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Accurate and efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates via the nonuniform FFT

Introduction

Since its first experimental creation in 1995 [START_REF] Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF][START_REF] Bradley | Evidence of Bose-Einstein condensation in an atomic gas with attractive interaction[END_REF][START_REF] Davis | Bose-Einstein condensation in a gas of sodium atoms[END_REF], the Bose-Einstein condensation (BEC) has provided an incredible glimpse into the macroscopic quantum world and opened a new era in atomic and molecular physics as well as condensated matter physics. It regains vast interests and has been extensively studied both experimentally and theoretically [START_REF] Andersen | Theory of the weakly interacting Bose gas[END_REF][START_REF] Baranov | Theoretical progress in many body physics of dipolar gases[END_REF][START_REF] Bloch | Many body physics with ultracold gases[END_REF][START_REF] Fetter | Rotating trapped Bose-Einstein condensates[END_REF][START_REF] Leggett | Bose-Einstein condensation in the alkali gases: Some fundamental concepts[END_REF][START_REF] Morsch | Dynamics of Bose-Einstein condensates in optical lattices[END_REF][START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. At early stage, experiments mainly realize BECs of ultracold atomic gases whose properties are mainly governed by the isotropic and short-range interatomic interactions [START_REF] Pitaevskii | Bose-Einstein Condensation[END_REF]. However, recent experimental developments on Feshbach resonances [START_REF] Lahaye | Strong dipolar effects in a quantum ferrofluid[END_REF], on cooling and trapping molecules [START_REF] Ni | A high phase-space-density gas of polar molecules[END_REF][START_REF] Shuman | Laser cooling of a diatomic molecule[END_REF] and on precision measurements and control [START_REF] Pollack | Extreme tunability of interactions in a 7 Li Bose-Einstein condensate[END_REF][START_REF] Vengalattore | Spontaneously modulated spin textures in a dipolar spinor Bose-Einstein condensate[END_REF] allow one to realize BECs of quantum gases with different, richer interactions and gain even more interesting properties. In particular, the successful realization of BECs of dipolar quantum gases with long-range and anisotropic dipolar interaction, e.g., 52 Cr [START_REF] Griesmaier | Bose-Einstein condensation of Chromium[END_REF], 164 Dy [START_REF] Lu | Strongly dipolar Bose-Einstein condensate of Dysprosium[END_REF] and 168 Er [START_REF] Aikawa | Bose-Einstein condensation of Erbium[END_REF], has spurred great interests in the unique properties of degenerate dipolar quantum gases and stimulated enthusiasm in studying both the ground state [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF][START_REF] Jiang | Ground state of the dipolar Bose-Einstein condensate[END_REF][START_REF] Santos | Bose-Einstein condensation in trapped dipolar gases[END_REF][START_REF] Yi | Trapped condensates of atoms with dipole interactions[END_REF] and dynamics [START_REF] Bao | Three dimensional simulation of jet formation in collapsing condensates[END_REF][START_REF] Bao | A simple and efficient numerical method for computing dynamics of rotating dipolar Bose-Einstein condensation via a rotating Lagrange coordinate[END_REF][START_REF] Carles | On the Gross-Pitaevskii equation for trapped dipolar quantum gases[END_REF][START_REF] Huang | Numerical simulation of trapped dipolar quantum gases: collapse studies and vortex dynamics[END_REF][START_REF] Lahaye | D-wave collapse and explosion of a dipolar Bose-Einstein condensate[END_REF][START_REF] Parker | Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate[END_REF] of dipolar BECs.

At temperatures T much smaller than the critical temperature T c , the properties of BEC with long-range dipole-dipole interactions (DDI) are well described by the macroscopic complex-valued wave function ψ = ψ(x,t) whose evolution is governed by the celebrating three-dimensional (3D) Gross-Pitaevskii equation (GPE) with a DDI term. Moreover, the 3D GPE can be reduced to an effective two-dimensional (2D) version if the external trapping potential is strongly confined in the z-direction [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF][START_REF] Cai | Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions[END_REF]. In a unified way, the dimensionless GPE with a DDI term in d-dimensions (d = 2 or 3) for modeling a dipolar BEC reads as [START_REF] Bao | Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement[END_REF][START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | A simple and efficient numerical method for computing dynamics of rotating dipolar Bose-Einstein condensation via a rotating Lagrange coordinate[END_REF][START_REF] Óral | Bose-Einstein condensation with magnetic dipole-dipole forces[END_REF][START_REF] Lahaye | D-wave collapse and explosion of a dipolar Bose-Einstein condensate[END_REF][START_REF] Yi | Trapped condensates of atoms with dipole interactions[END_REF]:

i∂ t ψ(x,t) = - 1 2
∇ 2 +V(x)+β|ψ| 2 +λΦ(x,t) ψ(x,t), x ∈ R d , t > 0, (1.1)

Φ(x,t) = U dip * |ψ| 2 (x,t), x ∈ R d , t ≥ 0, (1.2) ψ(x,t = 0) = ψ 0 (x), x ∈ R d , (1.3) 
where t is time, x= (x,y) T ∈R 2 or x= (x,y,z) T ∈R 3 , * represents the convolution operator with respect to spatial variable. The dimensionless constant β describes the strength of the short-range two-body interactions in a condensate (positive for repulsive interaction, and resp. negative for attractive interaction), while V(x) is a given real-valued external trapping potential which is determined by the type of system under investigation. In most BEC experiments, a harmonic potential is chosen to trap the condensate, i.e.,

V(x) = 1 2 γ 2 x x 2 +γ 2 y y 2 , d = 2, γ 2 x x 2 +γ 2 y y 2 +γ 2 z z 2 , d = 3, (1.4) 
where γ x > 0, γ y > 0 and γ z > 0 are dimensionless constants proportional to the trapping frequencies in x-, y-and z-direction, respectively. Moreover, λ is a dimensionless constant characterizing the strength of DDI and Φ(x,t) is the long-range dipole interaction whose convolution kernel in 3D/2D is given as [START_REF] Bao | Gross-Pitaevskii-Poisson equations for dipolar Bose-Einstein condensate with anisotropic confinement[END_REF][START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF][START_REF] Bao | A simple and efficient numerical method for computing dynamics of rotating dipolar Bose-Einstein condensation via a rotating Lagrange coordinate[END_REF][START_REF] Cai | Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions[END_REF][START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF]:

U dip (x)=    -δ(x)-3∂ nn 1 4π|x| , -3 2 ∂ n ⊥ n ⊥ -n 2 3 ∇ 2 ⊥ 1 2π|x| , ⇔ U dip (k)=    -1+ 3(n•k) 2 k 2 , d = 3, 3[(n ⊥ •k) 2 -n 2 3 k 2 ] 2 k , d = 2, (1.5) 
where x,k ∈ R d and f (k) = R d f (x) e -ik•x dx is the Fourier transform of f (x). Here, n = (n 1 ,n 2 ,n 3 ) T is a given unit vector representing the dipole axis,

n ⊥ = (n 1 ,n 2 ) T , ∂ n = n•∇, ∂ nn = ∂ n (∂ n ), ∇ ⊥ = (∂ x ,∂ y ) T , ∂ n ⊥ = n ⊥ •∇ ⊥ and ∂ n ⊥ n ⊥ = ∂ n ⊥ (∂ n ⊥ ).
The GPE (1.1)-(1.3) conserves two important quantities: the mass (or normalization) of the wave function

