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A UNIFORMLY ACCURATE (UA) MULTISCALE TIME INTEGRATOR
PSEUDOSPECTRAL METHOD FOR THE DIRAC EQUATION IN THE
NONRELATIVISTIC LIMIT REGIME*

WEIZHU BAOT, YONGYONG CAT#, XIAOWEI JIAS, AND QINGLIN TANGY

Abstract. We propose and rigourously analyze a multiscale time integrator Fourier pseudospectral (MTI-FP)
method for the (linear) Dirac equation with a dimensionless parameter ¢ € (0, 1] which is inversely proportional to the
speed of light. In the nonrelativistic limit regime, i.e. 0 < € < 1, the solution exhibits highly oscillatory propagating
waves with wavelength 0(52) and O(1) in time and space, respectively. Due to the rapid temporal oscillation, it is quite
challenging in designing and analyzing numerical methods with uniform error bounds in € € (0, 1]. We present the MTI-
FP method based on properly adopting a multiscale decomposition of the solution of the Dirac equation and applying
the exponential wave integrator with appropriate numerical quadratures. By a careful study of the error propagation
and using the energy method, we establish two independent error estimates via two different mathematical approaches
as h™0 + ’;—2 and h™0 4 72 4 2, where h is the mesh size, T is the time step and mg depends on the regularity of the
solution. These two error bounds immediately imply that the MTI-FP method converges uniformly and optimally in
space with exponential convergence rate if the solution is smooth, and uniformly in time with linear convergence rate at
O() for all € € (0,1] and optimally with quadratic convergence rate at O(72) in the regimes when either ¢ = O(1) or
0 < & < 7. Numerical results are reported to demonstrate that our error estimates are optimal and sharp. Finally, the
MTI-FP method is applied to study numerically the convergence rates of the solution of the Dirac equation to those of
its limiting models when & — 0.

Key words. Dirac equation, nonrelativistic limit regime, uniformly accurate, multiscale time integrator, exponential
wave integrator, spectral method, error bound

1. Introduction. Quantum mechanics and relativity theory were the two major physics discov-
eries in the last century. The first successful attempt to consistently integrate these two fundamental
theories was made by the British physicist Paul Dirac in 1928 [16,17], resulting in the equation known
as the Dirac equation. It describes the evolution of spin-1/2 massive particles, such as electrons and
quarks. It is a relativistic version of the Schrodinger equation for quantum mechanics, consistent with
Albert Einstein’s special relativity. Dirac’s theory led to the rigorous explanation for the fine structure
of the hydrogen spectrum and the prediction of the antimatter [3], and predated the experimental dis-
covery of positron. In different parameter limits, the Dirac equation collapses to the Pauli equation, the
Schrédinger equation, and the Weyl equation, respectively. Since the first experimental realization of
graphene in 2003 [1,35], much attention has been drawn to the study of the structures and/or dynamical
properties of graphene and graphite as well as two dimensional (2D) materials [34], in which the Dirac
equation plays an important role. This remarkable experimental advance renewed the interest on the
theoretical analysis and numerical simulation of the Dirac equation and/or the (nonlinear) Schrédinger
equation without/with external potentials, especially the honeycomb lattice potential [2,20,21].

After proper nondimensionlization and dimension reduction, the (linear) Dirac equation for the
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spin-1/2 particles with external electromagnetic potential in d (d = 3,2,1) dimensions reads [3,7,13,
16,17,29, 36, 37]:

. d d
. 7 1
(1.1) 0,0 (t,x) = |- > a0+ S+ VX)L - > At x)e; | U(tx), xeRY
j=1 j=1
with the initial data
(1.2) U(t=0,x) = Vp(x), xR
where i = /=1, t is time, x = (21,...,24)7 € R? is the spatial coordinate vector, 9 = % (k =

L...,d), V:=U(t,x) = (V1(t,x),¥a(t, x), ¥3(t, %), ¥a(t, x))T € C* is the complex-valued vector wave
function of the “spinorfield”, ¢ € (0,1] is a dimensionless parameter inversely proportional to the speed
of light. I,, is the n x n identity matrix for n € N, V := V(¢,x) is the real-valued electrical potential
and A = A(t,x) = (A1(t,X),... Ag(t,x))T is the real-valued magnetic potential vector. In addition,
the 4 x 4 matrices a1, ao, a3 and 8 are defined as

o 0 01 o 0 g9 o 0 g3 o IQ 0
(13) 041(0_1 0>, 042<0_2 0)7 a3<0'3 O)a ﬂ<0 _12>7

where o1, 09, 03 are the Pauli matrices given by

(1.4) 01:<(1) é) 02:<? Oi), 03=<(1) _01)

The Dirac equation (1.1) with (1.2) conserves the total mass

4
(1.5) 1T (t,))? = /]Rd|\I}(t7x)|2dxz/}RdZ\wj(t,x)\deE [w(0,)]% = [T,  t>0.
j=1

In addition, if the external electromagnetic potentials are time independent, i.e. V(¢,x) = V(x) and
Aj(t,x) = A;(x) (1 <j<d), the Dirac equation (1.1) with (1.2) conserves the energy

. d d
1
(1.6) E(t) == /}R {} W00+ BT+ VI = YA () e, | dx = B(0), >0,
j=1

j=1

where U* = BT denotes the conjugate transpose of U. In the nonrelativistic limit regime, i.e. 0 < € < 1,
as proven in [12,15,29,31-33,37,40], the solution ¥ of the Dirac equation (1.1) can be split into the
electron part and the positron part, i.e.,

1 0

(1.7) T = e it/e %2 1 eit/e? £ +0(e) = e*it/ssze 4 eit/e? o, + O(e),
3
0 P4

where both the ‘electron component’ ®. and ‘positron component’ ®,, satisfy the (different) Schrédinger
equation [12,37]. In addition, a higher order O(£?) approximate model of the Pauli-type equation was
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provided in [31,32]. For details of the nonrelativistic limit of the Dirac equation (1.1), we refer the
readers to [12,31,32,37] and references therein.

In practice, for lower dimensions d = 1,2, the Dirac equation (1.1) can be split into two equivalent
sets of decoupled equations with two components each [7] and thus can be reduced to the following
equation for ® := ®(t,x) = (¢1(t,%), P (t,x))? € C? as

. d d
(1.8) 10; P gz 0,0 203 +V(t,x)Iy — ZAj(t,x)aj ®(t,x), xeRY,
j=1 j=1
with the initial data
(1.9) P(t = 0,x) = Po(x), x € RY, d=1,2,

where ® = (1,14)7 (or ® = (12,13)T in one dimension (1D) and under the transformation xo — —x
and Ay — —As in 2D). As a result of its simplicity compared to (1.1), the Dirac equation (1.8) has
been widely used when considering the 1D and 2D cases [7,39,42].

Similarly, the Dirac equation (1.8) with (1.9) conserves the total mass

2
(L10) ol = [ eexPax= [ S ltxR dc= 1900 = [@0l% 120,
j=1

Furthermore, if the external electromagnetic potentials are time-independent, i.e. V(¢,x) = V(x) and
A;(t,x) = A;(x) (1 <j<d), the Dirac equation (1.8) with (1.9) conserves the energy

1 *
(1.11) E(t)::/Rd ﬂZq) 0;0;® + 5P 05® + V(x )| @2 — ZA x)®*0;® | dx = E(0), t > 0.

For the Dirac equation (1.8), one can obtain the nonrelativistic limit which is similar to (1.7) and the
detail is omitted here for brevity [12,31,32,37].

