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Lorraine, 2, avenue de la Forêt de Haye, BP160, 54504 Vandoeuvre-lès-Nancy Cedex,

France.
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Abstract

Geometric or acoustical irregularities induces acoustic scattering. In this
paper, a generalization of the model proposed by Khanfir et al (Journal of
Sound and Vibration, 332 (4), 2013) to determine the scattered acoustic
field above gratings of parallel rectangular cavities is developed, addressing
the case of gratings of non parallel rectangular cavities. The results provided
by the model were compared both to numerical results, obtained with the
finite element method, and to experimental ones. The observed agreement
between the analytical predictions and the numerical and experimental re-
sults supports the validity of the proposed model. The coupling between the
different cavities was investigated, in order to attain an explanation for its
dependence on frequency and on the spacing between cavities.

Keywords: scattered acoustic field, rectangular cavity, coupling
phenomena

1. Introduction

The problem of acoustic wave scattering by gratings of parallel rectan-
gular cavities has been extensively studied by many authors. Holford [1]
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represents the reflected field above a periodic wall facing by an infinite sum
of plane waves. De Bruijn [2], Ando et al. [3] and Ducourneau et al. [4] use
the waveguide model to study periodic gratings of rectangular cavities. Park
et al. [5] applied a trigonometric series-based representation of the diffracted
field to investigate electromagnetic scattering from multiple rectangular aper-
tures in a thick conducting screen. Hongo et al. [6, 7] use the Kobayashi
Potential method to study diffraction of electromagnetic waves by arrays of
thin parallel slits and arrays of thin parallel plate waveguides respectively.
Khanfir et al [8] use the Kobayashi Potential (KP) method to study diffration
of acoustic waves by an aperiodic grating of parallel rectangular cavities.

The solution presented in this paper is a generalization of the model de-
veloped by Khanfir et al [8] to the case of gratings containing non parallel
rectangular cavities. This model allows mastering the scattering behavior of
gratings of rectangular cavities. Thus, it will be possible to plot directivity
diagrams of the reflected acoustic field and thus to estimate an acoustic diffu-
sion coefficient. This parameter can be then used to acoustically characterize
such a wall facings. It can also be used in predictive softwares to predict the
soundscape in industries (RayPlus software for example [9]).

2. Statement of the problem

Let us consider N rectangular cavities in a thick, rigid, large screen. The
cavities edges are perfectly rigid. We assume that a uniform incident plane
wave Φpl

inc impringes on the N rectangular cavities with a perfectly rigid edges
in an infinitely rigid screen, as shown in figure 1. Let ηiad be the characteristic
admittance of the bottom of the ith cavity. θi is the angle between the ith
local frame (O, xi, yi, z) and the reference frame (O, x, y, z). The ith cavity
dimensions are 2ai, 2bi and di respectively in the directions xi, yi and z.

Each cavity, defined by the region of space Di = {(x, y) / |xi| < ai, |yi| <
bi} ⊂ R

2, contains a modal field Φi
w. The total acoustic field above the

grating consists of :

• the incident field Φpl
inc,

• the specular reflected field Φr,

• the diffracted field composed by a superposition of the elementary
diffracted fields Φi

d generated by each cavity.
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Figure 1: Geometry of the studied wall facing and the different acoustic fields.

The expressions of the different fields are given by Khanfir et al [8]:

Φpl
inc = Aejkxxejkyyejkzz (1)

Φr = Aejkxxejkyye−jkzz (2)

Φi
w =

∑

p≥0

∑

q≥0

cos
(pπ

2
(ξi + 1)

)

cos
(qπ

2
(ηi + 1)

) [

Ei
pqe

−γi
pq

z
ai + F i

pqe
γi
pq

z
ai

]

(3)

Φi
d =

∑

m,n≥0

∫∫

R
2
+

Ai
mnΦ

(m,n)i

cc +Bi
mnΦ

(m,n)i

cs + C i
mnΦ

(m,n)i

sc +Di
mnΦ

(m,n)i

ss

e
z
ai

√

α2+(
ai
bi
β)2−(kai)2

dα dβ

(4)

where k =





kx
ky
kz



 is the incident wave vector, ξi =
xi

ai
, ηi =

yi
bi
, α and β are
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integration variables and:

γi
p,q =

√

(
pπ

2
)2 + (

ai
bi

qπ

2
)2 − (kai)2 (5)

Φ(m,n)i

cc =
J2m(α)J2n(β)

√

α2 + (ai
bi
β)2 − (kai)2

cos(αξi) cos(βηi) (6)

Φ(m,n)i

cs =
J2m(α)J2n+1(β)

√

α2 + (ai
bi
β)2 − (kai)2

cos(αξi) sin(βηi) (7)

Φ(m,n)i

sc =
J2m+1(α)J2n(β)

√

α2 + (ai
bi
β)2 − (kai)2

sin(αξi) cos(βηi) (8)

Φ(m,n)i

ss =
J2m+1(α)J2n+1(β)

√

α2 + (ai
bi
β)2 − (kai)2

sin(αξi) sin(βηi) (9)

A is the amplitude of the incident field. The amplitude of the specular re-
flected field is equal to the amplitude of the incident field due to the rigidity
of the surface separating the cavities (R = 1). Ai

mn, B
i
mn, C

i
mn, D

i
mn, E

i
pq and

F i
pq are unknown modal amplitudes determined by enforcing the boundary

conditions : continuity of acoustic pressure and velocity and a mixed bound-
ary condition at the ith cavity bottom. This different boundary conditions
are respectively given by relationships (10)-(12). The purpose is to determine
the diffracted fields Φi

d. Thus, the modal amplitudes Ai
mn, B

i
mn, C

i
mn, D

i
mn

are the main unknowns to determine.

∂

∂z

(

Φpl
inc + Φr + Φi

d +
∑

j 6=i

Φj
d

)

=
∂

∂z
Φi

w, (xi, yi) ∈ Di, z = 0, 1 ≤ i ≤ N

(10)

Φpl
inc + Φr + Φi

d +
∑

j 6=i

Φj
d = Φi

w, (xi, yi) ∈ Di, z = 0, 1 ≤ i ≤ N (11)

∂Φi
w

∂z
− jkηiadΦ

i
w = 0, (xi, yi) ∈ Di, z = −di, 1 ≤ i ≤ N (12)

Relationships between the local frames and the reference frame are not given
by a simple translation such as the case of parallel the cavities [8]. They are
given by a combination of a rotation and a translation (see figure 2) as shown
in equations (13)-(15):
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Figure 2: Position of the local frame (Oi, xi, yi) (a) and the the local frame (Oj , xj , yj)
(b) in the reference frame (O, x, y)

(
x
y

)

=

(
cos θi − sin θi
sin θi cos θi

)(
xi

yi

)

︸ ︷︷ ︸

rotation

+

(
δxi

δyi

)

︸ ︷︷ ︸

translation

(13)

In order to take into account the interaction between the ith diffracted acous-
tic field Φi

d(generated by the ith cavity) and the diffracted acoustic fields
generated by the neighboring cavities (jth cavities) Φj

d, we also express the
coordinates of the jth local frame in terms of the ith local frame coordinates.
The relationships between this two coordinates systems are given by:

xj = cos (θij)xi − sin (θij) yi + δxij
cos θj + δyij sin θj (14)

yj = sin (θij) xi + cos (θij) yi − δxij
sin θj + δyij cos θj (15)

where:

θij = θi − θj (16)

δxij
= δxi

− δxj
(17)

δyij = δyi − δyj (18)

θj is the angle between the jth local frame and the reference frame. θij is
the angle between the local frames i and j. (δxi

, δyi) and (δxj
, δyj ) are the
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coordinates for the local frames i and j centers respectively in the reference
frame (O, x, y). δxij

and δyij are the distances between the frames i and j
centers along the x and y axes respectively.