N(t) := ψ(•,t) 2 := R d |ψ(x,t)| 2 dx ≡ R d |ψ(x,0)| 2 dx = 1, t ≥ 0, (1.6) 
and the energy per particle

E(ψ(•,t))= R d 1 2 |∇ψ| 2 +V(x)|ψ| 2 + β 2 |ψ| 4 + λ 2 Φ(x,t)|ψ| 2 dx≡E(ψ(•,0)), t≥0. (1.7)
The ground state φ g of the GPE (1.1)-(1.3) is defined as follows:

φ g = argmin φ∈S E(φ), where S := {φ(x) | φ 2 := R d |φ(x)| 2 dx = 1, E(φ) < ∞}. (1.8) 
Extensive works have been carried out to study the ground state and dynamics of dipolar BEC based on the GPE (1.1)-(1.3). For existing theoretical and numerical studies, we refer to [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Baranov | Theoretical progress in many body physics of dipolar gases[END_REF][START_REF] Cai | Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions[END_REF][START_REF] Carles | On the Gross-Pitaevskii equation for trapped dipolar quantum gases[END_REF][START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF][START_REF] Kumar | Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap[END_REF][START_REF] Lahaye | The physics of dipolar bosonic quantum gases[END_REF][START_REF] Lahaye | D-wave collapse and explosion of a dipolar Bose-Einstein condensate[END_REF] and [START_REF] Antoine | Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations[END_REF][START_REF] Bao | Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation[END_REF][START_REF] Bao | Three dimensional simulation of jet formation in collapsing condensates[END_REF][START_REF] Blakie | Numerical method for evolving the dipolar projected Gross-Pitaevskii equation[END_REF][START_REF] Óral | Bose-Einstein condensation with magnetic dipole-dipole forces[END_REF][START_REF] Huang | Numerical simulation of trapped dipolar quantum gases: collapse studies and vortex dynamics[END_REF][START_REF] Kumar | Fortran and C programs for the time-dependent dipolar Gross-Pitaevskii equation in an anisotropic trap[END_REF][START_REF] Lahaye | D-wave collapse and explosion of a dipolar Bose-Einstein condensate[END_REF][START_REF] Ticknor | Collapse times of dipolar Bose-Einstein condensates[END_REF], respectively, and references therein.

To compute the ground state and dynamics of the GPE (1.1), one of the key difficulties is how to evaluate the nonlocal dipole interaction Φ(x,t) (1.2) accurately and effectively for a given density ρ = |ψ| 2 . Noticing that

Φ(x,t) = R d U dip (x-y)ρ(y,t)dy = 1 (2π) d R d U dip (k) ρ(k,t)e ik•x dk, (1.9)
it is natural to evaluate Φ(x,t) via the standard fast Fourier transform (FFT) using a uniform grid on a bounded computational domain [START_REF] Blakie | Numerical method for evolving the dipolar projected Gross-Pitaevskii equation[END_REF][START_REF] O'dell | Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate[END_REF][START_REF] Parker | Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate[END_REF][START_REF] Ticknor | Collapse times of dipolar Bose-Einstein condensates[END_REF]. Nevertheless, due to the intrinsic singularity/discontinuity of U dip (k) at the origin k =0, the so called "numerical locking" phenomena occurs, which limits the optimal accuracy on any given computational domain [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Zhang | On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system[END_REF]. To alleviate this problem, another approach [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF][START_REF] Cai | Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions[END_REF] is to reformulate the convolution (1.2) with 3D dipole kernel (1.5) in terms of the Poisson equation: 

-∆ u(x,t) = |ψ(x,t)| 2 , lim |x|→∞ u(x,t) = 0, x ∈ R 3 , t ≥ 0, ( 1 
√ -∆ u(x,t) = |ψ(x,t)| 2 , lim |x|→∞ u(x,t) = 0, x ∈ R 2 , t ≥ 0. (1.11)
Then, the dipolar potential Φ(x,t) can be computed by a differentiation of u(x,t) as:

Φ(x,t) = -|ψ(x,t)| 2 -3∂ nn u(x,t), x ∈ R 3 , -3 2 ∂ n ⊥ n ⊥ -n 2 3 ∇ 2 ⊥ u(x,t), x ∈ R 2 , t ≥ 0. (1.12)
Then in practical computations, the sine pseudospectral method is applied to solve (1.10)-(1.12) on a truncated rectangular domain Ω with homogeneous Dirichlet boundary conditions imposed on ∂Ω, and they can be implemented with discrete sine transform (DST) efficiently and accurately [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF]. By waiving the use of the 0-mode in the Fourier space, the sine spectral method significantly improves the accuracy for the dipole interaction evaluation. However, due to the polynomial decaying property of u(x,t) when |x| → ∞, a very large computational domain is required in order to achieve satisfactory accuracy. This will increase the computational cost and storage significantly for the dipole interaction evaluation and hence for computing the ground state and dynamics of the GPE (1.1). Moreover, we shall also remark here that, in most applications, a much smaller domain suffices the GPE (1.1) simulation because of the exponential decay property of the wave function ψ(x,t).

Recently, an accurate and fast algorithm based on the NUFFT algorithm was proposed for the evaluation of the dipole interaction in 3D/2D [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF]. The method also evaluates the dipole interaction in the Fourier domain, i.e., via the integral (1.9). Unlike the standard FFT method, by an adoption of spherical/polar coordinates in the Fourier domain in 3D/2D, the singularity/discontinuity of U dip (k) at the origin in the integral (1.9) is can- celed out by the Jacobian introduced by the coordinates transformation. The integral is then discretized by a high-order quadrature and the resulted discrete summation is accelerated via the NUFFT algorithm. The algorithm has O(Nlog N) complexity with N being the total number of unknowns in the physical space and achieves very high accuracy for the dipole interaction evaluation. The main objectives of this paper are threefold: (i) to compare numerically the newly developed NUFFT based method with the existing methods that are based on DST for the evaluation of these nonlocal interactions in terms of the size of the computational domain Ω and the mesh size of partitioning Ω; (ii) to propose efficient and accurate numerical methods for the ground state computation and dynamics simulation of the GPE with the nonlocal interactions (1.1)-(1.2) by incorporating the NUFFT based nonlocal interaction evaluation algorithm into the normalized gradient flow method and the time-splitting Fourier pseudospectral method, respectively, and (iii) to test the performance of the methods and apply them to compute some interesting phenomena of the dynamics of dipolar BEC.

The paper is organized as follows. In Section 2, we shall briefly review the NUFFT based algorithm in [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF] for the evaluation of the dipole interaction in 3D/2D. In Section 3, an efficient and accurate numerical method will be proposed to compute the ground state of the GPE (1.1)-(1.2) by coupling the NUFFT based algorithm for the evaluation of the dipole interaction and the discrete normalized gradient flow method. In Section 4, we will present an efficient and accurate numerical method for computing the dynamics of the GPE (1.1)-(1.2) by coupling the NUFFT based algorithm for the evaluation of the dipole interaction and the time-splitting Fourier pseudospectral method. Finally, some concluding remarks will be drawn in Section 5.