There have been extensive theoretical and numerical results for the Dirac equation (1.1) (or (1.8))
in the literatures. Along the analytical front, time independent states and dynamical properties have
been thoroughly investigated, such as the bound states [18], semi-classical limit [23] and nonrelativistic
limit [12,33,37], etc. Along the numerical front, various finite difference time domain (FDTD) methods
[4,24, 25,39, 42], time-splitting Fourier pseudospectral (TSFP) method [11, 28] and Gaussian beam
method [41] have been proposed to solve the Dirac equation (1.1) (or (1.8)). However, most existing
numerical methods are designed for the efficient and accurate simulation of the Dirac equation (1.1)
(or (1.8)) in the parameter regime ¢ = O(1). In fact, for the Dirac equation in the nonrelativistic
limit regime, i.e. 0 < ¢ < 1, based on the theoretical analysis [12, 15,29, 31-33,37,40], the solution
exhibits propagating waves with wavelength O(g?) and O(1) in time and space, respectively. This rapid
oscillation in time brings significant difficulties in designing and analyzing numerical methods for the
Dirac equation (1.1) (or (1.8)) when 0 < ¢ < 1. Recently, we have rigorously analyzed and compared
the frequently used FDTD methods and TSFP method for the Dirac equation in the nonrelativistic
limit regime [7] and shown that the meshing strategy (or e-resolution) for the FDTD methods and
TSFP method should be h = O(/2), 7 = O(e®) and h = O(1), 7 = O(?), respectively, where h is the
mesh size and 7 is the time step. Thus, the existing FDTD and TSFP methods are capable to solve
the Dirac equation (1.1) (or (1.8)) efficiently and accurately in the regime € = O(1), and are much less
efficient and time consuming in the nonrelativistic limit regime 0 < ¢ < 1.
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The main aim of this paper is to design and analyze an efficient and accurate numerical method
for the Dirac equation (1.1) (or (1.8)) which is uniformly accurate (UA) for ¢ € (0,1]. The key
ingredients include adopting a multiscale decomposition of the solution of the Dirac equation [30] at
each time interval with proper transmission conditions at different time intervals and applying the
exponential wave integrator (EWI) with appropriate numerical quadratures which have been widely
explored in solving highly oscillatory ordinary differential equations (ODEs) [22,26,27] and dispersive
partial differential equations (PDEs) [6,9,10]. Then by a careful study of the error propagation and
using the energy method, we establish two independent error estimates via two different mathematical
approaches for the MTI-FP method as h"™° + ;—S and h™o 472 + 2 with mg depending on the regularity
of the solution. Thus the MTI-FP method converges uniformly in space and time with respect to
0 < e < 1. We remark here that a similar MTI-FP method has been recently designed and analyzed
for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime [8].

The rest of the paper is organized as follows. In section 2, we introduce a multiscale decomposition
for the Dirac equation (1.8) and design the MTI-FP method. In section 3, we establish rigorously
error estimates for the MTI-FP method. Section 4 is devoted to the numerical results of the MTI-
FP method and convergence rates of the solution of the Dirac equation to its limiting models in the
nonrelativistic limit regime. Finally, some conclusions are drawn in section 5. Throughout the paper,
we adopt standard notations of Sobolev spaces and their norms, and use the notation p < g to represent
that there exists a generic constant C' > 0, which is independent of time step 7, mesh size h and ¢, such
that |p| < Cq.

2. The MTI-FP method. For simplicity of notations, we shall only present our method and
analysis for the Dirac equation (1.8) in 1D, while all the notations and results can be easily generalized
to (1.8) in higher dimensions (2D) and (1.1) without any extra work. Denote

(2.1) T = —iec10; + 03, W(t,x) =V (t,x)l2 — A1(t,x)01, z€R,

where the domain of the operator 7 is (H!(R))?, and then the Dirac equation (1.8) in 1D can be
written as

(2.2) i0,0(t, 7) = ai?m(t,x) Wt 2)B(t, ).

We note that 7 is diagonalizable in the phase space (Fourier domain) and can be decomposed as

(2.3) T=vI—-AIll; —I-e2AT1l_,

where A = 9., is the Laplace operator in 1D and [ is the identity operator, IT; and II_ are projectors
defined as

—1/2 —-1/2

(2.4) M= [+ (-8)7 7], 1= [ (1-2a)7].
Here /I — €2A is understood in the Fourier space by the symbol /1 + £2£2 (¢ € R) with domain H!(R).
When A, I and /I —2A act on vector function ® = (¢1, ¢2)7, we mean that A, I and /T —e2A
act on two components ¢; and ¢o. It is easy to verify that II, +II_ = Iy and II,II_ = II_II; = O,
II2 =1II;. In addition, 7 and II+ can be easily calculated in Fourier domain.

As will be shown in the subsequent discussion, this decomposition of 7 is the key step for designing
the uniformly accurate numerical scheme. The idea is to decouple the solutions into the eigenspaces of
T in phase space by applying the projectors II1, and deal with the projections separately. It is worth
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noticing that the above formulation is in the whole space, while it is necessary to truncate the problem
onto a bounded domain in computation. Thanks to the Fourier series, the operator 7 and its associated
eigenvalue decomposition Il can be explicitly computed in the phase space for the bounded domain
case (see (2.21), (2.22)), which is crucial for the success of our method introduced below.

2.1. Multiscale decomposition. In order to design a uniformly accurate numerical method for
the Dirac equation (1.8) (or (1.1)), from the experience in designing uniformly accurate methods for the
nonlinear Klein-Gordon equation in the nonrelativistic limit regime [8,14,19], recalling that there exist
propagating waves with O(¢?) wavelength in time, a multiscale decomposition should possess O(g?)
accuracy, so that the first order time derivative of the residue is bounded and a uniformly accurate
scheme can be obtained. Thus, the first order Schrodinger decomposition (1.7) is inappropriate, and the
second order Pauli-type decomposition (see [12,31,33]) might work. However, due to the linearity of the
Dirac equation (1.8) (or (1.1)), we have a direct and better decomposition by applying the projectors
II. to the Dirac equation (1.8) [12].

Choose the time step 7 := At > 0 and denote time steps as t,, := n7 for n > 0. From ¢t = ¢,, to
tn+1, the solution ®(¢,x) = ®(t, + s,2) (denote ®"(x) = ®(t,,x)) to the Dirac equation (1.8) can be
decomposed as

(2.5) ®(t, + s,1) i/’ (\I/ (s, x) + U (s, ac)) +eis/e (\I'i"(s,w) + \P%"(s,x)) , 0<s<m,
where (\Il1 "(s,x) \Ill (s, ) solves the coupled system for x € R and 0 < s < 7 as

0,0 (s,0) = & (VI — 2D — 1) UL (s,2) + 114 (W\Ifi"(s, z) + Woh" (s, a:)) ,
(2.6) 10,01 (5,2) = L (—VT— A — I) UL (s,2) + T (pr};”(s, )+ WO (s, z)) :
ULM0,2) = 19" (x), ¥-"(0,2) =0,

with W := W (t,, + s, ), and similarly (\I'i’"(s,x), \112_"(5,33)) satisfies

g

10,02 (s,2) = & (VI = 28 + 1) U3 (s, ) + 11 (W\Iﬁ’"(& @)+ WTA" (s, x)) :
(2.7) 10,0 (s, 1) = & (—VI—e2A+1) U2 (s, ) 4+ 11 (W\I/i"(s,m) + W (s, a:)) ,

&

vI0,2) =0, U"(0,x) = I1_0" ().

Following the analysis in [12], it is easy to verify that U1"(s,z) = O(1), ¥>"(s,x) = O(1), 02" (s, z) =

0O(g?), \Pi"(s,x) = O(£2), and 9,9%™ = O(1) for k = 1,2. Thus ®(t,;1,) can be evaluated numer-
ically by solving the two coupled systems (2.6) and (2.7) via the exponential wave integrator Fourier
pseudospectral (EWI-FP) method [6,8] through the decomposition (2.5).

