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The heat kernel of a Schrodinger operator
with inverse square potential

Kazuhiro Ishige, Yoshitsugu Kabeya and El Maati Ouhabaz

Abstract

We consider the Schrodinger operator H = —A + V(|z|) with radial potential V/
which may have singularity at 0 and a quadratic decay at infinity. First, we study the
structure of positive harmonic functions of H and give their precise behavior. Second,
under quite general conditions we prove an upper bound for the correspond heat kernel
p(xz,y,t) of the type

_y U(min{z[, vV#})U (min{ |y, v#}) |z —yl
0 < p(z,y,t) <Ct U (i) exp ( o >

for all x, y € RY and t > 0, where U is a positive harmonic function of H. Third, if
U? is an Ay weight on R, then we prove a lower bound of a similar type.

1 Introduction

Heat kernel bounds of differential operators on domains of RV or Riemannian manifolds
have attracted attention in recent years. We refer the reader for an account on this to
the monographs of Davies [8], Grigor’yan [10] and Ouhabaz [25]. Typically, for a second
order differential elliptic operator H, the associated heat kernel p(z,y,t) (i.e. the integral
kernel of the semigroup e *# generated by —H, or the fundamental solution to the heat
equation associated with H) satisfies in many cases the following upper bound

_lz—y|?
ct

p(a,3,1)] < ¢ e
VI1B@. V1B, V)

where |B(x,r)| denotes the volume of the open ball of the manifold with center x and
radius 7 and |z — y| denotes the Riemannian distance between the two points x and y. In
the Euclidean setting (i.e. RV) the above estimate reduces to

le—y|?

p(z,y,t)| < CtN2e™

These bounds are referred to as Gaussian upper bounds for p(z,y,t). Such bounds have
been studied in many situations. They play an important role in several problems. For
example, they are used in harmonic analysis in order to prove boundedness of some singular
integral operators such as Riesz transforms or spectral multipliers, in spectral theory
in order to prove p-independence of the spectrum, to prove maximal regularity for the



evolution equation, and so on. For all this we refer to Chapter 7 in [25] and references
there.

There are however many cases where such upper bound cannot hold. A typical and
important example is the Schrodinger operator with inverse square potential, i.e.,

Heas

|2
where —(N —2)2/4 < X\ < 0. It is well known that the semigroup e *# does not act on
LP(RN) for p outside a certain symmetric interval around 2 whose length depends on the
constant \. See Liskevich, Sobol and Vogt [20]. Therefore, the corresponding heat kernel
p(z,y,t) does not satisfy the above classical Gaussian bound. It was proved by Milman
and Semenov [22], and later by Liskevich and Sobol [19] that the heat kernel satisfies

0 < pla,y,t) < O3 (minflal, VE}) ™7 (min{ly|, Vi}) ™7 exp (‘ o )

for all z, y € RY and t > 0, where

N-2 1
=" — —\/(N —2)2 + 4\
o 5 5 ( )2+
See also Barbatis, Filippas and Tertikas [2]. The result in [19] deals with a more general
class of operators in the sense that A is replaced by a divergence form operator with
appropriate behavior of the coefficients. A lower bound of the same type was also proved

n [21] and [22]. We observe that this upper bound can be rephrased as

,ﬂU(min{|x|,\/%})U(min{|y|,\/E}) |z —y|2
0<p(.%',y,t) gCt 2 U(\/E)Q exXp <_ C—t ) s

where U(x) = |z|77 and it turns out that U is a positive harmonic function of H.

Our aim in this paper is to prove the bounds as in (1.1) for a wide class of potentials.
Thus we are led to consider first existence and behavior of positive harmonic functions.

The behavior of positive harmonic functions for Schrodinger operators have been stud-
ied by Murata [24]. He studied the structure of all positive harmonic functions for the
elliptic operator —A + V() in the case where V € L (R") with some p > N/2 if N > 2
and p > 1 if N = 1. Furthermore, he classified the behavior of positive harmonic func-
tions, in particular, in the case where V is a radially symmetric function on RY (see [24,
Section 3]). See also Remark 1.1.