Evaluation of the dipole interaction via NUFFT

In this section, we will first briefly review the NUFFT based method in [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF] for computing the dipole interaction in 3D/2D, and then compare this method with the existing DSTbased method. Here, we consider the DDI (1.9) with a more general dipole interaction kernel U dip (x) defined with two different dipole orientations n and m as [START_REF] Haken | Molecular Physics and Elements of Quantum Chemistry[END_REF][START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF][START_REF] Levitt | Spin Dynamics: Basics of Nuclear Magnetic Resonance[END_REF][START_REF] O'dell | Exact hydrodynamics of a trapped dipolar Bose-Einstein condensate[END_REF]] 

U dip (x)=    -(n•m)δ(x)-3∂ nm 1 4π|x| , -3 2 ∂ n ⊥ m ⊥ -n 3 m 3 ∇ 2 ⊥ 1 2π|x| , ⇔ U dip (k)=    -(n•m)+ 3(n•k)(m•k) k 2 , d = 3, 3[(n ⊥ •k)(m ⊥ •k)-n 3 m 3 k 2 ] 2 k , d = 2. ( 2 
= (m 1 ,m 2 ) T , ∂ m ⊥ = m ⊥ •∇ ⊥ and ∂ n ⊥ m ⊥ = ∂ n ⊥ (∂ m ⊥ )
. This general DDI interaction kernel (2.1) arises in several areas such as quantum chemistry [START_REF] Haken | Molecular Physics and Elements of Quantum Chemistry[END_REF][START_REF] Levitt | Spin Dynamics: Basics of Nuclear Magnetic Resonance[END_REF] and spinor dipolar BEC [START_REF] Baranov | Theoretical progress in many body physics of dipolar gases[END_REF][START_REF] Kawaguchi | Spinor Bose-Einstein condensates[END_REF]. When the two dipole orientations are polarized at the same direction, i.e., m = n, Eq. (2.1) collapses to (1.5).

NUFFT based algorithm

Due to the external trapping potential, the solution of the GPE (1.1)-(1.3) will decay exponentially. Thus, without loss of generality, it is reasonable to assume that the density ρ(x,t) is smooth and decays rapidly, hence ρ(k,t) is also smooth and decays fast. Therefore, up to any prescribed precision ε 0 (e.g., ε 0 = 10 -12 ), we can respectively choose bounded domains D and B R (0)=:{|k|≤R,k∈R d } large enough in the physical space and phase space such that the truncation error of ρ(x,t) and ρ(k,t) is negligible. Note that the convolution only acts on the spatial variable, to simplify our presentation, hereafter we omit the temporal variable t and simplify the notation as Φ(x,t)→Φ(x) and ρ(x,t)→ρ(x).

By truncating the integration domain in (1.9) into a B R (0) and adopting the spheri-cal/polar coordinates in 3D/2D in the phase (or Fourier) space, we have [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF] 

Φ(x) = 1 (2π) d R d e ik•x U dip (k) ρ(k)dk ≈ 1 (2π) d B R (0) e ik•x U dip (k) ρ(k)dk = 1 (2π) d    R 0 2π 0 e ik•x |k| U dip (k) ρ(k)d|k|dφ, d = 2, R 0 π 0 2π 0 e ik•x U dip (k)|k| 2 sinθ ρ(k)d|k|dθdφ, d = 3. (2.2)
It is easy to see that the singularity/discontinuity of U dip (k) at the origin is canceled out by the Jacobian |k| d-1 and hence the integrand in the above integral is smooth. The integrals in (2.2) can be discretized with high order accuracy by using standard (shifted and scaled) Gauss-Legendre quadrature in the radial direction (and the longitudinal θ direction in 3D), combined with the trapezoidal rule for the azimuthal φ variable [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF]. The computational cost of this algorithm is O(N 1 log N 1 )+O(N 2 ), where N 1 is the total number of equispaced points in the physical space D and N 2 is the number of nonequispaced points in the phase space B R (0). Roughly speaking, N 2 is of the same order as N 1 , however, the constant in front of O(N 2 ) (e.g., 24 d for 12-digit accuracy) is much greater than the constant in front of O(N 1 log N 1 ). This makes the algorithm considerably slower than the regular FFT, especially for three dimensional problems.

To reduce the computational cost, an improved algorithm is also proposed in [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF]. First, by a simple partition of unity, the integral in (2.2) can be further split into two parts:

Φ(x) ≈ 1 (2π) d B R (0) e ik•x U dip (k) ρ(k)dk = 1 (2π) d B R (0) e ik•x (1-q d (k)) U dip ρ(k)dk+ 1 (2π) d B R (0) e ik•x q d (k) U dip ρ(k)dk ≈ 1 (2π) d Ω e ik•x p d (k) ρ(k)dk+ 1 (2π) d B R (0) e ik•x q d (k) U dip (k) ρ(k)dk := I 1 + I 2 , x ∈ D. (2.3) Here, Ω = {k = (k 1 ,...,k d ) T |k l | ≤ R,l = 1,...,d} is a rectangular domain containing the ball B R (0), the function q d (k) is chosen such that it is a C ∞ function which decays exponen- tially fast as |k| → ∞ and the function p d (k) := (1-q d (k)) U dip (k) is smooth for k ∈ R d .
With this q d (k), I 1 can be evaluated via the regular FFT, while I 2 can be computed via the NUFFT with a fixed (much fewer) number of irregular points in the phase (or Fourier) space (see Figure 1). Therefore, the interpolation cost in the NUFFT is reduced to O(1) and the overall cost of the algorithm is comparable to that of the regular FFT, with a small oversampling factor in front of O(N 1 log N 1 ).

Numerical comparison

In this subsection, we will show the accuracy and efficiency of the NUFFT based algorithm (referred as NUFFT) for computing dipole interaction Φ(x) and compare them with Figure 1: Two grids used in the phase (or Fourier) domain in the improved algorithm in [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF]: the regular grid on the left panel is used to compute I 1 in (2.3) via the regular FFT; while the polar grid (confined in a small region centered at the origin) on the right panel is used to compute I 2 in (2.3) via the NUFFT. Note that the number of points in the polar grid is O(1), thus keeping the interpolation cost in NUFFT minimal.

the existing methods that applies (1.10)-(1.12) via the DST (referred as DST). To this end, we denote D as the computational domain, D h as its partition with mesh size h and Φ h (x) as the numerical solution obtained on the domain D h . Hereafter, we choose h x = h y = h z in 3D and/or h x = h y in 2D and denote them uniformly as h unless stated otherwise. To demonstrate the comparison, we define the error function as

e h := Φ-Φ h l 2 / Φ l 2 , (2.4) 
where • l 2 is the l 2 -norm.

Example 2.1. Dipole-dipole interaction in 3D.

In this example, we take d=3 and choose the source density ρ(x)=e -|x| 2 /σ 2 with σ>0. The DDI (1.9) in 3D with two dipole orientations n and m in (2.1) can be given explicitly as

Φ(x) = -(n•m)ρ(x)-3 ∂ nm σ 2 √ π 4 Erf(r/σ) r/σ = -(n•m)ρ(x)-3 n T G(x)m, ( 2.5) 
where the matrix G(x) = (g jl (x)) 3 j,l=1 is given as

g jl (x) = σ 2 2r 2 e -r 2 σ 2 - σ 3 √ π 4r 3 Erf r σ δ jl +x j x l - 3 σ 2 2 r 4 e -r 2 σ 2 - 1 r 2 e -r 2 σ 2 + 3 σ 3 √ π 4 r 5 Erf r σ ,
(2.6) with δ jl the Kronecker delta, x = (x 1 ,x 2 ,x 3 ) T and Erf(r) = 2 √ π r 0 e -s 2 ds the error function. We choose σ = 1.4 and compute the potential Φ(x) on a uniform mesh grid, i.e., h x = h y = h z on the domain [-L,L] 3 by the DST and NUFFT methods. Table 1 shows the numerical errors e h via the DST and NUFFT methods with different dipole axis, i.e., n = (0.82778,0.41505,-0.37751) T and m = (0.31180,0.93780,-0.15214) T , while Table 2 presents errors e h with the same dipole axis, i.e., n = m = (0,0,1) T .