2.2. The MTI Fourier spectral discretization. As a common practice in the literatures [11,
13,24,25,28,36,41,42] for practical computation, the Dirac equation (1.8) with d = 1 is usually truncated
on a bounded interval Q = (a,b) for ® := ®(¢,z) € C?,

1
(2.8) 10 ®(t,x) = 8—27"1)(t7x) + W(t,z)®(t, x), reQ, t>0,

with periodic boundary conditions and initial condition as

(2.9) ®(t,x) is (b — a) periodic in z, t>0; ®(0,z) = Po(x), x€
5



where we use the same notations 7 and W (¢, ) here as those in the whole space case (2.1) by abuse of
notation and we remark that the domain of 7 here is (H,} (Q))? with H}(Q) = {u € H*(Q)|u(a) = u(b)}.
Then the systems (2.6) and (2.7) for the decomposition (2.5) with € @ and 0 < s < 7 collapse to
10,0 (5,2) = & (VI = 224 — I) UL (s, ) + 11 (W\Iflf(s, )+ WEhn (s, x)) ,
(2.10) 10,0 " (s, 1) = L (—VI—-e2A-1) O (s, ) + 11 (W\I/i_"(s,x) + W\Ill_”(s,x)) )
Uy (s,x) is (b — a) periodic in z, WL™(0,z) = [ ®(t,,z), ¥ "(0,2) =0,

and
10,02 (s,2) = & (VI = 28 + 1) U>"(s,2) + 11 (W\Ili’”(s, ) + WT>" (s, gc)) ,
(2.11) 10,0 (5,2) = & (—VT— A + I) U>"(s,2) + T (W\pi”(s, )+ WO (s, x)) :

U3 (s,x) is (b — a) periodic in x, W3™(0,2) =0, W>"(0,z) = I_B(t,,x).

Choose the mesh size h := Az = b;—f with M being a positive even integer and denote the grid

points as x; := a + jh for j = 0,1,..., M. Denote Xps = {U = (Uo,Un,...,Un)T | U; € C2,j =
0,1,..., M, Uy = Uy} and the ? norm in X,y is given by

(2.12) IUIE=h > (U5 Ue X
Introduce
. 21 M M
Yy =2pm X 2y, with Zp = span {¢l($) = gtu(e—a) =y il , 1= 5 T 1},
—a

Let [Cp(a, b)]? be the function space consisting of all periodic vector function U(x) : [a,b] — C?. For
any U(;U) [L2 (a,b)]? and U € X, define Pys @ [L?(a,b)]? — Yy as the standard projection operator,
Ing : [Cyp(a, )} — Yy and Ings 0 Xy — Yar as the standard interpolation operator, i.e.

M/2-1 M/2—1
(2.13) (PyU)(x Z Uyem =0 (IyU) (@)= Y el a<xz<b,
—M/2 I=—M/2
with
b M-—1
. : ~ 1 . M M
. —ip (z—a) _ L, —2iglm /M — _ -
(2.14) Ul_b—a/a Ulz)e dz, UZ—MZ_:Uje I == 5 -

where U; = U(z;) when U is a function. The Parseval’s identity implies that
(2.15) [ar (V)OI = 1Tz, VU € X

The Fourier spectral discretization for (2.10)-(2.11) reads:
Find \I/I;Tjw = \Pi@w(s) = \I/Il?v[(s,x) €Yy (0<s<7),ie.

M/2-1 _—_
(216)  UE (s,2)= > (qz’;”)l(s) erE=a) g <p<bh s>0, k=1,2,
——M/2



such that fora <z <band 0 < s <7

(2.17)

and

(2.18)

1,n

10,01 (5) = & (VI =28 — 1) WL" (s) + 1, (W\pifM(s) + W\IJTM(S)) :
0,017 () = % (—VT=2A = 1) ULy () + T (WL () + WL ()
v (I

lIj}i-,,nM(O) = (tnal:)) ’ \IjlvnM(O) = 07

10,037 (s) = & (VI— A + 1) W27 (s) + 11, (W@i?M(s) + W\If%j‘M(s)) ,
10,027 (5) = & (VT = A+ 1) U7 (s) +11_ (pri{;&(s) + W\IIQ_’ZW(s)) :
TR (0) =0, W2 (0) = Py (T_0(ty, ).

We then obtain the equations for the Fourier coefficients with 0 < s < 7 as

(2.19)

and

(2.20)

for | =

(2.21)

and Hl+

(2.22)

i, (@)l(s) =%l (31’\")1(8) + 11 (W/\Ifi\’,"M)l<s> +10 (W/ﬁ’i\’fM)ﬁS%
0. (qﬂ;")l(s) _ iy, (\Pl n)l(s) I (W\pif‘M)l(s) IO (W\Iflgf’M)l(s),

l

i0,(127) (9 =~ 1 (827) (9 + 17 (W3, )11 (W9, (o),

l

id, (mi”)l(s) A (;i\) (s) + I (W@M) (s) + ITF (W@) (5),

>N

—%7...,%—1, where

& =/1+¢e%u3, 5l+:51+1, 0, =0 — 1;

and II;” are the corresponding Fourier representations of the projectors 11 as

146, EpL 2 u? ey

mt = [ 2o 201, I = | 26(&+1) 25 | = f% % -1

1 EpL €71 ? 1 _EML 1+4; ’ 27'..72
26; 251(51+1) 26; 26,

Using the variation-of-constant formula, we can write the solution as

— — o — —

o

)l(s) it/ (‘I’i”)l )1 /0 07 (=) [ <(W@L?M)l(w) + (W@L7M>l(w)> dw,

—

—~
\}e"‘

n)l(s) _ eiéfrb'/ez (@)l(o) _i/os €i5l+(8—w)/621'[; ((W@M)l(w) + <W/\I]?’nM)l(w)> dw,

)1(8) — i s/ (‘I/i’")l(O) —i/s e_i‘sl+(s_7”)/‘€2H;r ((W/\I/?M)l(w) + (W@M)l(w)) dw,
0

- — o — —

(s) = e s/=" (w2™) (0) —i i (s weih, () + weh ) (w) ) dw.
l l 0 l
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Using the initial conditions and choosing s = 7, we can approximate the integrals via the Gautschi type
quadrature rules [8,22,26,27] or EWI [6-10]. Using Taylor expansion and the equations (2.17)-(2.18)
to determine the first order derivative, we can approximate the first integral in the above equation as

(2.23) —i/T eI (T—w)/E T+ ((W/qfi\’j’M)l(w) + (W/fo?j‘M)l(w)) dw

Z/O ¢t (=) [ 7+ ((WTI/EM)Z(O)—F (W/\I:??M)l(o)> dw
L /0 i (r—w) /e, (as(w/\p}?lM)l(oHas (W@M)l(())) duw

= py (7) I} (W\p+,M)l(0) +q (r) IO (as (W/\IHEM)Z(O) + 0, (W\IfifM)l(O)) :

where

— . —itdy . o T _ 7‘52 —ité, . 7T
(2.24) p; (1) = —iTe 2% sinc (2l€2> , g (1) = _f (] — e 22 sinc <2l€2>) ’

and sinc(s) = S22 with sinc(0) = 1. Note that p; (1) = O(7) and q (r)=0forl=-4 .. Y1,

and for the spemal case | =0, py (1) = —iT and ¢ (1) = —z— Similarly, the other mtsg,rals ’c;n be
approximated as
(2.25) z‘/OT ¢! (r=w)/ey <( \Ifi”M) )+ (W\I/1”M> > dw

~ —pF (1) (WWL”M)I 0) — g () 11, (as W\IJL”M ( ) + 8, (W/\p?j’M)l(O)>7
(2.26) —i/o =0 (r—w) [ TE W\Ifij‘M w)+ W\IJ%?M (w )) dw