In the present paper we consider a more general class of possibly negative potentials.
We assume that N > 2 and the radial potential V' is continuous on (0, 00) and satisfies

(1.1)

) _ _ o 0.2 -~ _
}13(1)7’ [V (r) = M| =0, rhﬂnolor [PV (r) = 2| =0, 12)
where A1, A2 € [\, 00) with A\, := —(N — 2)2/4,

for some 6 > 0. We also assume that the Schrodinger operator H := —A+V is nonnegative,

that is
/RN [[Vo]* + V¢?| dz >0 for all ¢ € C(RN \ {0}).
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We first study the behavior of positive harmonic functions in the light of Murata’s paper
[24]. The result will be then used to prove upper and lower estimate for the heat kernel

p(z,y,t). In order to state our results we introduce some definitions and notation.

We say that H is subcritical if, for any W € CSO(RN), H — €W is nonnegative for
small enough € > 0; H is critical if H is not subcritical. On the other hand, if H is not

nonnegative, then H is said to be supercritical.

For any A € [\, 0), let AT()) be roots of the algebraic equation a? + (N —2)a—\ = 0

such that A~ (\) < A*(\), that is

~(N-2)D;

AE(N) = 5 , where Dy := (N —2)%+4X>0.
Then v(r) := rATO) satisfies
N -1 A
" / .
v —|—Tv _T‘_QUZO in (0,00).
Furthermore, it follows that
N -2 N -2
AN < ——5—= < AT\ i A> A, AT = -~ i A=A

For positive functions f and g defined on (0, R) for some R > 0, we write

lim £(r) =1.

fry~g(r) as r—0 if H o)

Similarly, for positive functions f and g defined on (R, c0) for some R > 0, we write

~g(r) as r oo i imf(r):
F) ~glr) as oo i lim TEI=1

(1.3)

(1.4)

Furthermore, for any two nonnegative functions f; and fo defined on a set D, we write

fi(r) < fo(r) for reD

if there exists a positive constant C such that C~1fy(r) < f1(r) < Cfo(r) for all r € D.

Now we are ready to state the main results of this paper. The first theorem ensures
the existence of positive harmonic functions for the operator H = —A + V and classifies

the behavior of positive harmonic functions.

Theorem 1.1 Let N > 2. Let V be a continuous function on (0,00) satisfying (1.2).

(1) There exists a unique solution U of

N -1
U'+ —U -V(r)U=0 in (0,00),

r

with the property U(r) ~ rAT A1) g5 ¢ — 0.



(2) For any solution w of (O) satisfying
w(r) = O(TA_()‘I)) if A > A, w(r)=o (T_¥|logr|> if A=A,

as r — 0, there exists a constant ¢ such that w(r) = cU(r) on (0,00), where U is as
in (1).

(3) Assume that H := —A + V is nonnegative. Then U(r) >0 on (0,00) and

N-—2 . . ..
~cr 2 asr — oo if H is critical and Ny = )\,

(a) U(r) ~ cr?™ ) as r — oo if H is subcritical and Mg > A,

(b) U(r) ~ curd™ 2 as v — oo if H is critical and My > A,

(c) U(r) ~ cr T logr as r — oo if H is subcritical and Ay = A,
) U(r)

for some ¢, > 0.

(4) Assume that H is subcritical. Let W € Cy([0,00)) be such that W > 0 and W # 0
on [0,00). Set H, := =A+V — uW for i € R. Then there exists j1,. > 0 such that

(a) Hy, is subcritical if p < puy;
(b) Hy is critical if pp = pui;
(c) Hy is supercritical if > pu,.
Remark 1.1 Let N > 2. Let V be a continuous function on (0,00) satisfying (1.2).

(i) In the case of \y = 0, we see that V € Lp/2(RN) for some p > N/2. Then Theo-

loc

rem 1.1 follows from Theorem 3.1 in [24].

(i) If V(r) > A2 on [0,00) for some X\ > A, then H is subcritical. This immediately
follows from the Hardy inequality.