From Tabs. 1-2, we can clearly observe that: (i) The errors are saturated in the DST method as the mesh size h tends smaller and the saturated accuracy decreases linearly with respect to the domain size L; (ii) The NUFFT method is spectrally accurate and it essentially does not depend on the domain, which implies that a very large bounded computational domain is not necessary in practical computations. Here, we take d = 2 and choose the source density as ρ(x) = e -|x| 2 /σ 2 with σ > 0. The exact DDI (1.9) in 2D with two dipole orientations n ⊥ and m ⊥ in (2.1) can be given as [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF]:

Φ(x) = 3 √ π e -r 4σ (n ⊥ •m ⊥ )(I 0 (r)-I 1 (r))- 2(x•n ⊥ )(x•m ⊥ ) σ 2 I 0 (r) - 1+2r 2r I 1 (r) + 3 √ π n 3 m 3 re -r σ I 0 (r)-I 1 (r)- I 0 (r) 2r , (2.7) 
where r=

|x| 2
2σ 2 , I 0 and I 1 are the modified Bessel functions of order 0 and 1, respectively [START_REF] Zhang | Handbook of Mathematical Functions[END_REF]. Here, we choose σ = √ 1.3 and dipole axis as n ⊥ = (0,-0.896) T and m ⊥ = (0,-0.52476) T (corresponding to n = (0,-0.896,0.44404) T and m = (0,-0.52476,0.85125) T in 3D). Table 3 shows the errors e h via the DST and NUFFT methods for different domain size L and mesh size h.

From Tab. 3, we can clearly observe that: (i) The errors are saturated in the DST method as the mesh size h tends smaller and the saturated accuracy decreases linearly with respect to the domain size L; (ii) The NUFFT method is spectrally accurate and it essentially does not depend on the domain if it is adequately large. In this example, we consider the dipole-dipole interaction for anisotropic densities which are localized in one or two spatial directions. As stated in the introduction, the 3D/2D dipole interaction (1.12) can be solved analytically via the Poisson equation (1.10) and the fractional Poisson equation (1.11) in 3D and 2D, respectively. Therefore, the dipole-dipole interaction can be obtained analytically via the solution of the Poisson/ fractional Poisson potential, followed by differentiation.

[-L,L] 2 . NUFFT h = 2 h = 1 h = 1/2 h = 1/4 L =

The 2D case. For an anisotropic density

ρ(x,y) = 1 4πε e -x 2 4 -y 2
4ε 2 with a small parameter 0 < ε ≤ 1, the 2D Coulomb potential (1.11) is given analytically [START_REF] Bao | Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT[END_REF] as:

u(x,y) = 1 2π √ π ∞ 0 G(x,y,s)ds, G(x,y,s) = exp(-x 2 4(1+s 2 ) -y 2 4(s 2 +ε 2 ) ) √ s 2 +1 √ s 2 +ε 2 . (2.8)
Then, the DDI (1.9) in 2D with (2.1) can be obtained by differentiating the integrand G in (2.8). For the convenience of readers, it can be evaluated explicitly as:

Φ(x,y) = - 3 4π 3/2 ∞ 0 (n 1 m 1 -n 3 m 3 )G xx +(n 2 m 2 -n 3 m 3 )G yy +(n 1 m 2 +n 2 m 1 )G xy ds. (2.9)
Similarly as [START_REF] Bao | Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT[END_REF], to numerically evaluate (2.9), we first split it into two integrals and reformulate the one with infinite interval into an equivalent integral with finite interval by a change of variable. Then, we apply high order Gauss-Kronrod quadrature to each integral to get reference solutions. Here we omit details for brevity. With this way, we can obtain the 'exact' 2D DDI with the given density ρ(x,y).

As discussed in [START_REF] Bao | Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT[END_REF], the 2D Coulomb interaction can be well-resolved by the NUFFT method on a heterogenous rectangle D ε =[-L,L]×[-εL,εL]. The DST method, best suited for solving the PDEs with homogeneous Dirichlet boundary condition on a rectangular domain, fails to produce even a satisfactory result on D ε , mainly because the potential does not decay fast enough. Actually, the DST method can give reasonably accurate results on a square D =[-L,L] 2 due to that the homogeneous Dirichlet boundary condition doesn't bring significant error, however, one needs to resolve the anisotropic density with h y = εh x . Then the computational and storage costs for the DST method will correspond- ingly scale linearly as a function of 1/ε. Here we adapt the similar strategy for the choice of computational domains for the NUFFT and DST methods to compute the DDI. Table 4 presents errors of the 2D dipole interaction for anisotropic densities by NUFFT on D ε and DST on D with h x = 1/8,h y = εh x for the same n,m as in the Example 2.2. As for the 3D case, there are two typical kinds of anisotropic densities, that is, densities that are strongly localized in one or two directions. The first typical kind of anisotropic density is localized in one direction. For example, choose the density as ρ(x,y,z) =

1 8π √ πε e -x 2 +y 2 4 e -z 2
4ε 2 , and its corresponding 3D Coulomb potential (1.10) is given as:

u(x,y,z) = 1 8π 3/2 ∞ 0 e - x 2 +y 2 4(1+s) e -z 2 4(s+ε 2 ) 1 (1+s) √ s+ε 2 ds.
(2.10)

The second kind of anisotropic density is localized in two directions. For example, the density is taken as ρ(x,y,z 4 , and the corresponding 3D Coulomb potential (1.10) is given analytically as:

) = 1 8π √ πε 2 e -x 2 +y 2 4ε 2 e -z 2
u(x,y,z) = 1 8π 3/2 ∞ 0 e -x 2 +y 2 4(s+ε 2 ) e -z 2 4(s+1) 1 √ 1+s (s+ε 2 ) ds. (2.11)
Similarly as in the 2D case, the DDI in 3D can be obtained by differentiating the integrand in (2.10) and (2.11). They can be evaluated numerically in a similar way, which can be viewed as the 'exact' solution. For brevity, we omit the formulas and relevant details.

To numerically compute the 3D dipole interaction by the NUFFT and DST methods, we shall adopt the meshing strategy, i.e., h y = h x and h z = εh x for densities localized only in z-direction and h y = h x = εh z for densities localized in x,y directions. Similarly, the NUFFT method is applied on a heterogenous cube

D ε =[-L,L] 2 ×[-εL,εL] or [-εL,εL] 2 × [-L,L].
The DST method is used on D = [-L,L] 3 so that the homogeneous Dirichlet boundary condition doesn't bring significant error. Correspondingly, the computational and storage costs of the DST method will scale linearly as a function of 1/ε (the first kind) or 1/ε 2 (the second kind).

To show the accuracy performance of both methods, we take the first kind density as the test function (2.10). Here we take the same dipole axis n = m = (0,0,1) T in (2.1) for simplicity. Table 5 presents errors of the 3D dipole interaction for anisotropic densities localized in the z-direction by NUFFT on D ε and DST on D with h x =h y =1/4 and h z =εh x .