(wet),
(W\I&fM)l(o) + 0, (W\IIQ_’,”M) 1(0)) :
(2.27) iy /0 ity (w2 g (W\I&?M)l(w) (W\If%m)l(w» dw

(0) g (1) 147 (9. (We37y, ) (0) + 2, (W\IJTM)I(O)) ,

L —

< () 1 (W92,), 00+ () 17 (0,
_|_

~ oy (W)

with ¢ denoting the complex conjugate of ¢ and

_irst 5+ 2 —irst 5"'

For simplicity of notations, by omitting the spatial x variable and denoting
k,n N ck,n N n k,n
(229) fE™(s) = Wtn + ) W55 (s), L™ (5) = W(tn)0s W5 (), gE"(5) = DW (b + 5) WL (5),

in order to design a uniform convergent method with respect to € € (0, 1], we find the solutions should
8



be updated in the order from small component to large component as

o — — o — —_—

<\Ill_’")l(7') ~ _pf(T)nl—( i’")l(()) —q (NI (gi”)l(o) — g (NI ( (fi’")
(¥87),0) =it (527) 00+ 01 (027) 0+ ar m ((727),00+ (727),0)

with initial values and derivatives determined from (2.17)-(2.18) as

—

) O =1/ @), (v) =0, (¥3") @ =0, (¥'") (0) =TI (@(t)
(007) (0) ~ i 272 (1) (o) it (Wit )91, 0)
)

! 5T l

L —

(0) = —i 10 (V[/(tn;I/?’?lM(()))l7 (8@1\4)!(0) =1 Hl+ (W(tn)qﬂ—,,nM(O))l?

(0925) 0 = Z T2 (w2 ) i (wiew200) . 1= Y

where the derivatives GSW}#TLM(O) and (’“)5\1127’}"M (0) are approximated using filters 2sin(u?7/2)/7 instead

of u (1= —%, ce % — 1) to avoid loss of accuracy, then followed by

o — P —

() e o o
- (( )+ f'w)lm)),

(657 ) =i ( ) O =5 (1 (£27) 0) = g () 17 (57) 0
) I0

(0 ) ( (7)),

(0) and (8S‘Pi")l(0) approximated in another way as

—I-ql

_ql

—

with (35\1/&")

l

i L o AT M M
(85\11_ )1(0) - ;(qj_ )l(T)’ (8S\Il+ )1(0) - ;(\L' )l(T)’ = 9y L

2.3. The MTI-FP method in 1D. In practice, the integrals for computing the Fourier transform
coefficients in (2.14), (2.23)-(2.27) are usually approximated by the numerical quadratures. Let ®7 be
the numerical approximation of the exact solution ®(t,,z;) to the Dirac equation (2.8) for n > 0 and
7=0,1,..., M, and denote ®” € X, as the numerical solution vector at time t = ¢,,; in addition, let
\Ilk ”H (k = 1,2) be the numerical approximation of \I’Ij:’n(T7 xj) for j =0,1,...,M and n > 0, and
denote Vit =Vt x;), AT = Ai(tn,z;) and W' = W(t,, x;) = V]'Iy — A” jo1 for j =0,1,...,.M
and n > 0. Choosing CID? = ®¢(z;) for j = 0,1,..., M, then the multiscale tlme integrator Fourier
pseudospectral (MTI-FP) method for discretizing the Dirac equation (1.8) in 1D reads for n > 0 and
7=0,1,..., M as:

M/2-1
(230) (I);L+1 — e—iT/62 (\Piz+1 + \Ill—{;le) +eir/82 (\Iji,:r;Jrl + \IJQ_,ZJrl) _ Z ((I)n+1)l€iul(lj_a),
=—M/2

9



where

M/2—-1
knt+l k,n+1 i (zj—a) _
(2.31) whn 3 (qf )le L k=12,
I=—M/2
with
(2.32)

SN—

<5 (0, - o G, - o ( (), (1), )

l

<ﬁ>l+<7i),

and
(2.33)
M/2-1 —_ ) M/2—1 5~ M/2-1 —_
fti= Z (fi)le"”l(””‘“), k= p> (fk) eirnle=a) gk = S (gh) eimeia),
) = 5] )2 5J 1= Ty
. M/2— 1 e . M/2 1 T
fro= % (fhr) e frne N (fp7) e, j=01. M, k=12,
’ I=—M/2 ! ’ I=—M/2 l
with
(2.34)
(vh), =1 (em),  (¥L), =0, (W) =0, (1), =T (@),

(¥4), = —i2e2 (wr), —antf (71),, (1) =il (D), 1= %, % -,

(82),= =i (), - (12), =i o), i (7,

fﬂ:g = Wn‘llj: J? f:l: = Wi :i:J’ g:kbj =ow (t"’xj)\pi’j’

clx 1 n 1n+1 2*71 n 2,n+1 . o
o = 1w ( Ln ) 2 = 1w (\I/w ) j=01,....M, k=12

5]

REMARK 2.1. When the electro-magnetic potentials in the Dirac equation (2.8) are time indepen-
dent, i.e. V(t,x) = V() and A1(t,z) = A1(x), the above scheme (2.30)-(2.34) will be simplified with
g:kt’j =0,k=1,2,7=0,1,..., M, i.e., the (gi)l term vanishes.

Note that in the above MTI-FP method, we first evaluate the small components gt j and v ”H,
then approximate their time derivatives via finite difference approximations, and finally use them in
the evaluation of the large components ¥ ’T;H nd % ZH.

This MTI-FP method for the Dirac equation (1.8) (or (1.1)) is explicit, accurate, easy to implement
and very efficient due to the discrete fast Fourier transform. The memory cost is O(M) and the
computational cost per time step is O(M log M). As will be shown in the next section, it is uniformly
convergent in space and time with respect to ¢ € (0, 1].

10



3. A uniform error bound. In this section, we establish two independent error estimates for
the MTI-FP method (2.30) via two different mathematical approaches. Let 0 < T < oo be any fixed
time. Motivated by the results for the Dirac equation (1.8) (or (1.1)) in [12,15], we make the following
assumptions on the electromagnetic potentials

(A4) ”VHW2v°°([O,T];(W;"O’oc)i’)"—”Al||W21‘>°([0,T];(W;"0‘°°)2) S, mo > 4,
and the exact solution ® := ®(¢,z) of the Dirac equation (2.8) with € € (0, 1]

< < 1 < 1
(B) M@l poe fo,mys oy S 1, 10:Pl e (0,795 zm01y2) S =k 00 @t )| Loe ([0, 17:(22)2) S =T

where H)"(Q) = {u | u € H™(Q), dLu(a) = dLu(b), I = 0,...,m —1} and W»>*(Q) = {u | u €
Wm>(Q), dLu(a) = OLu(b), [ =0,...,m— 1} for m € N. We remark here that the assumption (B) is
equivalent to the initial value ®o(z) € (H;")? [12,33] under the assumption (A).

THEOREM 3.1. Let ®" € X, be the numerical approximation obtained from the MTI-FP method
(2.30) and denote @7 (x) = Ing(P™)(x) € Yar. Under the assumptions (A) and (B), there exist constants
0 < 79, ho < 1 sufficiently small and independent of €, such that for any 0 < e <1, when 0 < 7 < 79
and 0 < h < hg, we have

n m T2 n m, 2 2 T
(1) 1Bt~ W Ole SH™ 4 T [B(En,) = D) e SA™O 47 4<% 0<n< -

which yields the uniform error bound by taking minimum among the two error bounds for ¢ € (0,1]

T

T

2
32) 100 = B0 S+ min (G e Shen o<

REMARK 3.1. From the analysis point of view, we remark that the W > assumption in (A) is
necessary such that the exact solution ®(t,x) of the Dirac equation remains in (HJ")?, which would
give the spectral accuracy in space. In practice, as long as the solution of the Dirac equation (1.8) (or
(1.1) is well localized such that the error from the periodic truncation of potential term W (t,z)®(t, )
s negligible, the error estimates in the above theorem still hold.