The next results are concerned with upper and lower bounds for the heat kernel
p(z,y,t) of H=—A + V. Recall that the heat kernel is the fundamental solution of

du=Au—V(z))u in R x (0,00). (1.5)
We prove the following results.

Theorem 1.2 Let N > 2. Let V be a continuous function on (0,00) satisfying (1.2)
and p = p(x,y,t) the fundamental solution of (1.5). Assume that H := —A + V(|x]|) is
nonnegative and let U be as in Theorem 1.1. If w(x) := U(|z|)? is an Ay weight on RY,
then there exist positive constants Cq and Co such that

C1U(2)U(y) iz — g2
exp | — < p(x,y,t) <
\/w(B(x, ﬂ))\/w(B(y, Vi) ( Cit )

CoU(2)U(y) exp <_ |z — y!2>
VB, VD) Jw(By, V) cl
for allz, y € RN and t > 0. Here w(B(z,V/1)) = fB(m,\/Z)W(Z) dz.

4



We shall see in the proof that the upper bound can be made slightly more precise in
the sense that the constant Cy could chosen to be arbitrary close to 4. Indeed we prove

that
CU(2)U(y) |z —y[?
< exp | — .
VeBla D)) w(By. VD) ( 4+ €>t>

for every € > 0. The constant C. is independent of x, y and t.
Note that in Theorem 1.2, w = U? is an Ay weight on RV if AT(\;) < N/2 and

p(x,y,t)

Clr M < U((r) < Or42, r>1

)

for some A; and Ay such that —N/2 < Ay < A; < N/2. Next we weaken the As-
assumption on w and obtain an upper Gaussian estimate for p = p(z,y,t).

Theorem 1.3 Let N > 2. Let 'V be a continuous function on (0,00) satisfying (1.2). As-
sume that H := —A+V (|x|) is nonnegative and let U be as in Theorem 1.1. Furthermore,
if H is critical, then we assume that

N
A_()\Q) > —5.

Then there exists a positive constant C' such that

y Ulmin{ja] VDU min{yl. V1) | (-2 y|2>

0<plz,yt)<Ct

(1.6)

for all z, y € RN and t > 0.

For the proof of Theorem 1.3, we apply a refinement of the technique developed in [11, 12,
15, 16] and construct supersolutions of (1.5). Furthermore, we combine the comparison
principle with the standard arguments as given, for example, [26, Section 6], and prove
Theorem 1.3.

The final result is an observation that for a non-necessarily radial positive potential
V', if one knows that there exists a harmonic function U which behaves as a polynomial
on the whole R¥ | then the Gaussian upper bound holds. More precisely,

Proposition 1.1 Suppose that V' > 0 and that H has a harmonic function U satisfying
Colz|* <U(z) < Cf|z|%, reRY,
for some o > 0 and Cy, C}, > 0. Then

s Umin{la] VEDU min{lyl vVB) [ |z —yP
p(z,y,t) < Ot TG exp (_ - )

for all z, y € RN and t > 0.



The proof of the latter result uses the standard Caffarelli-Kohn-Nirenberg inequal-
ities. The idea is classical and we work on the weighted space L?(RY,|z|%dx). Then
the Sobolev inequality on this weighted space (which is the Caffarelli-Kohn-Nirenberg
inequality) allows us to obtain an appropriate L?(R",|z|%dz) — L>®(R",|z|*dz) decay
of the semigroup. The standard perturbation method allows then to convert this decay
into a Gaussian bound. This reasoning has already appeared in [2] in the context of the
Schrédinger operator —A + #

Note that the above results extend the results from the papers [2], [19], [21] and [22]
A

5.

mentioned above which deal with the case where V = EE

2 Preliminaries

In this section we recall some properties for parabolic equations with A, weight. Through-
out this section and in the rest of the paper, we denote by C generic positive constants
which may have different values even within the same line.

Let w be a nonnegative measurable function on a domain Q € RY. Suppose that w is
an Ay weight on €, that is w, w™' € LL (Q) and

loc

[w](Q) := sup{/Ewdz/Ew_ldz/ </E dz>2 : Fis a ball in Q} < oo.