Table 5: Errors of the 3D dipole interaction (2.10) by NUFFT on D ε and DST on D with h x = h y = 1/4 and n = m = (0,0,1) T in (2.1). From Tabs. 4-5, we can conclude: (1) the NUFFT can evaluate accurately the 2D and 3D dipole interaction with anisotropic densities. (2) The DST method can still capture satisfactory results if the computational domain is large enough, however, the computational and storage costs increase when the heterogeneity of the density increases, which makes it less applicable, especially in 3D simulation.
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Ground state computation

In this section, we propose an efficient and accurate numerical method for computing the ground state by combining the normalized gradient flow which is discretized by the backward Euler Fourier pseudospectral method and the NUFFT nonlocal DDI interaction solver. We shall refer to this new method as GF-NUFFT hereafter. The spatial spectral accuracy is investigated in details, the virial identity is verified numerically, with comparison to some existing results in [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF], to show the advantage of the GF-NUFFT method in term of accuracy.

A numerical method via the NUFFT

Let ∆t > 0 be the time step and denote t n = n∆t for n = 0,1,2,... . Many efficient and accurate numerical methods have been proposed for computing the ground state of the GPE [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF][START_REF] Bao | Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose-Einstein condensates[END_REF][START_REF] Bao | Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow[END_REF][START_REF] Zhang | On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system[END_REF]. One of the most simple and successful method is by solving the following gradient flow with discretized normalization (GFDN):

∂ t φ(x,t) = 1 2 ∇ 2 -V(x)-β|ψ| 2 -λΦ(x,t) φ(x,t), x ∈ R d , t n ≤ t < t n+1 , (3.1) 
Φ(x,t) = U dip * |φ| 2 (x,t), x ∈ R d , t n ≤ t < t n+1 , (3.2) φ(x,t n+1 ) = φ(x,t - n+1 ) φ(x,t - n+1 ) , x ∈ R d , n ≥ 0, (3.3) 
with the initial data

φ(x,0) = φ 0 (x), x ∈ R d , with φ 0 2 := R d |φ 0 (x)| 2 dx = 1. (3.4) 
Let φ n (x) and Φ n (x) be the numerical approximations of φ(x,t n ) and Φ(x,t n ), respectively, for n ≥ 0. The above GFDN is usually discretized in time via the backward Euler method [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF][START_REF] Zhang | On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system[END_REF] 

φ (1) (x)-φ n (x) ∆t = 1 2 ∇ 2 -V(x)-β|ψ n | 2 -λΦ n (x) φ (1) (x), x ∈ R d , (3.5) Φ n (x) = U dip * |φ n | 2 (x), x ∈ R d , (3.6) φ n+1 (x) = φ (1) (x) φ (1) (x) , x ∈ R d , n ≥ 0. (3.7)
As it is known, the ground state decays exponentially fast due to the trapping potential, therefore, in practical computations, we shall first truncate the whole space to a bounded domain D and impose periodic boundary conditions. It is worthwhile to point out that the dipole interaction is originally defined by convolution, therefore it does not require any boundary condition. Then, the equation (3.5) is discretized in space via the Fourier pseudospectral method and the dipole interaction Φ n (x) in (3.6) is evaluated by the NUFFT solver. The initial guess φ 0 (x) is usually chosen as a positive function, e.g., a Gaussian, and the ground state φ g (x) is obtained numerically as φ n (x) once

φ n (x)-φ n+1 (x) l ∞ ∆t
≤ ε 0 is satisfied, where ε 0 is the desired accuracy. The details are omitted here for brevity.

Numerical results

In order to study the spatial accuracy of the GF-NUFFT method for computing the ground state, we denote Φ g (x) = (U dip * |φ g | 2 )(x) and introduce the error functions e h φ g :=

φ g (x)-φ h g (x) l 2 φ g (x) l 2 , e h Φ g := Φ g (x)-Φ h g (x) l 2 Φ g (x) l 2 ,
where φ h g and Φ h g are obtained numerically by a numerical method with the mesh size h. Additionally, we split the energy functional into four parts

E(φ) = E kin (φ)+E pot (φ)+E int (φ)+E dip (φ),
where the kinetic energy E kin (φ), the potential energy E pot (φ), the interaction energy E int (φ), and the dipole interaction energy E dip (φ) are defined as

E kin (φ) = 1 2 R d |∇φ(x)| 2 dx, E pot (φ) = R d V(x)|φ(x)| 2 dx, E int (φ) = β 2 R d |φ(x)| 4 dx, E dip (φ) = λ 2 R d Φ(x)|φ(x)| 2 dx,
respectively. Moreover, the chemical potential can be reformulated as µ(φ) = E(φ)+ E int (φ)+E dip (φ). Furthermore, if the external potential V(x) in (1.1) is taken as the harmonic potential (1.4) [START_REF] Bao | Mathematical theory and numerical methods for Bose-Einstein condensation[END_REF][START_REF] Bao | Dimension reduction of the Schrödinger equation with Coulomb and anisotropic confining potentials[END_REF][START_REF] Bao | Computing the ground state and dynamics of the nonlinear Schrödinger equation with nonlocal interactions via the nonuniform FFT[END_REF][START_REF] Mauser | Exact artificial boundary condition for the Poisson equation in the simulation of the 2D Schrödinger-Poisson system[END_REF], the energies of the ground state satisfy the following virial identity 0

= I := 2E kin (φ g )-2E pot (φ g )+3E int (φ g )+3E dip (φ g ). (3.8)
We denote I h as an approximation of I when φ g and Φ g are replaced by φ h g and Φ h g in (3.8). In our computations, the ground state φ h g is reached numerically when

φ n+1 (x)-φ n (x) l ∞ ∆t ≤ ε 0 with ε 0 =10 -10
. The initial data φ 0 (x) is chosen as a Gaussian and the time step is taken as ∆t = 10 -2 . In the comparisons, the "exact" solution φ g (x) was obtained numerically via the GF-NUFFT method on a large enough domain Ω with small enough mesh size h and the same time step ∆t = 10 -2 . Table 6: Errors of the ground states and the dipole interaction obtained by the GF-NUFFT method for n = (0,0,1) T and β = 200 with different mesh sizes h and λ. Accuracy confirmation. To show the accuracy of the GF-NUFFT, we take d = 3, n = (0,0,1) T , β = 200 and V(x) = 1 2 (x 2 +y 2 +z 2 /4). Table 6 presents errors of the ground states and the corresponding dipole interactions computed on a fixed domain [-8,8] 3 with different mesh size h and the DDI strength λ. From this Table, we can observe clearly the spectral convergence in space of the GF-NUFFT method.
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Virial identity. Here we take the same physical parameters as used in [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF] (cf. Table 3), i.e., d = 3, β = 207.16 and V(x) = 1 2 (x 2 +y 2 +z 2 /4). We compute the ground state on a larger domain, i.e., [-12,12] 3 , with a coarser mesh size h x = h y = h z = 1/4. Different energies of the ground state and related quantities are shown in Table 7. Compared with Table 3 in [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF] where the identity is only accurate up to 3 significant digits, our results by the GF-NUFFT method agree quite well with the identity, up to 9 significant digits. 