The relationships (13)-(15) allows uniforming the coordinates system. In-
deed, we express all the coordinates as function of the ith local frame coor-
dinate system (xi and yi). Then, we carry out the same procedure used in
[8]: we expand the trigonometric functions depending on ξi and ηi in equa-

tion (10) in terms of Jacobi’s polynomials, G(2, 3
2
)(x) for the sine function and

G(1, 1
2
)(x) for the cosine function, to apply the orthogonality relationships be-

tween the same polynomials. Equations (11) and (12) are projected into the
functional space defined by the trigonomeric functions. The combination of
the 3 × N boundary conditions allows obtaining a system of matrix equa-
tion given by the relationships (19)-(22) depending on the angles θi and θj
between the ith and the jth local frames and the reference frame respectively:

[Ai
mn][G

0,0
m,n,s,t] +

∑

j 6=i

1∑

µj=0

1∑

νj=0

[M j,µj ,νj
mn ][GC

0,0,µj ,νj
m,n,s,t ] = [Λ0,0,θi

s,t ], 1 ≤ i ≤ N

(19)

[Bi
mn][G

0,1
m,n,s,t] +

∑

j 6=i

1∑

µj=0

1∑

νj=0

[M j,µj ,νj
mn ][GC

0,1,µj ,νj
m,n,s,t ] = [Λ0,1,θi

s,t ], 1 ≤ i ≤ N

(20)

[C i
mn][G

1,0
m,n,s,t] +

∑

j 6=i

1∑

µj=0

1∑

νj=0

[M j,µj ,νj
mn ][GC

1,0,µj ,νj
m,n,s,t ] = [Λ1,0,θi

s,t ], 1 ≤ i ≤ N

(21)

[Di
mn][G

1,1
m,n,s,t] +

∑

j 6=i

1∑

µj=0

1∑

νj=0

[M j,µj ,νj
mn ][GC

1,1,µj ,νj
m,n,s,t ] = [Λ1,1,θi

s,t ], 1 ≤ i ≤ N

(22)

where Ai
mn, Bi

mn, C i
mn, and Di

mn are the unknown amplitudes of the
acoustic diffracted field Φi

d sought.
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M j,µj ,νj
mn =







Aj
mn if (µj, νj) = (0, 0)

Bj
mn if (µj, νj) = (0, 1)

Cj
mn if (µj, νj) = (1, 0)

Dj
mn if (µj, νj) = (1, 1)

(23)

Gµi,νi
m,n,s,t =

∫∫

R
2
+

J2m+µi
(α)J2s+1+µi

(α)J2n+νi(β)J2t+1+νi(β)

αβ
√

α2 + (ai
bi
β)2 − (kai)2

dα dβ

−
∑

p,q≥0

(
π2

ǫ2p+µi
ǫ2q+νiγ2p+µi,2q+νi

Γ+i
2p+µi,2q+νi

Γ−i
2p+µi,2q+νi

J2m+µi

(
2p+µi

2
π
)
J2s+1+µi

(
2p+µi

2
π
)

2p+µi

2
π

×
J2n+νi

(
2q+νi

2
π
)
J2t+1+νi

(
2q+νi

2
π
)

2q+νi
2

π

)

(24)

Λµi,νi,θi
s,t = −2jµi+νiA

J2s+1+µi
(ai (kx cos θi + ky sin θi))

ai (kx cos θi + ky sin θi)

×
J2t+1+νi (bi (−kx sin θi + ky cos θi))

bi (−k1 sin θi + k2 cos θi)
e−jkxδxie−jkyδyi (25)

GC
µi,νi,µj ,νj
m,n,s,t = (−1)µj+νj

∫∫

R
2
+

J2m+µj
(α)J2m+νj(α)

2

×

[(
J2s+1+µi

(ℓ1(α, β))

ℓ1(α, β)

J2t+1+νi (ℓ2(α, β))

ℓ2(α, β)
+

J2s+1+µi
(ℓ3(α, β))

ℓ3(α, β)

J2t+1+νi (ℓ4(α, β))

ℓ4(α, β)

)

× cos
(

∆xα + (µi + µj)
π

2

)

cos
(

∆yβ + (νi + νj)
π

2

)

+

(

−
J2s+1+µi

(ℓ1(α, β))

ℓ1(α, β)

J2t+1+νi (ℓ2(α, β))

ℓ2(α, β)
+

J2s+1+µi
(ℓ3(α, β))

ℓ3(α, β)