Then w(z) dz is a measure on {2 with the doubling property, that is
w(B(z,2r)) < Cw(B(z,r)) (2.1)

holds for all z € RY and r > 0, where w(B(z,7)) := fB(:v T)w(z) dz. For further details
on Ay weights, see e.g., [27].
We denote by LP(Q,wdz) (1 < p < co) the usual Lebesgue spaces with norm

Il i= ([ 177t dz>;

By H'(9,wdx) we denote the Sobolev space defined as the completion of C*°(€2) with
respect to the norm

1
2
(LR +1vseR e i)
Consider the degenerate parabolic equation
1
Ow = —div(wVv)+cv in Qx1, (2.2)
w

where [ is an open interval of R and ¢ € L*(I : L*°(Q2)). We say that a measurable
function v on Q x I is a solution of (2.2) if

ve LI : L*(Q),wdz)) N L*(I : HY(Q,wdz))



and v satisfies

// {—v0rp + Vv -V — cop}wdzdt =0
1JQ
for all p € C§°(2 x I). The following results hold (see [4] and also [13]).

Proposition 2.1 Assume that w is an A weight on B(0,1). Let v be a solution of (2.2)
on B(0,1) x (0,1). Then there exists a constant v, such that

1
1 2
71 2
- <1 .
[vll Lo (B(0,1/2)x (1/2,1)) < <w(B(0, 1))/0 /3(0,1)v wdzdt)

Here 1 depends only on N, w(B(0,1)) and ||c|| 1 (0,1:1°(B(0,1))) -

Proposition 2.2 Assume that w is an As weight on B(0,1). Let v be a nonnegative
solution of (2.2) on B(0,1) x (—=1,1). Then there exists a constant vy such that

supv < 2 glfv,

=)< () amrol) ()

Here o depends only on N, w(B(0,1)) and ||c| g (0,1:10(B(0,1)))-

where

By Proposition 2.2 we have:

Lemma 2.1 Let R > 0 and w an Ay weight on B(0,R). Let v be a nonnegative solution
of (2.2) on B(0,R) x (0,T), where 0 < T < oo. Then there exists a positive constant C
such that

|21 — 22®  to
v(xy,t1) < Cu(xg,te)exp | C———F— 4+ = (2.3)
to — 11 t

for all x1, xo € B(0,R/2) and 0 < t; < to < T. Here C depends on w(B(0,R)) and
lellzoe (-1,1:20 (B0,1)) -

Proof. Let z € B(0,R/2) and 0 < ¢t < T. Assume that
Q = B(z,7) x (t —r*,t + %) C B(0,R) x (0,T)
for some r > 0. Set
0(z,8) == v(x +rz,t+12s), @(2):=wl@+rz), &z,8)=ric(z+rzt+ris),

for z € B(0,1) and s € (—1,1). Then v satisfies

0,5 = ~div, (@(2)V.6) + @ in B(0,1) x (—1,1).
w



Since w(B(0,1)) = w(B(0,7r)) < w(B(0,R)), by Proposition 2.2 we can find a positive
constant ¢, independent of x, t and r, such that

sup v < cinf v,
Q_ Q+

where Q4 and @Q_ are as in Proposition 2.2. This implies that

sup v<c inf v,
Q—(z,t;r) Q+(z.t;m)

where

) r 3 2 L,
Q_(z,t;r) =B <:U, 2) X (t 1" ,t 1" >,
r 1 3
) =B < _> 19 2.2
Q4 (x,t;7) Z, 5 x<t+4r,t+4r
Then, similarly to [1, Theorem E] and [23, Theorem 2|, we obtain (2.3). (See also [17] and
[18].) Thus Lemma 2.1 follows. O
3 Behavior of the harmonic function

In this section we study the behavior of positive harmonic functions for nonnegative
Schrodinger operators and prove Theorem 1.1. In what follows, for A € [\, 00), set
uf(r) = AN §f A > A, and
uf (r)y=r""z", uy (r) = Tf¥|logr|
if A = \,. Furthermore, we put Vj(r) := V(r) — \r—2.
We first study the behavior of solutions of (O) at » =0 and r = oo.