Dynamics simulation

In this section, instead of solving the GPE (1.1)-( 1.3), we consider a more general GPE in d-dimensions (d = 2,3) with both the damping term and time (in-)dependent DDI:

i∂ t ψ(x,t) = - 1 2 ∇ 2 +V(x)+β|ψ| 2σ +λΦ(x,t)-i f (|ψ| 2 ) ψ(x,t), (4.1) Φ(x,t) = (U dip * |ψ| 2 )(x,t), x ∈ R d , t ≥ 0, (4.2) ψ(x,t = 0) = ψ 0 (x). (4.3)
Here, σ > 0 corresponds to the type of the nonlinearity (σ = 1 represents to the cubic nonlinearity, and resp., σ = 2 to a quintic nonlinearity). f (ρ) ≥ 0 for ρ = |ψ| 2 ≥ 0 is a realvalued monotonically increasing function that represents the type of damping. In BEC, when f (ρ)≡0, (4.1) reduces to the usual GPE (1.1) without damping effect, while a linear damping term f (ρ) ≡ δ with δ >0 represents inelastic collisions with the background gas.

In addition, the cubic damping f (ρ) = δ 1 ρ with δ 1 > 0 describes two-body loss, a quintic damping term of the form f (ρ) = δ 2 ρ 2 with δ 2 >0 corresponds to the three-body loss, and their combination f (ρ) = δ 1 ρ+δ 2 ρ 2 takes both the two and three-body loss into account. Furthermore, the kernel of the dipole interaction may be time (in-)dependent, which is defined as

U dip (x,t) = 3 4π 1-3(x•n(t)) 2 /|x| 2 |x| 3 = -δ(x)-3∂ n(t)n(t) 1 4π|x| , x ∈ R 3 , t ≥ 0, (4.4) 
where n(t) = (n 1 (t),n 2 (t),n 3 (t)) T ∈ R 3 is a given time (in-)dependent unit vector, representing the dipole orientation. The energy is modified as:

E (t) =: R d 1 2 |∇ψ| 2 +V(x)|ψ| 2 + β δ+1 |ψ| 2(δ+1) + λ 2 Φ(x,t)|ψ| 2 - λ 2 t 0 ∂ s U dip * |ψ| 2 |ψ(x,s)| 2 ds dx, t ≥ 0, (4.5) 
which satisfies the following dynamical law:

d dt E (t) = -2 R d f (|ψ| 2 )Im ψ∂ t ψ dx, t ≥ 0, (4.6) 
where ψ denotes the complex conjugate of ψ. The total mass N(t) (1.6) is dissipated as:

d dt N(t) = -2 R d f (|ψ| 2 )|ψ| 2 dx, t ≥ 0. (4.7) 
We will present an accurate and efficient numerical method for simulating the dynamics of the GPE (4.1)-(4.3). The method incorporates the NUFFT solver for the evaluation of the nonlocal dipole interaction and the time-splitting Fourier pseudospectral discretization for the GPE (4.1).

Numerical method

In practical computation, we first truncate the problem (4.1)-( 4.3) into a bounded com-

putational domain D = [L x ,R x ]×[L y ,R y ]×[L z ,R z ] if d = 3, or D = [L x ,R x ]×[L y ,R y ] if d = 2.
From t = t n to t = t n+1 , the GPE (4.1) will be solved in two steps. One first solves

i∂ t ψ(x,t) = - 1 2 ∇ 2 ψ(x,t), x ∈ D, t n ≤ t ≤ t n+1 , (4.8) 
with periodic boundary condition on the boundary ∂D for a time step of length ∆t, followed by solving

i∂ t ψ(x,t) = V(x)+ β|ψ| 2σ +λΦ(x,t)-i f (|ψ| 2 ) ψ(x,t), x ∈ D, t n ≤ t ≤ t n+1 , (4.9) Φ(x,t) = U dip * |ψ| 2 (x,t), x ∈ D, t n ≤ t ≤ t n+1 , (4.10) 
for the same time step. The linear subproblem (4.8) will be discretized in space by the Fourier pseudospectral method and integrated in time exactly in the phase space, while the nonlinear subproblem (4.9)-(4.10) can be integrated exactly, one can refer to [START_REF] Bao | Efficient numerical methods for computing ground states and dynamics of dipolar Bose-Einstein condensates[END_REF][START_REF] Bao | An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equation with a focusing nonlinearity[END_REF][START_REF] Bao | Three dimensional simulation of jet formation in collapsing condensates[END_REF][START_REF] Bao | A simple and efficient numerical method for computing dynamics of rotating dipolar Bose-Einstein condensation via a rotating Lagrange coordinate[END_REF] for details. To simplify the presentation, we will only present the scheme for the 3D case. As for the 2D case, one can modify the algorithm straightforward.

Let L, M, N be even positive integers, choose

h x = R x -L x L , h y = R y -L y M and h z = R z -L z N
as the spatial mesh sizes in x-, y-, and z-directions, respectively. Define the index and grid points sets as

T LMN = {(l,k,m)|0 ≤ l ≤ L, 0 ≤ k ≤ M, 0 ≤ m ≤ N}, T LMN = (p,q,r)| - L 2 ≤ p ≤ L 2 -1, - M 2 ≤ q ≤ M 2 -1, - N 2 ≤ r ≤ N 2 -1 , G xyz = (x l ,y k ,z m ) =: (L x + jh x , L y +kh y , L z +mh z ), (l,k,m) ∈ T LMN .
Define the functions W s pqr (x,y,z) = e iµ x p (x-L x ) e iµ y q (y-L y ) e iµ z r (z-L z ) , (p,q,r) ∈ T LMN , with

µ x p = 2pπ R x -L x , µ y q = 2qπ R y -L y , µ z r = 2rπ R z -L z , (p,q,r) ∈ T LMN .
Let ψ n lkm be the approximation of ψ(x l ,y k ,z m ,t n ) for (l,k,m) ∈ T LMN and n ≥ 0 and denote ψ n be the solution vector at time t = t n with components {ψ n lkm , (l,k,m) ∈ T LMN }. Taking the initial data as ψ 0 lkm = ψ 0 (x l ,y k ,z m ) for (l,k,m) ∈ T LMN , for n ≥ 0, a second-order time splitting Fourier pseudospectral (TSFP) method to solve the GPE (4.1)-(4.3) reads as:

ψ (1) lkm = L/2-1 ∑ p=-L/2 M/2-1 ∑ q=-M/2 N/2-1 ∑ r=-N/2 e -i∆t 4 [(µ x p ) 2 +(µ y q ) 2 +(µ z r ) 2 ] (ψ n ) pqr W s pqr (x l ,y k ,z m ), ψ (2) lkm = ψ (1) lkm exp -i ∆tV(x l ,y k ,z m )+ H(|ψ (1) lkm | 2 ,∆t)+G(|ψ (1) | 2 ,t n ,t n+1 )(x l ,y k ,z m ) ×exp{-F(|ψ (1) lkm | 2 ,∆t)}, (l,k,m) ∈ T LMN , ψ n+1 lkm = L/2-1 ∑ p=-L/2 M/2-1 ∑ q=-M/2 N/2-1 ∑ r=-N/2 e -i∆t 4 [(µ x p ) 2 +(µ y q ) 2 +(µ z r ) 2 ] (ψ (2) ) pqr W s pqr (x l ,y k ,z m ). (4.11)
Here, (ψ n ) pqr and (ψ (2) ) pqr are the discrete Fourier transform coefficients of the vectors ψ n and ψ [START_REF] Aikawa | Bose-Einstein condensation of Erbium[END_REF] , respectively, and the functions H(ϕ,s), G(ϕ,s,s 1 ) and F(ϕ,s) are defined as:

H(ϕ,s) = β s 0 [h(ϕ,τ)] σ dτ, F(ϕ,s) = s 0 f (h(ϕ,τ))dτ, (4.12 
)