J2t+1+νi (ℓ4(α, β))

ℓ4(α, β)

)

× sin
(

∆xα+ (µi + µj)
π

2

)

sin
(

∆yβ + (νi + νj)
π

2

)]

dα dβ, 1 ≤ i ≤ N

(26)
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with:

ℓ1(α, β) =
ai
aj

cos(θi − θj)α +
ai
bj

sin(θi − θj)β (27)

ℓ2(α, β) =
bi
bj

cos(θi − θj)β +
bi
aj

sin(θi − θj)α (28)

ℓ3(α, β) =
ai
aj

cos(θi − θj)α−
ai
bj

sin(θi − θj)β (29)

ℓ4(α, β) =
bi
bj

cos(θi − θj)β −
bi
aj

sin(θi − θj)α (30)

∆x =
δxij

aj
cos θj +

δyij
aj

sin θj (31)

∆y =
δyij
bj

cos θj −
δxij

bj
sin θj (32)

Γ±i
p,q = 1±

γi
pq + jkaiη

i
ad

γi
pq − jkaiη

i
ad

e2γ
i
pqdi (33)

ǫp =

{

2 if p = 0

1 else
(34)

The functions Gµi,νi
m,n,s,t and Λµi,νi,θi

s,t defining the solution of the non-coupled
problem are independent from the angles between the local frames (θi − θj).
Indeed, in the case of the non-coupled solution, the interaction between
acoustic diffracted fields is considered void, each cavity sound radiating in-
dependently.

The 4 × N unknown amplitudes Ai
mn, B

i
mn, C

i
mn and Di

mn are obtained
by inverting the system of matrix equations, given by relationships (19)-
(22). It is difficult to use direct method (LU decomposition, Gauss-Jordan
elimination, etc.) due to the obtained system of equations complexity. Thus,
we use the Gauss-Seidel method. This method is an iterative technique. In
order to accelerate the convergence to the coupled problem solution, we chose
the solution of the non-coupled problem as an initial value [8].

3. Principle of finite element modeling

We chose to compare our model to the finite element modelling (FEM)
method before experiment. The simulation was performed by Comsol 4.0
software. The tested gratings will be presented in details in the section 4.
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FEM involves subdividing the studied structure containing the cavities
into two sections. The first section was a steel plate containing the rectan-
gular cavities, characterized by density ρ = 7850Kgm−3 and sound velocity
v = 6400m s−1. The choice of steel ensures a very high acoustic reflection
(R = 1) at the borders as considered in the theoretical model. The second
section was the propagation element which is the air. The studied structure
was insonified by a fixed frequency spherical wave. The periphery of these
two sections was coated by Perfectly Matched Layers (PML) in order to sim-
ulate free field condition [10]. This features are shown in the figure 3. The
PLM size was 5 cm since the width determines the longest wavelength that
can be supported by the layer [12]. Tetrahedral elements was used to mesh
the geometry. The total number of elements was 165843.

Figure 3: Principle of finite element modeling.

4. Results and discussion

To validate the model, the sound pressure profiles were measured at 20 cm
above two studied gratings in the x direction as indicated in the figure 4(a)
and 4(b) respectively

• a periodic array of three (0.50 × 0.48 × 0.21)m3 rigid cavities. The
periodic spacement was 2 cm along the x axis. The reference frame
was centered on the central cavity. The spherical source was placed
1m above the central cavity (see figure 4(a)). This array was studied
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in order to check the validity of the model in the case of a grating of
parallel rectangular cavities.

• an aperiodic grating of two non parallel rigid cavities. The size of the
first cavity was (0.50×0.48×0.21)m3. It was centered on the reference
frame. The size of the second cavity was (0.35×0.34×0.21)m3. It was
rotated by an angle of θi = 45◦. The coordinates of the center of its
local frame was (0.56, 0.50)(O,x,y)m. The spherical source was placed
1.02m above the first cavity (see figure 4(b)).

x
0 1.21 m- 1.21 m

Loudspeaker

2 cm 2 cm

Horn

1 m

(a)

Loudspeaker

Horn

- 1.21 m

0

x(m)