In the rest of this paper, we will write the exact solution ®(¢, ) as ®(¢) for simplicity of notations.

M/j2—1 __
Define the error function e”(z) = Y. (en),e(*=%) € Yy, for n > 0 as
1=—M/2
(3.3) e"(z) = Pu(®(tn))(2) — 7 (2) = Par(®(tn))(2) — Lnr (") (), 2 €

Using the assumption (B), triangle inequality and standard Fourier projection properties, we find
(3-4) 19(tn,-) = D7)z <[ P(tn, ) = Par(@(En))()llz2 + [1Par (@(E0)) () — @7 ()|l 2
T
SH™ 4 e (Ol 0<ns T
Hence, we only need estimate ||e™(-)||z2. To this purpose, local truncation error will be studied as the

first step. Since the MTI-FP method (2.30) is designed by the multiscale decomposition, the following
properties of the decomposition (2.10)-(2.11) are essential for the error analysis.

11



From t =t, to tyy1, let \Ili’”(s, z) (0 <s <7, k=1,2) be the solutions of the systems (2.10) and
(2.11), and the decomposition (2.5) holds as

(3.5) Pty +s,x) = eis/e? (\I/i"(s,x) + Wi"(s,x)) + eis/e (\I/in(s,x) + \Ilin(s,x)> , T €.

Then the error e"*1(x) (n > 0) (3.3) can be decomposed as

(3.6) e"(z) = eI/ (zi"“(x) + ZEn+1(CL')) +em/e (zi’”“(m) + z%’““(m)) , TEQ,
with
M/2—-1
(B7) A = Y @ = Py (O (0) @) — L (W) (@), k=12
I=—M/2

By the same arguments in [12], we can establish the regularity results.
LEMMA 3.2. Under the assumptions (A) and (B), the exact solutions \I/]jt"(sw) 0 <s <,
0<n<L—1)wihk=12 of the systems (2.10) and (2.11) satisfy

(3-8) ||‘I’§£n||Loo([o,T];(H;"0)2) S 10ss U5 | oo o, (rzray2) + 1055 U2 | oo 0, a0 92) S 1,
1
k,n 2,n ,n
(3:9) N0 YL oo osrrzyey S 1o 10ss U3 |l Lo (o, crzray2y + 1055 U™ | oo 0,14 y2) S ok
(3.10) ||\I]3:n||L°°([O,T];(H;n1)2) + |\‘I’£’n|\Loo([o,T];(H;”)2) Sé my=mo—1, =124

Proof. Noticing the properties of the projectors II1 and the assumption (B), we get that the initial
data W7(0,z) € (Hy™)?, 8,971 (0,2) € Hy" 2 with uniform bounds. The estimates for vhm and
85\111;’” have been derived in [12], where one only needs to replace the whole space Fourier transform
with the Fourier series on torus. Thus, the proof is omitted here for brevity. It remains to estimate
855\1111". Here, we show the case k£ = 1, while the case k = 2 is quite similar and the detail is omitted
here for brevity. Differentiating (2.10) with respect to s, we obtain for d,,¥y" (s),

10, UL (s) = — (I —2A) /2
VI—e?A+1

2

AT (5) + 11,0, (W\p};"(s, )+ WTh" (s, x)) ,

§0,, W (5) = — DU (5) + 1,9, (pri”(s, @)+ WO (s, x)) .

Since for any ® € (H}")? with 2 < m € N, we have

1
< 19l

—1/2
(3.11) H(I_gm) AcI»HHM < ||y, |
P H;)n_l

’\/I—EQA—&-I(I)
62

which implies the bounds (3.9) for 9, ¥}"(s), in view of the estimates for ¥}" and assumption (A). 0
Having Lemma 3.2 and the decomposition (3.6), we can define the local truncation error &5 () =
12



M/2-1 ——
> (€M), (2 € Q, k =1,2, n > 0) for the MTI-FP method (2.30)-(2.34) as
I=—M/2

(3.12)
@M= (W), +pr Oy (7)), + o (O (010), + a7 oy ( (7)) + (720) )
@M= (92, - O (720)), - o O (120), - a1y (7200) + (7200)) ).

|
SI
—~
2
=
—+
/N
~
A
=
SN~—
N—
/_\
.
| =
96
A
C’/
\/
Il
|
NS
SIS
|
u)—‘

where

(v4),0) = 1f @), (¥27) 0 =0, (¥37) (0) =0, (¥1") (0) =T} (B(ta),
(3:18) 3 fh(s) = Wt +5)W5"(s), fh(s) = W(E)TE" (), h(5) = BW(8) 5" (s),

F27 () = 3 () (P2 s) ) 72 ) = A (B 9) 0<s < k=12,
and
M/2
(3.14) sy = Y (\if’f;“(s))lewl@*a), xeQ 0<s<7 k=12
=—M/2
with
(¥3"(9)) = ( (), (xif%"(s))lz 725“1;“!;/2) (v2"(5)), =il (2(5)),

We have the following estimates for the above local truncation error.

LEMMA 3.3. Under the assumptions (A) and (B), there exist constants 0 < 1, ho < 1 sufficiently
small and independent of €, such that for any 0 < e <1, when 0 < 7 < 19 and 0 < h < hg, we have the
error estimates for the local truncation error fi " e Yy in (3.12)

2
T
316) 1Ol S (0 T 1Ol S70m 44 ), 0Sn< T koL

Proof. We will only prove the estimates (3.16) for k = 1, as the proof for k = 2 is the same. Using
the fact §;” > 1 and the definitions of p;*(7) and ¢;(7) (I = —M/2,...,M/2 — 1), we have

(3.17) pEI ST g (@IS I (IS gt ()] S e
13



Multiplying both sides of the equations in the system (2.10) by e~#(r=a) and integrating over €2, we

easily recover the equations for (\I/]j[’")l(s)7 which are exactly the same as (2.19)-(2.20) with \I']gjw being
replaced by \D’i"

Following the derivation of the MTI-FP method, it is easy to find that the local truncation error
comes from the approximations in the integrals (2.23), (2.25), (2.26) and (2.27). In particular, for
l=—-M/2,...,M/2 -1, we have

18) (=i [ I (), + (6D, ds+ (0 (110),

+a (DT (9L(0), + 7 () 117 ((fi(m)l + (f'1<o>)l> ,
19) (&7, = i [ e (), + (6, ds i () 1 (7H0)

—a; (1) I (g3.0)), — a7 (7) 11 ((%)l - (f?*?:))l) :

Type I estimate. Here we prove the first kind estimate in (3.16). Using Taylor expansion, we have

—

(3.20) ( g&" :—z/ / / e (=) /S (( 8252f+(82)> (8525552))[) dsadsids + (nt),,
(3.21) (ngr,n)l _ _i/o /O /0 o0 (1—5)/e? Hl+ ((85252]&(32))[ + (852;”?(52))1) dsodsds + (E)l,

M/2—1
where ni(z) = > (pi),e"™ @~ with
_—T

o, = 1y (~
ok (—( ) + (70), - (£70) + (%)) ,
o, =y (0 f ((FHO), = (70), ) + 0 () 17 ((6510), - (6E0), )

cro (), - (£0),+ (F0), - (270), )

Here f1™(s) is given in (2.29) with U™ being replaced by W™, Since [|[TIF |,z <1 (1= -4, ... M 1)

with ||Q||;2 being the standard 1% norm of the matrix @, using (3.17) and triangle mequahty, we obtain

()] 57 |(FH0), = (FH©),| + 72 (g/i@)l—(gi<o>>l'+72 (), - (E’:(/m)l|
(770, - () [ () - () [ () - ()|

14



From the Parseval’s theorem, we get

™ ()12 <72 1Par (£3(0)) = I (FLODN1Z2 + 74 Par (94 (0)) = Inr (g5 (0) 17
+ 7 Par (F47(0)) = Inr (F" O) 172 + 711 Par (F2™(0) = Inr (F2"(0)][2
(3.22) + L (F7(0)) = I (FLO)IZ2 + 71 ar (F17(0)) = Ina (FL0) |-

Recalling assumptions (A) and (B) and noticing Lemma 3.2, we have

FE0) = W (t,)UL"™(0) € H™, gL (0) = 0,W (t,)¥1"(0) € H,

P )

FE(0) = W (tn)05 0™ (0) € H0 2.