G(ϕ,s,s 1 )(x) = λ s 1 s U dip (•,τ) * h(ϕ(•,τ-s) (x)dτ, (4.13) 
with

h(ϕ,s) = g -1 (g(ϕ)-2s), ϕ > 0, s ≥ 0, 0, ϕ = 0, s ≥ 0, g(s) = 1 s f (s) . ( 4.14) 
For a given damping function f (s), in general, g -1 (s) and thus h(ϕ,s) may not have explicit expressions. In practical computation, one could solve h(ϕ,s) numerically from an auxiliary ODE, and then evaluate (4.12)-(4.13) via a numerical quadrature. For details, one can refer to Remark 2.1 in [START_REF] Bao | An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equation with a focusing nonlinearity[END_REF]. However, if the dipole axis is time independent, i.e., U dip (x,t) ≡ U dip (x,t = 0) =: U 0 dip (x), for those damping terms that are frequently used in the physics literatures, the functions H, F and G can be integrated analytically. For the convince of the reader, we list them here briefly [START_REF] Bao | An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equation with a focusing nonlinearity[END_REF]:

• Case I. f (ρ) ≡ 0, i.e., no damping term, we have

H(ϕ,s) = βϕ σ s, F(ϕ,s) = 0, G(ϕ,s,s 1 )(x) = λ(s 1 -s) U 0 dip * ϕ (x).
• Case II. f (ρ) = δ > 0, i.e., the linear damping, we have

H(ϕ,s) = βϕ σ 2δσ 1-e -2δσs , F(ϕ,s) = δs, G(ϕ,s,s 1 )(x) = λ 2δ
1-e -2δ(s 1 -s) U 0 dip * ϕ (x).

• Case III. f (ρ) = δρ q with δ,q > 0, which corresponds to two (q = 1) or three (q = 2) body loss of particles, we have

F(ϕ,s) = 1 2q ln(1+2qδsϕ q ), H(ϕ,s) =    β 2qδ ln(1+2qδsϕ q ), if σ = q, βϕ σ-q 2δ(q-σ) (1+2qδsϕ q ) 1-σ/q -1 , if σ = q, G(ϕ,s,s 1 )(x) = λU 0 dip *    1 2δ ln(1+2δ(s 1 -s)ϕ), if q = 1, (1+2qδ(s 1 -s)ϕ q ) 1-1/q -1 2δ(q-1)ϕ q-1 , if q = 1.
The function G is evaluated by the algorithm via the NUFFT as discussed in previous sections, and this method for discretizing the GPE (4.1)-( 4.3) is referred as TS-NUFFT.

Test of the accuracy

In this section, we first test the accuracy of our numerical method for computing the dynamics of the dipolar BEC. To demonstrate the results, we define the following error function

e h,∆t ψ (t n ) := ψ(x,t n )-ψ n h,∆t l 2 ψ(x,t) l 2 , n ≥ 0, (4.15) 
where • l 2 represents the l 2 norm, ψ n h,∆t is the numerical approximation of ψ(x,t = t n ) obtained by the TS-NUFFT method (4.11) with mesh size h and time step ∆t. In this subsection, all examples are carried out for dipolar BEC without damping effect, i.e., f (ρ) ≡ 0 in the GPE (4.1). Moreover, the computational domain D, the trapping potential V(x) and the initial data ψ 0 (x) are respectively chosen as Here d=3 and the "exact" solution ψ(x,t) is obtained numerically via the TS-NUFFT method on domain D with very small mesh size h=h 0 := 1 16 and time step ∆t=∆t 0 :=10 -4 . Table 8 Here d=2 and the "exact" solution ψ(x,t) is obtained numerically via the TS-NUFFT method on domain D with very small mesh size h=h 0 := 1 32 and time step ∆t=∆t 0 :=10 -4 . Table 9 shows the spatial discretization errors e h,∆t 0 ψ (t) and the temporal discretization errors e h 0 ,∆t ψ (t) as well as the convergence rate at time t = 1.0 with different mesh size h and different time step ∆t, for different β and λ = β 20 . 

D = [-2 6-d ,2 6-d ] d , V(x) = |x| 2 2 , ψ 0 (x) = 1 4 √ π d e -

Applications

In this section, we apply the TS-NUFFT method (4.11) to study some interesting phenomena, such as the dynamics of a BEC with time-dependent dipole orientations and the collapse and explosion of a dipolar BEC with attractive interaction and damping terms. Here d=3 and we consider the GPE (4.1) without damping term, i.e., f (ρ) ≡ 0. The trapping potential is chosen as V(x) = |x| 2 2 and the initial data in (4.3) is chosen as ψ 0 (x)= φ gs (x), where φ gs (x) is the ground state of the GPE (4.1) with f (ρ) ≡ 0 and n = (0,0,1) T , β = 103.58 and λ = 82.864, which is computed numerically via the numerical method presented in the previous section. The computational domain and mesh size are chosen as D = [-8,8] 3 and h x = h y = h z = 1 8 , respectively. Then we tune the dipole orientation as

n(t) = sin t 5 ,0,cos t 5 T , t ≥ 0, (4.17) 
and study the dynamics of the BEC in two cases:

• Case 1. tune the dipole orientation as in (4.17) and keep all the other parameters unchanged.

• Case 2. tune the dipole orientation as in (4.17), perturb the trapping potential by setting γ x = 2 and keep all the other parameters unchanged.

Figure 2 shows the isosurface of the density function ρ(x,t) = |ψ(x,t)| 2 = 0.01 at different times for case 1, while Figure 3 depicts the isosurface evolution for case 2. From Figs. 23, we could have the following conclusions: (i). The density of the condensate will rotate along with the rotation of the dipole axis. (ii). For Case 1 where the trapping potential is isotropic, the shape of the density profile seems to be unchanged during the dynamics, and it seems to keep the same symmetric structure with respect to the dipole orientation. However, this phenomena does not occur in Case 2 where the trapping potential is anisotropic.

Example 4.4. Collapse and explosion of a dipolar BEC with damping effect in 3D.

In this case, the trapping potential V(x) and the constants λ and β are set to be time dependent and are chosen according to the parameters used in the physical experiment [START_REF] Lahaye | The physics of dipolar bosonic quantum gases[END_REF][START_REF] Lahaye | D-wave collapse and explosion of a dipolar Bose-Einstein condensate[END_REF] (in dimensionless form) as follows:

V(x,t) = (γ 2 x x 2 +γ 2 y y 2 +γ 2 z z 2 )/2, t ∈ [0, 4+t hold ], Here, t hold is the hold time for the collapse, which is chosen as t hold = 0.2. Moreover, we let n = (0,0,1) T , σ = 1 and chose the damping term as f (ρ) = δρ 2 with δ = 3.512, i.e., we chose the cubic nonlinearity and study the case of three-body loss of the particles. The initial data in (4.3) is chosen as ψ 0 (x) = φ gs (x), where φ gs (x) is the ground state of the GPE (4.1) with f (ρ) ≡ 0, n = n(0), β = β(0) λ = λ(0) and V(x) = V(x,0), which is computed numerically via the numerical method presented in the previous section. The computational domain and mesh size are chosen as D = [-24,24] 3 and h x = h y = h z = 3 16 , respectively. Figures 4 and5 show the contour plot of the column density

ρ x c (y,z,t) = R x L x |ψ(x,t)| 2 dx,
and the evolution of the total mass, respectively. From Figs. 4 and5, we can conclude that: (i). The total mass is lost during the dynamics, especially during a very short period near t = 5 (cf. Fig. 5). (ii). Although the BEC is released from the trap (i.e., the trapping potential is turned off) at time t = 4.2, the atoms in the BEC still move inward in the x-y plane. (iii). The density is first enlongated along the dipole orientation, then the collapse of the BEC happens very quickly, and "clover" pattern of the density profile is created. (iv). The "Leafs" are then ejected outward. All these results agree with those in the experiments [START_REF] Lahaye | The physics of dipolar bosonic quantum gases[END_REF][START_REF] Lahaye | D-wave collapse and explosion of a dipolar Bose-Einstein condensate[END_REF].