26
c
m

31.2 cm

Cavity 1

1.21 m 

Cavity 2

1
.0

2
 m

45°

(b)

Figure 4: Geometry of the two studied gratings : the array of the three periodic cavities
(a) and the grating of the two non-parallel cavities (b)

The bottom of the cavities was considered infinitely rigid (steel that ηad = 0).
The profiles were formed by tiled polystyrene blocks to ensure a high acoustic
reflection coefficient. The measurements were taken in free-field conditions
in the Institut national de recherche et de securite (INRS) semi-anechoic
chamber. The sound source used for the test was a horn with a 15mm
outlet diameter [8]. A 10 cm diameter Pioneer TS E1077 loudspeaker was
fixed between the horn and the cylindrical body. Such a source allowed the
emission of spherical waves in the frequency range of interest [100−5000Hz].
The sound pressure profiles were measured by 45 sensors along the x-axis.
Measurement was performed in three stages for three juxtaposed positions of
an antenna fitted with 15 microphones (1/4 inch) placed 0.2 m above the wall
facings studied. These were spaced at 5.5 cm intervals and their positions
were chosen such that the central microphone of the 45-sensor virtual array
was positioned directly below the loudspeaker.

The developed model is valid for plane waves. In oder to be comparable
with experiment, the spherical incident acoustic wave was decomposed into
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plane waves. Thus, the theoretical total diffracted field was obtained by
summing all the diffracted fields generated by the respective plane waves [8].

All the acoustic pressure profiles are normalized with respect to the signal
of the central microphone (x = 0). This normalization allows easy compar-
ison of numerical and experimental results independently of the real source
power.

Figures 5 and 6 show a comparison between our model, the finite element
modeling (FEM) method and experiment for different frequencies. A good
agreement between the theoretical and experimental results was obtained
confirming the validity of the model for parallel and non-parallel gratings.
The curves become more irregular as frequency increases. This phenomenon
is due to more directive scattering at these frequencies. In figure 6 and
above 500Hz, the curves become more symmetric. The diffracted sound
field generated by the second cavity has less ability to disrupt the diffracted
field generated by the first cavity at high frequencies. The distance between
the two cavities becomes important compared to the wavelength at high
frequencies.

The differences between the FEM method and our model are mostly sit-
uated in the extremities of the normalized pressure profiles. These differ-
ences are probably due to non-perfect PML boundary condition (anechoic
termination conditions) in the case of the FEM method [11]. However, the
comparison between our model and the FEM method confirms the accuracy
of our method.

Frequency (Hz) 230 780 1000 1600
Convergence order S 2 3 5 5
Calculation time (mn) 2 15 40 80

Table 1: Calculation time and convergence order S for the different frequencies presented
in the grating of the three parallel rectangular cavities case

Frequency (Hz) 300 500 780 1900
Convergence order S 2 2 3 5
Calculation time (mn) 2 3 12 120

Table 2: Calculation time and convergence order S for the different frequencies presented
in the grating of the two non parallel rectangular cavities case
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Figure 5: Normalized acoustic pressure 0, 2m above the periodic array of the three parallel
rectangular cavities for different frequencies: 230Hz (a), 780Hz (b), 1000Hz (c) and
1600Hz (d). Model (——), FEM (—o—), Experiment (—∗—).
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Figure 6: Normalized acoustic pressure 0, 2m above the grating of the two non parallel
rectangular cavities for different frequencies: 300Hz (a), 500Hz (b), 780Hz (c) and 1900Hz
(d). Model (——), FEM (—o—), Experiment (—∗—).
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Several simulations allowed us to determine the optimal order of conver-
gence for each frequency. For example, figure 7 shows the variation of the
total acoustic velocity with respect of the position x for the frequency 300Hz
in the case of the grating of two non parallel rectangular cavities for different
order S. The curves obtained for S = 2 and S = 3 are superimposed. We
conclude that the convergence is obtained for an order S = 2 for the fre-
quency 300Hz. The same procedure was applied for the other frequencies.