Lemma 3.1 Let V € C((0,00)). Assume that

lim 720 [V, () = 0 (3.1)

r—0

or some A1 € |\, 00) an > 0. en there exist solutions 0 such that
f A A d0>0. Th h [ U*i f (O h th

UE(r) = i (r) + O(r¥ uf (1)),

: 3.2
(UZ)'(r) = (uy,) () + O™ 7wy (), o

as r — 0, for some ¢ € (0,0]. Furthermore, for any solution w of (O), there exist
constants C7 and Cy such that

w(r) = CLUS (r) + CoU; (r), r > 0. (3.3)



Proof. The proof is similar to [14, Section 3| but we give details for the sake of complete-
ness. We write v = ui for simplicity.
We first construct the solution U;" of (O). Set U;"(r) := u™(r) and define U} (n =
2,3,...) inductively by
Urfﬂ(r) = u(r) (14 Fu(r)), (3.4)

where
Fo(r) = /O SNt (s)] ( /O PN (VA (U (7) dT> ds.
Let 0 < R < 1 and assume that
\UF(r)] <2u™(r) in (0,R] (3.5)
for some n € {1,2,...}. Then it follows from (1.3), (3.1) and (3.5) that
B0 < O Nt 2 [ AN ()

.Y (3.6)
= COr 1 VvPx / IOV DN gy < O 1Y
0

for r € (0, R]. Taking a sufficiently small R > 0 if necessary, by (3.4) and (3.6) we have

Ui (r) = u* ()] < Criut(r) < u(r) (3.7)
for » € (0, R]. This implies that (3.5) holds for n = 1,2,.... Furthermore, we see that
(3.7) holds for n = 1,2,.... Applying the successive approximation arguments on the

existence of solutions to ordinary differential equations (see e.g., [5, Chapter 1]), we can
find a function U, € C((0, R]) such that

UL (r) =u* ()] < Crfut (), UF(r) =t (r) 1+ F(r), (3.8)
for r € (0, R], where

F(r) = /O SNt ()] 2 ( / NS (W, (1)U () d7> ds.

0
Similarly to (3.6), it follows that |F'(r)| < Cr~'*% on (0, R], which implies that
(UL (r) = @) (r) = (@) () E(r) +u" (r)F'(r) = O~ 0u™ (1)) (3.9)
as r — 0. Furthermore, since

N-1 A1
i YTy A
Wy + Xy - 2
U satisfies (O) on (0, R]. By (3.8) and (3.9), extending U, to the solution of (O) on
(0,00), we obtain the desired solution U} of (O).
Next we construct the solution U, in the case \} = A.. We set U; (r) = u™ (r) and
define U, (n = 2,3,...) inductively by

Uf =w, U in (0,R]

Un_H(r) =u (r)+ u+(r)Fn(r),



where

F,(r) := / PNt (s)] 72 </ N (D), (DU (1) dT) ds.
0 0
Let 0 < R < 1 and assume that
\U, (r)| <2u"(r) in (0,R] (3.10)
for some n € {1,2,...}. Similarly to (3.6), by (1.2) and (3.10) we have
FA0)] < O Nt ]2 [ e R (1) dr

0
. (3.11)
= C’r_l/ 0 log 7| dr < Cr~ 10 log 7|
0

for r € (0, R]. This implies that
IF(r)| < Cr|logr|,  wT(r)|F(r)] < Cr—"z |logr| = Crfu(r)

for r € (0, R]. Then, by a similar argument as in the construction of U;" we can find the
desired solution U_ in the case A = A,.