Employing (2.15) and Cauchy inequality, for mg > 4, we can bound ||nL (-)||z2 from (3.22) as

M-—1
. 2
L (| z2 STh™0 + 72(R™0 4 pmo=2) 4 72\l ny ‘W(tn,xj)(aswin(o,xj) - mi”(o,xj))‘
j=0

Jj=0

M-1 . )
+ 7'2\] h Z ‘W(tn,xj)(asllli’"(o, z;) — Uh"(0,25))

Sr(hme +72) + 72 (11 (0,07 (0)) = P27 (0) a2 + |1 Tas (0,927 (0)) — 2"(0) 1.2

(328) S+ 72+ 72 (P00 (0)) — UL (0) 1 + | Par (0,827 (0)) — 827 (0) 2

Using the equation (2.17), we get

—

; sin(p?r
(0.97),(0) — (#17),(0) = — 23U T/2)

i ((qfwo»l - @mo»l)

—iﬂf((fﬂabl—(ﬁﬂﬂnﬂ«—i(&‘—-2$n@%ﬂa)>(wiﬂnﬁf

5?‘7’

— o —

(0017, (0) = (§17),(0) = = i1y ((FLO)), = (FHO)) .

and
(3.24) [Par(0sT 2" (0)) = Ing (B2 (0)]| 22 < 1 Par(£1(0)) = Ing (FL(0))[| 22 S W™

Noticing that |sin(s) — s| < g (s € R), we have

_ 1 sin(uit/2) M
5 L ST/ g M

geeey

2sin(pfT/2)| 2
st

which leads to

(FE0), — (WO, + | (7T, - (7L, + 7t o7 0,

15

)

(@), 0) - (#57)0)| <1




and for mg > 4,

1P (85957 (0)) — Lng (¥37(0)) ]2

S %IIPM(‘I’T(O)) = I (U7 (0) 22 + 7| Par (W5 0))ll 0 + 1 Par(f1(0)) = Ta (1 (0)) | 2

Sh™ 414+ hm /T
Combining the above estimates with (3.23), we derive
(3.25) It ()lzz < 7(R™ 4+ 72) + 72(R™ + h™ /7 4+ 7) < 7(R™0 + 72).
By the same procedure, |7} (-)||z2 can be bounded as

I} ()l e Sr(r® 4 A7) 4 72| Par (05 W 2"(0)) — Par (82" (7)) /7] 2
+ 7| Par (02" (7)) = Tag (W27 (7)) 22,

where Taylor expansion gives

1 s
AU (0) — Wb (1) )7 = —T/ / Dss U™ (s17) dsyds.
o Jo

Thus, recalling Lemma 3.2, we estimate

320 kOl S 4R 4 P Ol o S 7 (074 5 ).

Now, Lemma 3.2 together with (3.20), (3.21), (3.22), (3.23) and (3.26) implies
€2 lze S 7° (1958 (Wt + )L (Dl rizoye) + 1055 (W (1 + )T (5)) o rszeys

(3.27) Flnk Ol 57 (a4 5.

Type I estimate. Now we prove the second estimate for £1"(x) in (3.16). Starting from (3.18) and

319 5 we ‘rea ‘he ‘erms in\/Ol\/ing S 5 g S and g S ln ‘he same Way as in prOVing 3.2; 3 and
leaVe the reSt terms as

P

@), =), - /O e T I (FL(s)  ds o+ o (1) T (F10))

(™), =), —i /0 eI T T (FL(5)), ds — g (1) T (7))

l

M/2—1

with ¢L(z) = > (¢}),e™ =% satisfying
1="M/2

16 Ollee S 7(h™ +72).
16



The proof of the above decomposition and the corresponding error bounds for ¢} (z) is identical to the
proof of (3.27), and thus is omitted here for brevity. Applying triangle inequality and (3.17), we have

g](gﬂh[

s\@l\+/

r
0

—_—~—

)

<f€_*\—(;)>l| '

Recalling Lemma 3.2 which implies 02" (s)]|,;mo—1 < €2, we know || f1(s)||z> < €2, ||f‘i7*(7—)HHm071 <
P

I <
e2/7 and

(E@)l‘ ds + Te? ,

@,

‘@l (f/l@)z‘ ds + 72

1FLO) o1 S NP2 (0) | rmo—1 S Mar (FLOD | zrmo— S (10 mrmo S 1.

Hence, using the Parseval’s theorem, we get
et )
(340!

which, together with (3.27), completes the proof for (3.16). O
k,n+1 (ﬁ)

Subtracting (2.32) from (3.12), noticing (2.33) and (3.13), we get error equations for z}
(k=1,2)in (3.7) as

L SOl o+ 7 IO o oy + 72 [T GO, S 7o 472+ €2),

3o SIGON 4 IOl o pmyy +7° [ @D, S 70 472 4€2),

—_~

n n n n —isl i C n n
(ZE +1)z = (]:i’ )z + (53 )i <Z}r +1)z =e Hf(en)z + (]'i )+ ( i )17

(3.28) —_ o — e —
i — ; ,
@), = (F+ €0, @, = I (), + (727, + (€
M/2-1 ‘
where F¥"(z) = 30 (fi’n)lelm(I*“) (k =1,2) is given by
I=—M/2
(%), = o (), - (), - (), + (2,
(), =aroms () o (@, ( (), ().
(3.29) _
1,n _ + 1,n - + 1,n - + ~1l,n S1,%
(]:+ )l =p, (DI (F+ )l+ql (7)1, <G+ )l+qz (7)1, (F+ )l—l—(F, )l )
(), = () e (62, - ( (), (%))
. M/2—-1 —— . M/2-1 —~—
with FP"(z) = 3 (FE™),e™=9 e Yy (k= 1,2), GEE"(2) = Y (GEE™),e @9 € vy
I=—M/2 l=—M/2
n M/2-1 —— - MEEL e
F&FE™z) = % (Fii’n)lel”l(%a) € Yy, and Fiy7 7 () = 3 (Fy© )lezm(%a) € Yy (bt =
I=—M/2 I=—M/2

17



1,k_ = 2) defined as

(3.30)

For the electromagnetic error part fi"(m) (k=1,2,0<n< % — 1), we have the lemma below.

