPL and permits capturing products commonalities and 

variability [3]. To generate a new product, a user selects a set of features via a process called 

configuration by respecting the constraints defined in the FM [2]. 

Despite that SPLs permit reusability, generating a new product that uses features related to 

different products is not supported by a classic FM [3]. In other words, if two products 𝑃1 and 

𝑃2 leaded respectively to the injection of the features 𝐹1 and 𝐹2 in the 𝐹𝑀, the latter does not 

support the generation of a new product 𝑃3 that uses both  𝐹1 and 𝐹2 since they refer to different 

products. However, in our desired approach we want to design evolved 𝐹𝑀𝑠 that make the 

previous operation feasible. In addition, to benefit from a valuable reusability, we are interested 

in focusing on the fact that a product can be constructed from a subset of the SPLs’ features – 

regardless of referring to one or many products, or from a set of features that some of them are 

not part of the SPL. Thus, we should identify the features that are not part of the SPL once 

requested, connect them – if required – to the existing features that we still need from the SPL 

and integrate them in the SPL to be able to use them later. On the other hand, it is necessary to 

guarantee an agile evolution of the SPL, thus our approach should adopt mechanisms that 

automate as much as possible the software development process, minimize its overhead and 

simplify its complexity. 

Many research papers concentrated on SPLs engineering [6], variability management [5], FMs 

configuration [3] and organizational SPL development challenges [1], but few of them focused 

on the evolution of SPLs [4]. However, after the successful adoption of SPL as a software 

development approach, evolving an SPL becomes a necessity for a sustainable development.  

In the SPL engineering field, we define an information system as a set of interconnected assets 

corresponding to some well-defined features. Each information system is identified by a unique 

version. Thus, an information system product line can be defined as a set of features belonging 

to a specified domain, where this set consists of the union of the features defined or used by all 

the information system versions. In other words, our global FM is the union of the features of 



2 
 

the produced versions. Thus, the set of features or a subset of it consists of a configuration. We 

classified the configurations into two categories: predefined configurations where an existing 

version fulfills the required configuration and non-predefined configurations where a 

configuration refers to a set or a subset of features that are not strictly fulfilled by an existing 

version – thus a new version should be produced. 

Based on best practices of the domain experts, developing and evolving SPLs requires to 

involve the client in the different phases of this process [1,6]. Thus we defined our perspective 

as follows: once a client arrives with new requirements, we navigate through the line feature 

model and respectively through the configuration knowledge engine, then we select all existing 

features that fulfill the client requirements. In case all the requirements are covered, we 

generate the product and deliver it to the client, either using an existing version (that was 

produced using the same features) or by creating a new version (by assembling a set of existing 

features). In other case, where a subset of the requirements is not covered, we determine the 

features that should be added (if any) or modified and respectively we determine the assets to 

be added, modified or deleted, before creating a partial version of the desired product. We mean 

by partial version, a version that contains the assets related to the features selected existing 

already in our line, in addition (if possible) to a skeleton of the assets related to the new/updated 

feature-related assets. Afterwards, we validate the extra requirement with the client based on 

the partial version, before updating the partial version by adding the new required assets. At 

this level, we should on one side, create the new version requested by the client (𝑣𝑖), and on 

other side, integrate the new artefacts in our product line (𝑃𝐿) in order to reuse them in future 

configurations.  

To develop our approach, we created multiple products concentrated on a set of domain-related 

features, and for each new production process we applied a different configuration category 

and we created our new product by selecting, adding, modifying and removing artefacts from 

the existing versions. Therefore, we tracked the different steps from the choice of the versions 

that we were based on to create the new version, the operations that we used on the features, 

activities and assets, and the trace of the steps that we did to execute each step. Thus, we defined 

some rules, constraints and operators to be used during the creation of a new product. 

Finally, to adopt our approach it is necessary to provide an asset per version model to identify 

the assets related to each version, an asset per feature model to identify the assets related to 

each feature, a version to feature model to identify the features fulfilled by each version, an 

algorithm that automatically selects the minimum number of versions providing the 

maximum of the requested features for a given configuration and an algorithm that 

automatically performs the selection of assets per feature and provides suggestions to the 

product developer.  

[1] Bosch, J., Bosch-Sijtsema, P.M.: Introducing agile customer-centered development in a legacy 

software product line. Softw. Pract. Exp. 41, 8, 871–882 (2011). 

[2] Trigaux, J.C., Heymans, P.: Software Product Lines: State of the art. (2003). 

[3] Czarnecki K, Helsen S., Eisenecker3 U., Staged Configuration through Specialization and 

Multilevel Configuration of Feature Models, Software process improvement and practice, 143-

169, (2005). 

[4] Borba P., Alves V, Sena D, Investigating the Safe Evolution of Software Product Lines, GPCE’ 

11, ACM (2011) 

[5] Brummermann, H. et al.: Variability issues in the evolution of information system ecosystems. 

Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive Systems. pp. 

159–164 ACM, New York, NY, USA (2011). 

[6] Bosch, J.: Toward Compositional Software Product Lines. IEEE Softw. 27, 3,(2010). 

 