Next we construct the solution U, in the case A\; > A.. Let d be a sufficiently small
positive constant. We set U; (r) := u™ (1) and define U, (n = 2,3,...) inductively by

Upia(r) == u"(r)(1 + Gn(r)),
where

G(r) = /0 "Ny ()] 2 < / t N1, (T)Va, (DU (7) d7-> ds.
Similarly to (3.5), we assume

U, (r)] <2u (r) in (0,J] (3.12)

for some n € {1,2,... }. Since we can assume, without loss of generality, that 6 < /Dy,
by (1.2) and (3.12) we have

§
G < Cr N (] [P e () ar
1)
= Cr VPN / T VDN g < op 10
for r € (0,9]. Then, taking a sufficiently small § > 0 if necessary, we obtain

Ui (r) = (r)] < Crfu™(r) < u™(r)

for r € (0,6]. Repeating the above argument, we can find the desired solution U, in the
case A > \.. Therefore, we obtain the desired solutions UZF of (O). Furthermore, since UZF
are linearly independent, we see (3.3). Thus Lemma 3.1 follows. O

10



Lemma 3.2 Let V € C((0,00)). Assume that

lim 720 |V, (r)| =0 (3.13)

r—00

for some Ay € [\, 00) and 0 > 0. Then there exist solutions UZL of (O) such that
UX(r) = ui (r)+ O(?felu)jf2 (r)) (3.14)

as r — oo, for some 0’ € (0,0]. Furthermore, for any solution w of (O), there exist
constants C7 and Cy such that

w(r) = CLUL(r) + CoU(r), v >0. (3.15)
Proof. Let w be a solution of (O) on (0,00). Set w(s) := s~V 2w(s~1), which is the

Kelvin transformation of w. Then 1 satisfies

N -1 -

" + W' —V(s)w=0 in (0,00), (3.16)

S

where V(s) := sV (s1). It follows from (3.13) that
lim 59|52V (s) — Xo| = li_>m 20V, ()] = 0.

s—0

Therefore, by Lemma 3.1 we can find solutions W*(r) of (3.16) such that
WE(s) = ui(s) +0 <s€luf2 (s)) as s — 0, (3.17)

for some 6’ € (0,60]. Set UZ(r) := r~NT2WTF(r~1). Then UZL(r) are solutions of (O) on
(0,00). Furthermore, it follows that

—Ai()\z) —N+2=

~(N-2)F \/2(N SV agy,),

which together with (3.17) implies (3.14). Furthermore, since UZ are linearly independent,
we obtain (3.15). Thus Lemma 3.2 follows. O

In what follows, we set

U(r) == U (r).
Next we show the positivity of U under the assumption that H is nonnegative.

Lemma 3.3 Let V € C((0,00)). Assume (1.2) and that H is nonnegative. Then U(r) > 0
on (0,00).

Proof. We consider the case —A\, < A1 <0. For n=1,2,..., set
Vo (r) := max{—n,V(r)}, H, :=-A+V,.

Since V,, € L*°(0,00) and H,, is nonnegative, by (ii) of Theorem 3.1 in [24] there exists a
radially symmetric and bounded function u, = u,(|z|) € C?*(R") such that

Aty 4+ Voyu, =0 in RN, w,>0 in RV, (3.18)

11



In particular, it follows from the regularity of u,, that
u, (0) = 0. (3.19)

By (3.2) we can find R > 0 such that U(r) > 0 on (0, R]. Set

un(r)
Un(r) =U(R .
(=) 22
Since U, satisfies (3.18), we have
1
_m(rN_lU;L), + VU, =0 in (07 OO),

which implies that

0= / (s U + sV WLULU ds

/

B , (3.20)
— [—leU,’LU]Z:,—l—/ SN UL U+ N TWLUL U ds
for 0 < v/ < r. Similarly, since U is a solution of (O), we have
0= / [~ (VWY U, + sV TV (s)UU,) ds
" (3.21)

= [-s"U'n,) +/ [SVUU! 4+ SN (s)U U] ds

for 0 < ' < r. Since U(r) > 0, Up(r) > 0 and V(r) < V,,(r) on (0, R], we deduce from
(3.20) and (3.21) that
PN THU () Un(r) = U(r) Uy (r)] = ()Y U () Un (1) = U (r') U, ()]

= / "NV () — V() |U U, ds < 0 (3.22)

for 0 < 7’ < r < R. On the other hand, it follows from (3.2) that

lim (’I“/)Nil[U/(T‘/)Un(’I“I) —U()U, ()] = 0.