Figure 7: Total acoustic velocity for different order S in the case of the grating of two non
parallel rectangular cavities for 300Hz. S = 1 (—o—), S = 2 (—∗—), S = 1 (—+—)

The convergence order S and the calculation time of the different theo-
retical results of the two studied gratings are given in tables 1 and 2. All
the computations were made on a Personal Computer with a 3.07 GHz intel
Xeon processor and a 8Gb of random access memory. The calculation time
increases as the frequency and the convergence order S increase. Indeed, the
bigger the size of the matrices is, the slower the inversion of the system of
matrix equations (19)-(22) is. The calculation time will could be faster if the
spherical source had been taken directly as the incident wave in our model.
Indeed, in our computation we decompose the spherical acoustic wave into a
finite number of acoustic plane waves. Then we calculate the total scattered
acoustic field by summing all the obtained elementary scattered fields. The
calculation of the FEM was made simultaneously for all the four frequencies
for each grating. The calculation time was 150 mn for the four presented
frequencies for each grating.

In order to study the coupling phenomena between cavities with respect
to frequency and spacing, we compare the coupled solution and the uncou-
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pled solution for four periodic arrays of three (0.50 × 0.48 × 0.21)m3 rigid
same cavities. The four arrays differs in spacing e between the cavities:
e = 0.02m, e = 0.07m, e = 0.12m and e = 0.34m. Figure 8 shows a com-
parison between the values of RMSE parameter [8] obtained for the coupled
solution and the uncoupled solution for the four different spacings. These
curves show that the convergence of the coupled solution and the uncoupled
solution is obtained more rapidly when the spacing between the cavities is
more important. Table 3 shows the different convergence frequencies of the
coupled and the uncoupled solution for the four studied spacings. In the case
of the nearest cavities (e = 0.02m) this convergence is obtained for 930 Hz.
However, for the more distant cavities (e = 0.34m), the convergence is ob-
tained for 500Hz. Accordingly, the convergence between the model coupled
and uncoupled model is obtained from 930Hz for all spacings considered. It
is therefore possible to save calculation time by neglecting the coupling phe-
nomena between cavities from this frequency. This limit is valid only for this
studied configuration. This study confirms that the coupling depends on the
spacing between cavities and frequency. The coupling becomes weak when
the wavelength become small compared to the spacing between cavities. The
convergence frequency is the minimum frequency from which the difference
of the coupled and the uncoupled RMSE values is close to zero for all the
frequencies above.

Spacing Convergence frequency
0.02m 930Hz
0.07m 780Hz
0.12m 580Hz
0.34m 500Hz

Table 3: Convergence frequencies of the coupled and the uncoupled solutions for the four
studied spacings.
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Figure 8: Comparison of the RMSE parameter value obtained for the coupled solution and
the uncoupled solution for the four periodic arrays of three (0.50 × 0.48 × 0.21)m3 rigid
same cavities studied: 0.02m (a), 0.07m (b), 0.12m (c) and 0.34m (d). Coupled solution
(�), Non coupled solution (∗).
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5. Conclusion

A generalization of the model proposed in [8] to the case of gratings of
non parallel rectangular cavities of different size and spacing was performed
using the Kobayashi Potential method. A comparison between the analytical
model, the FEM model and experiment was performed for a grating of two
non parallel rectangular cavities and a periodic array of three rectangular
cavities. A good agreement between the theoretical and experimental results
was obtained for different frequencies.

A study of the coupling phenomena between cavities with respect to fre-
quency and spacing was made by comparing the coupled and the uncoupled
solutions for four periodic arrays of three (0.50× 0.48× 0.21)m3 rigid same
cavities differing by spacing. This study shows that we can neglect the cou-
pling between cavities from frequencies above 1000Hz. This limit is valid
only for this studied configuration. Thanks to the model, it will be possible
to determine the acoustic field above complex wall facings containing parallel
and non-parallel rectangular cavities with different size and spacing.

The model allows calculating separately the diffracted sound field above
a grating of rectangular cavities. This allows determination of the scattered
coefficient for different gratings composed of non parallel rectangular cavities.
It can lead also to characterize such a wall facing by an equivalent admit-
tance or an equivalent reflection or absorption coefficient which can simplify
the acoustic study of confined spaces delimited by this kind of wall facings
containing rectangular cavities. This will be the purpose of a future work.
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