LEMMA 3.4. Under the assumptions (A) and (B), the electromagnetic error part F&™(z) € Y
(k=1,2,0<n<L—1)defined in (3.29) with (3.30) satisfies the bounds as

k+,n ki+,n ~3—k4,n m n
IS Oz + G (Ollze + 1FL " (Ol SR + 1€ (e, ky =1, k=2,

~1,n ~2,n 1 m. n Sk, m k+,n+1
1" (e + IF2" () S (A" + e Cllzz),  IFLT Oz S — (™ + |27 () 2),

3=

which implies that

(331) FE"Olle S v+ 125" Olles + e Ollz2)s IFE" (e S 7™ + [le" ()] 12)-

Proof. Recalling the assumptions (A) and (B), Lemma 3.2, (3.30), (3.13), (3.15), (2.33) and (2.34),
applying the Parseval’s theorem, we have

M-—1
2
IEE" ()3 < (FL0) = D (DI = S |W (k) (0170, 2,) = W )
j=0
M-1 2
ShY Wm0, = L[S B Par(@(t0) — D (@) S B2+ [l ()]
§=0

and similarly we have ||F>"()||p2 < h™ + ||€™(-)||12. Using the same idea, we can obtain
1, 2.n m, n
1G"Ollzz + NG ()2 S A7 + [le™ ()l ze,

and

* * * 1 n n
IFE (e S (2" () = T (g S —IHar (B27(7)) = g (827
1 n
S+ 12 O,

1

2, 2, 2, 2,n+1

157 Oz S (£ () = I () e S (A7 + 1125 ()l22)-

It remains to estimate || F}""(-)|| 2. Again, in the same spirit of the above arguments, we arrive at

(3.32) IEE" Oz S 1ar(PE™(0)) = s (F5) -

Comparing (3.15) with (2.34), noticing the properties of 5?: and the arguments in the above proof, we
18



find

122 (927 (0)) = Inr (W) 122 SIae (f1(0)) = Lar ()22 S A7 + [le™ (e,
12 (037(0)) = Lar (W)l 2 SIEar (£2(0) = I (f2) |22 S A7 + e ()l e,

Har (57(0)) = Zar (94|22 S%HIM(‘I@"(O)) = I (W)l 22 + 1 1ar (f1(0)) = Tar (f1) 22
5% (R0 + [le"()llz2) + 2™ + [[e" ()l 2,

Har (U27(0)) = Lar (92)]] 12 S%HIM(\IJQ—JL(O)) = In (92|22 + 110 (f2(0) = Tas (f2)]| 2

1

S (™ e (lz2) + A7 + € ()l

which implies the bounds for ||[E5™(-)||.> in view of (3.32). Combining all the above results, recalling
(3.30) and properties of the coefficients p:(7) and ¢;(7) in (3.17), we conclude that (3.31) holds. O

Now, we are ready to prove the main theorem.
Proof of Theorem 3.1. Recalling the decomposition (3.6) and the error equation (3.28), we get

(ent1), i/ ((ZinH)l n (ZEnH)z) 1 eit/e ((Zi’nH)l n (Zz_,n+1>l>

) (e @ @) +
M/2-1
with x"(z) = > (x"),e* (@~ € Yy given as
1=—M/2
o ir(2k-3)/2 (((phoy L pkny L (ghmy 4 (b M M
(834)  (x") = Y TS ((ﬂ o (PR + (687, + (€8 )l), l=—F g — L
k=1,2

In particular [|€()||z2 = [|Par(Po) — Inr(Po) ||z < ™.
Taking the (> norm of the vectors in the error equation (3.28), then summing together for [ =
—M/2,...,M/2 — 1, utilizing Lemma 3.4 and Parserval’s theorem, there holds for 0 < 7 <1,

I1Z2" ) e SIFEOllze + 1E5" Ollze S 7™ + e (Ylz2) + 1€5" () |22,
I1Z7" )2 SIFF Ollze + 1€ Ollze S 7™ + 1€ (Ylz2) + 167" ()l 22,
and so

IO ST + e (e + 122" Ollze + 1227 Ollz) + 32 (I€5 Ol + 165" ()
k=1,2

ST + [l ()lle2) + D (Hﬁi’"(')IIL? + Hﬁﬁ’"(-)llm)-

k=12

From Lemma 3.3 on the local truncation error £5"(z), we get

T
(3.35) IOz Slle™()llpz + (™ +72/), 0<n<——1,
T
(3.36) X" ()l STl (e + (R 472 4%, 0<n<——1.
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Now, taking the [? norm of the vectors on both sides of (3.33), making use of the orthogonal properties
of IT¥ where [e!'TI v + ew?va’2 = I v|]? + |II; v|? = |v|? for all v € C2,6;,0, € R, we can have

2 , — . — 2
()| = e/ (o) /i ()| () P
. 2 —— . 2 T Nk o
+ 2Re ((e*“”/s I (en), + /<11, (em),) (x”)z)

I + IO 2 + 2Re (e /T (o), + €/ T (e),)" (k7))

where Re(c) denotes the real part of the complex number ¢. Applying Cauchy inequality, we find

20— 2 — 1 — M M
(3.37) (e 0| =[] s rilem P+ 0P 1==5 5 -1
T
Summing (3.37) together for [ = —%, ey % — 1 and using Parseval’s theorem, we obtain
n+1 2 n 2 < n 2 1 n 2 T
(3.38) 1™ OIze = e Ollze S TlleOllze + —Ix"* Oz, 0<n<—-1.

Summing (3.38) for indices 0,1,...,n and using (3.35)-(3.36), we derive that for 0 <n < L —1,

. n . . 7_2 2

(3.30) [ ()12 — e°C)Es <7 3 le™ ()3 + (" *) |
m=1

(3.40) le" () I72 = 11€°()72 ST Y le™ ()72 + nr(h™ + 7% + )%,
m=1

Since [|€°()|lrz < h™, Gronwall’s inequality will lead to the conclusion when 0 < 7 < 75 < 1 and
0 < h < hg <1 sufficiently small

2\ 2
T
Ba) OB S (04 T ) L IO S 0 R 0SS T -1,
In view of (3.4), we conclude that (3.1) holds. O

4. Numerical results. In this section, we present numerical tests on our MTI-FP method (2.30)
and apply it to study numerically the convergence of the Dirac equation (1.8) to its limiting Schrodinger
model (1.7) and the second order limiting Pauli-type equation model. To this purpose, we choose the
electromagnetic potentials in the Dirac equation (1.8) with d =1 as

x+1)2 1—=
(41) Al(t,:c) = (1_"_7:1;27 V(t,l’) = m, S R, t Z 0,
and the initial data ®¢(z) = (¢1(x), p2(2))T as
(4.2) o) =e /2, go(z)=e @D/ L eR
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TABLE 4.1
Spatial error analysis of the MTI-FP method for the Dirac equation in 1D.

ehﬂ-(Q.O) ho =2 h0/2 h0/22 h0/23 h0/24
go =1 1.65 5.74E-1 7.08E-2 7.00E-5 8.53E-10
€0/2 1.39 3.45E-1 7.06E-3 6.67E-6 9.71E-10
£0/22 1.18 1.67E-1 1.71E-3 1.43E-6 1.10E-9
£0/23 1.13 1.46E-1 1.03E-3 6.77E-7 9.16E-10
g0/24 1.15 1.45E-1 8.52E-4 4.86E-7 1.33E-9

4.1. Accuracy test. The Dirac equation (1.8) with d = 1, (4.1) and (4.2) is solved numerically on
an interval Q = (=16, 16), i.e. a = —16 and b = 16, with periodic boundary conditions. The ‘reference’
solution ®(t,x) = (¢1(t, ), h2(t,2))T is obtained numerically by using the TSFP method [7] with a
very fine mesh size and a small time step, e.g. h. = 1/32 and 7. = 10~7. Denote ®} _ as the numerical
solution obtained by the MTI-FP method with mesh size h and time step 7. In order to quantify the
convergence, we introduce

M—1
ehr(tn) = |07 = (tn, iz = (| B Y |®F — D(tn,2;)[2.
j=0

Tab. 4.1 displays the spatial errors ey, . (t = 2.0) with 7 = 10~ for different ¢ and h; and Tab. 4.2
lists the temporal errors ey, ,(t = 2.0) with h = 1/32 for different ¢ and 7. From Tabs. 4.1-4.2 and
additional numerical results not shown here for brevity, we can draw the following conclusions for the
MTI-FP method:

(i) For the spatial discretization error, the MTI-FP method is uniformly spectral accurate for all
e € (0,1] (cf. Tab. 4.1).