r’—0

Taking ' — 0 in (3.22) together with (3.19) implies that

0> VU (r)Un(r) = U (r)Upy(r)] = 7N~ U (r)? (5%) »  O0<r<k
We deduce from U, (R) = U(R) that
u(r) > U(R) =1, 0<r <R

Therefore we obtain

0 < Uy(r) <U(r), 0<r<R. (3.23)



On the other hand, since V' € C((0,00)) and U,(R) = 1, by the Harnack inequality
and regularity theorems for elliptic equations in a similar way to the Perron method, we
can find a function U € C?((0,00)) such that

Jim [T, — Ullc2ry =0
for any compact set I in (0,00). Then U is a solution of (O) on (0,00). Furthermore, by
(3.23) we see that
U(r)>0 in (0,00), U(r)<U®r) in (0,R], U(R)=U(R)>0. (3.24)
Using the Harnack inequality again, we obtain
U(r)>0 in (0,00). (3.25)
Furthermore, by Lemma 3.1 there exist constants C; and Cs such that
U(r) = CLUS(r) + CoU 7 (r) in (0,00). (3.26)

Since A7(A\1) < AT(\1), by (3.24) and (3.26) we see that Cy = 0 and C; = 1, that is
U(r) = Uf(r) = U(r) on (0,00). Therefore we deduce from (3.25) that U(r) > 0 on
(0, 00).

It remains to consider the case \; > 0. Let k € {1,2,...} be such that A\; < wy, :=
k(N 4k —2). For any ¢ € C®°(RN*2%\ {0}) and w € SN+2F~1 get

bu(r) = d(rw), Yoo(r) = Tk¢w(r)-

Since H is nonnegative, we have
1 e
ST Juo 0

_ / [T2k|¢;|2 2kl b 4 k2R 202 +r2kV¢f,} PN-1 g,
0

_ / U(ﬁ;‘Q + ]{?27”72(@% + V(bz;] rN+2k71 dr +/ krN+2k72[(¢w)2]l dr
0

0

:/ [!(Z%!Q-i-vqﬁi} pNA2E=1 g ’SN+2k—1’—1/ [\V(b]Q—i-f/qﬁQ] da
0 RN+2k

where V (r) := V(r) —wgr—2. This means that H := —Ax,;+ V is nonnegative operator
on RY¥*2% Furthermore, (1.2) holds with A\; and Ay replaced by

N N + 2k — 2)? N N + 2k — 2)?

A1 I:)\l—Wk>—% and Ao 2:)\2—(4)]9>—%,

respectively. Therefore, by Lemma 3.3 in the case A, < A\; < 0 we can find a solution
u=u(r) of
N+2k—1
u// + + u/
r
u(r) >0 in (0,00), u(r)=r*+0@*") as r—0,

~V(r)=0 in (0,00),

13



where

(N 42k —2) + /(N + 2k — 2)2 + 4(\ — wy,)

5 =—k+ AT(\).

a:=

Then U(r) := rFu(r) is a solution of (O) and it satisfies
U(r)>0 in (0,00), U(r) ~r2" M) as p 0.

It follows from Lemma 3.1 that U(r) = U(r) > 0 on (0,00). Thus Lemma 3.3 follows. O

Next we study the asymptotic behavior of U(r) as r — co.

Lemma 3.4 Let V € C((0,00)). Assume (1.2) and that —A+V (|z|) — W (|z|) is nonneg-
ative for some W € Cy((0,00)) with

W >0, W #£0 in (0,00).
Then there exists a positive constant ¢ such that
U(r) ~ erT02) i x> A, U(r) ~ o=z logr if Ay = Ay,
as r — oo.

Proof. Since —A +V — W is nonnegative, by Lemmas 3.1 and 3.3 we can find a function
Uw € C?%((0,00)) satisfying
vr N ) W)U =0 in (0,00)
e W o (3.27)
Uy >0 in (0,00), Uw (r) = TA+()\1)(1 +o(1)) as r—0.