Conclusion

We proposed efficient and accurate numerical methods for computing the ground state and dynamics of the dipolar Bose-Einstein condensates by integrating a newly developed dipole-dipole interaction (DDI) solver via the non-uniform fast Fourier transform (NUFFT) algorithm [START_REF] Jiang | Fast and accurate evaluation of nonlocal Coulomb and dipole-dipole interactions via the nonuniform FFT[END_REF] with existing numerical methods. The NUFFT based DDI solver removes naturally the singularity of the DDI at the origin by adopting the spherical/polar coordinates in the Fourier space, thus achieves spectral accuracy and simultaneously maintains high efficiency by appropriately combining the advantages of the NUFFT and FFT. Efficient and accurate numerical methods were then presented to compute the ground state and dynamics of the dipolar BEC with a DDI by integrating the normalized gradient flow with the backward Euler Fourier pseudospectral discretization and time-splitting Fourier pseudospectral method, respectively, together with NUFFT based DDI solver. Extensive numerical comparisons with existing methods were carried out to compute the DDI, ground states and dynamics of the dipolar BEC. Numerical results showed that our new methods outperformed other existing methods in terms of both accuracy and efficiency, especially when the computational domain is chosen smaller and/or the solution is anisotropic.

. 1 )

 1 Here, x,k ∈ R d with d = 3,2, n = (n 1 ,n 2 ,n 3 ) T and m = (m 1 ,m 2 ,m 3 ) T are two given unit vectors representing the two dipole orientations, m ⊥
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 41 |x| 2 /2 , x ∈ D with d = 2 or 3. (4.16)Furthermore, the dipole orientation in (4.4) is chosen as n=(0,0,1) T in 3D and n ⊥ =(1,0) T in 2D, respectively. Numerical accuracy verification in 3D.
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 43 Dynamics of a BEC with rotating dipole orientations.

Figure 2 :

 2 Figure 2: Isosurface plots of the density function ρ(x,t) = |ψ(x,t)| 2 = 0.01 and the dipole axis n(t) (red arrow) at different times for case 1 in the example 4.3.

Figure 3 :

 3 Figure 3: Isosurface plots of the density function ρ(x,t) = |ψ(x,t)| 2 = 0.01 and the dipole axis n(t) (red arrow) at different times for case 2 in the example 4.3.

Figure 4 :

 4 Figure 4: Contour plots of the column density ρ x c (y,z,t) at different times for the example 4.4.

Figure 5 :

 5 Figure 5: Evolution of the mass for the example 4.4.

  .10) and convolution (1.2) with 2D dipole kernel (1.5) in terms of the fractional Position equation

Table 1 :

 1 Errors of the 3D dipole interaction with different axis for different h and L.

	NUFFT	h=2	h = 1	h = 1/2	h = 1/4
	L = 4	6.004E-01	6.122E-03	1.362E-04	9.823E-05
	L = 8	6.344E-01	5.739E-03	1.189E-09	6.323E-14
	L =	6.641E-01	6.054E-03	1.162E-09	1.188E-13
	DST	h = 1	h = 1/2	h = 1/4	h = 1/8
	L = 8	1.985E-01	2.022E-01	2.038E-01	2.046E-01
	L =	7.135E-02	7.172E-02	7.200E-02	7.214E-02
	L =	2.622E-02	2.544E-02	2.549E-02	2.552E-02

Table 2 :

 2 Errors for the 3D dipole interaction with the same axis for different h and L.

	NUFFT	h = 2	h = 1	h = 1/2	h = 1/4
	L = 4	1.118E-01	3.454E-04	1.335E-04	1.029E-04
	L = 8	5.281E-02	3.428E-04	9.834E-12	1.601E-14
	L =	5.202E-02	3.551E-04	1.143E-11	8.089E-15
	DST	h = 1	h = 1/2	h = 1/4	h = 1/8
	L = 8	6.919E-02	7.720E-02	8.124E-02	8.327E-02
	L =	2.709E-02	2.853E-02	2.925E-02	2.961E-02
	L =	1.008E-02	1.033E-02	1.046E-02	1.052E-02
	Example 2.2. Dipole-dipole interaction in 2D.		

Table 3 :

 3 Errors of the 2D dipole interaction by different methods with h on

Table 4 :

 4 Errors of the 2D dipole interaction for anisotropic densities solved on D ε and D for the NUFFT and DST methods, respectively, with h x = 1/8.

	NUFFT	ε = 1	ε = 1/2	ε = 1/4	ε = 1/8	ε = 1/16
	L = 8	3.456E-07	4.167E-07	3.984E-07	3.207E-07	2.864E-07
	L = 16	1.005E-12	7.531E-15	5.119E-15	4.108E-15	3.720E-15
	L = 32	2.241E-12	6.856E-15	4.913E-15	4.072E-15	3.855E-15
	DST	ε = 1	ε = 1/2	ε = 1/4	ε = 1/8	ε = 1/16
	L = 8	4.014E-02	3.182E-02	1.711E-02	6.276E-03	2.181E-03
	L = 16	9.604E-03	7.534E-03	4.035E-03	1.479E-03	5.137E-04
	L = 32	2.386E-03	1.868E-03	9.995E-04	3.661E-04	1.272E-04

Table 7 :

 7 Different energies of the ground state and I h for the 3D dipolar BEC with β = 207.16 for different λ.

	λ	E g	µ g	E kin g	E pot g	E int g	E dip g	I h
	-103.58 2.9584 2.8841 -51.79 0 2.7943	3.9301 3.8187 3.6830	0.26466 0.27379 0.28621	1.7221 1.6757 1.6193	0.83892 0.85255 0.88875	0.13273 0.082056 0.0000	6.6214E-10 5.7861E-10 5.0929E-10
	51.79	2.6875	3.5201	0.30303	1.5519	0.94903	-0.11646	4.5134E-10
	103.58	2.5593	3.3213	0.32704	1.4701	1.0451	-0.28304	3.6672E-10
	155.37	2.3998	3.0674	0.36538	1.3668	1.2105	-0.54290	2.3288E-10
	207.16	2.1838	2.7011	0.44525	1.2212	1.5749	-1.0576	-1.6697E-10

Table 8 :

 8 lists the spatial discretization errors e h,∆t 0 as well as the convergence rate at time t = 0.28 with different mesh size h and different time step ∆t, for different β and λ = β 2 . Spatial errors (upper parts) e h,∆t 0

	ψ	(t) and the temporal discretization errors

Table 9 :

 9 Spatial errors (upper parts) e h,∆t 0 From Tabs. 8-9, we can see that the TS-NUFFT method (4.11) is spectrally accurate in space and second order accurate in time for computing the dynamics of dipolar BEC.

	ψ	(t) and temporal errors (lower parts) e h 0 ,∆t ψ	(t) at
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