(ii) For the temporal discretization error, the MTI-FP method is uniformly convergent with linear
rate at O(7) for € € (0,1]. For any fixed 0 < ¢ < 1, when time step 7 is small, i.e. 7 < &2 (upper
triangle part of Tab. 4.2), second order convergence at O(72) is achieved; when ¢ is small, i.e. ¢ <7
(lower triangle part of Tab. 4.2), again second order convergence at O(72) is achieved. However,
near the diagonal part where 7 ~ &2 (cf. the underlined diagonal part of Tab. 4.2), degeneracy of
the convergence rate and the uniform linear convergence rate for the temporal error are observed. In
particular, the underlined errors in Tab. 4.2 degenerate in the parameter regime 7 ~ 2, which has
been predicted by our error estimates (3.1).

4.2. Convergence of the Dirac equation (1.8) to its limiting models. Similarly to (1.7),
when & — 07, the solution of the Dirac equation (1.8) satisfies, i.e. first order limiting model

(4.3) O(t,x) = e g0 + € ppea + 0(), e = (1,00, ey =(0,1)7,

where ¢, := ¢.(t,z) € C and ¢, := ¢, (¢, z) € C satisfy the Schrodinger equations [12,33,37,40],
) 1 ) 1

(4.4) 101 = —iA +V(t,z)| e, 1040, = §A +V(t,z)| ¢p, z€R, t>0,

and the initial data is determined through (4.3).
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TABLE 4.2
Temporal error analysis of the MTI-FP method for the Dirac equation in 1D. The convergence order is calculated

as logy(en,2r/€n,r).

6h77—(2.0) T():O.l T0/2 T0/22 7'0/23 T0/24 7'()/25 T0/26 7'0/27 T0/28

gg=1 3.69E-2 9.18E-3 2.29E-3 5.73E-4 1.43E-4 3.58E-5 8.94E-6 2.24E-6 5.59E-7

order - 2.01 2.00 2.00 2.00 2.00 2.00 2.00 2.00
€0/2 5.98E-2 1.51E-2 3.77TE-3 9.45E-4 2.36E-4 5.90E-5 148E-5 3.69E-6 9.23E-7
order - 1.99 2.00 2.00 2.00 2.00 2.00 2.00 2.00
€0/22 1.91E-1 5.67E-2 147E-2 3.74E-3 9.39E-4 2.35E-4 587E-5 147E-5 3.67E-6
order - 1.75 1.95 1.97 1.99 2.00 2.00 2.00 2.00
g0/23 7.12E-2  7.17E-2  4.90E-2 1.48E-2 3.89E-3 9.84E-4 247E-4 6.17E-5 1.54E-5
order - -0.01 0.55 1.73 1.93 1.98 1.99 2.00 2.00
£0/2% 1.78E-2 1.76E-2 1.80E-2 1.82E-2 1.22E-2 3.73E-3 9.79E-4 2.48E-4 6.21E-5
order - 0.02 -0.03 -0.02 0.58 1.71 1.93 1.98 2.00
£0/2° 7.11E-3 3.30E-3 4.07"E-3 4.43E-3 4.53E-3 4.56E-3 3.05E-3 9.32E-4 2.45E-4
order - 1.11 -0.30 -0.12 -0.03 -0.01 0.58 1.71 1.93
€0/2° 7.19E-3 1.99E-3 5.10E-4 6.84E-4 1.02E-3 1.10E-3 1.13E-3 1.14E-3 7.61E-4
order - 1.85 1.96 -0.42 -0.58 -0.11 -0.04 -0.01 0.58
g0/27 7.07E-3 1.70E-3 4.49E-4 2.61E-4 881E-5 1.68E-4 2.54E-4 277E-4 2.83E-4
order - 2.06 1.92 0.78 1.57 -0.93 -0.60 -0.13 -0.03
g0/28 7.06E-3 1.71E-3 4.23E-4 1.09E-4 3.91E-5 6.01E-5 2.18E-5 4.20E-5 6.35E-)
order - 2.04 2.02 1.96 1.48 -0.62 1.46 -0.95 -0.60
£0/2° 7.06E-3 1.71E-3 4.22E-4 1.05E-4 2.61E-5 1.37E-5 6.98E-6 1.50E-5 5.48E-6
order - 2.04 2.03 2.01 2.01 0.93 0.97 -1.10 1.45

To obtain a second order limiting Pauli-type equation model, we formally drop the small compo-
nents in (2.10)-(2.11) to get

(4.5) B(t,x) = e (L x) + WLt x) + O(),

where U, := U, (t,z) € C? and ¥, := ¥, (t,x) € C? satisfy the Pauli-type equations
1 1
(4.6) 10V, = €—2D\I/e +II, (W), 0, Y, = —E—QD\IIP +I_(W3T,), zeR, t>0,

with D = /I — e2A — I and initial value as
(4.7) V. (0,2) =II.9(0,z), ¥,(0,z)=I_0(0,z), z € R.

To investigate numerically convergence rates of the above limiting models (4.3) and (4.5) to the Dirac
equation, we solve numerically the Schrédinger equation (4.4) to obtain (¢e, ¢p) and the Pauli-type
equation (4.6) to get (¥, ¥,), by the TSFP method [5] and the EWI-FP method [7], respectively.
The solution ® of the Dirac equation (1.8) is computed by the MTI-FP method and we can study
convergence rates of Dirac equation (1.8) to (4.3) and (4.5), respectively. All the computations are
done on the bounded interval Q = (—128,128) with fine mesh A = 1/16 and time step 7 = 1074,
which are sufficiently small such that the numerical error can be neglected. In order to quantify the
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convergence, we introduce the error functions
s 2 - 2
Euan(t) = [[(t,) = e /6.1, Jer — ¢/, (1, Jea |

. 2 . 2
Epau(t) = Hfl)(t, ) = e it/e Ue(t,) — e't/e \I]I)(ta )’

, t>0.
L2

Fig. 4.1 depicts the evolution of the errors Egp(t) and Epa, (), and we can conclude that the limiting
model of the Schrédinger equation (4.3) is linearly accurate at O(e), while the limiting model of the
Pauli-type equation (4.5) is quadratically accurate at O(g?). In particular, both the errors Eg(t) and
Epau(t) are observed to grow linearly in time, i.e.

(4.8) Faen(t) < (Cy + Cyt)e, Epan(t) < (Cs + Cyt)e®, ¢ >0,

where Cy, Cs, C5 and Cj are positive constants independent of time ¢ > 0 and ¢ € (0, 1]. We find that
(4.6) is the same second order approximate limiting model as the Pauli equation [31,33] for the Dirac
equation (1.8) in the nonrelativistic limit regime.
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5. Conclusion. A multiscale time integrator Fourier pseudospectral (MTI-FP) method was pro-
posed and rigorously analyzed for the Dirac equation involving a dimensionless parameter ¢ € (0, 1],
which is inversely proportional to the speed of light. The main difficulty of the problem is that the
solution highly oscillates with O(g?) wavelength in time when 0 < ¢ < 1. The key ideas in designing
the MTI-FP method included a proper multiscale decomposition of the Dirac equation and the use of
the Gautschi type exponential wave integrator in time discretization. Rigorous error analysis showed
that the MTI-FP method is uniformly convergent in spatial discretization with spectral accuracy, and
uniformly convergent in temporal discretization with linear order for ¢ € (0, 1], while the temporal
accuracy is optimal with quadratic convergence rate when either ¢ = O(1) or e < 7. This result
significantly improves the error bounds of the existing numerical methods for the Dirac equation in
the nonrelativistic limit regime. Numerical results confirmed the error estimates and suggested our
error bounds are sharp and optimal. Convergence rates of the Dirac equation to its limiting first order
Schrédinger equation model and second order Pauli-type equation model were observed numerically.
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