On the other hand, U satisfies

U + %U’ (V) W)U = WU in (0,00).
Define )
U(r) = Uw(r)(1 + Fw(r)),
where

Fy(r) = /07"51—N[UW(5)]—2 (/ N0 (H)W (1)U (1) d7> ds > 0.

0

Since W has a compact support, Fyy(r) = 0 for all sufficiently small » > 0. Furthermore,
by (3.27) we have

. N—-1- 5
U'+ —U - (V(r)=W(E)U =WU in (0,00).
Then U := U — U satisfies
N -1
r

U(r)=U(r)—Uw(r)=o0 <TA+()\1)) as 1 — 0.

U + U—-WV(E)—WeE)U =0 in (0,00),

14



This together with Lemma 3.1 imply that U = 0 in (0,00), that is,
U(r) =Uw(r)(1+ Fw(r)) in (0,00). (3.28)
On the other hand, by Lemmas 3.2 and 3.3 we see that, either
(2) Uw(r) ~ciuy,(r) or  (b) Uwl(r) ~ cauy,(r)

as r — 00, where ¢; and co are positive constants.
Consider the case A2 > A;. Assume that (a) holds. Since W has a compact support
and U > 0 on (0,00), we take a sufficiently large constant R > 0 so that

Uw (r)Fw (r) > CUw(r) /RT sl_N[Uw(s)]_2 ds

: (3.29)
> Cr'_(N_Q);m/ s‘”m ds > Cr_(N_Qi); 2 CrAT2)
1

for all sufficiently large 7. On the other hand, if (b) holds, then it follows from (3.28) that
U(r) > Uy (r) > CrA"02) (3.30)

for all sufficiently large r. In both cases of (a) and (b), U(r) > CrA"(2) for all sufficiently
large . Then Lemma 3.4 in the case Ay > A, follows from Lemma 3.2.
Consider the case Ay = A.. If (a) holds, then, similarly to (3.30), we have U(r) >

Uw (r) > cr— logr for all sufficiently large r. If (b) holds, then, similarly to (3.29),
we have
Uw (r)Fw (r) > CUV[/(T)/ YN [Uy (s)) 2 ds > cr=2 / slds>Cr 2 log r
R 1

for all sufficiently large r. In both cases of (a) and (b), U(r) > cr=—3" logr for all
sufficiently large . Then Lemma 3.4 in the case Ao = A, follows from Lemma 3.2. Thus
the proof of Lemma 3.4 is complete. O

Next we employ the arguments in [9, Lemma 6] and prove the following lemma.

Lemma 3.5 Let V € C((0,00)). Assume (1.2) and that H is nonnegative. If there exists
a positive constant ¢ such that

U(r) > erTO2) e Ay > A, U(r) > or T logr if Ao = A, (3.31)
for all sufficiently large v > 0, then H := —A 4+ V is subcritical.
Proof. Let ¢ € C5°(RN \ {0}). Set
é(x) = () /U(|a]).
Then we have

UVe¢— ¢VU
U2

_ UV~ UV[9[’VU + ¢*| VU2

_ o |

? UV¢P - 2U0VeVU + ¢2|VU|?
_ o

IV|* = ‘

15



This implies that

- vU 2VU |2
/RN \Vo|>U? dx = /RN [|w>|2 + ¢*V <7> + ‘MU%} U? da

(3.32)
| (196R + Ve de

Let V satisfy (1.2) and V(r) > A\r~2 on (0,00). Let W € C3°(RY) be such that
W >0 on RY. By the Hardy inequality there exists € > 0 such that

/ (V6P + (7~ eW)?] de >0 for b C¥(RN\ {0)). (3.33)
RN

Furthermore, by Lemma 3.4 we can find a positive function U € C%((0,00)) such that

e N -—1-~ o~ 5
U'+ ——U -VU=0 in (0,00), U(r) ~ AT a0,
r
Ulr) ~ ) ag r oo B A A, (3.34)
Ulr) ~ or T log

as r—oo if A=A,

for some constant ¢ > 0. Since U(r) = rATM)(1 4 0(1)) as r — 0, it follows from (3.31)
and (3.34) that U(r) > C~1U(r) on (0,00). This together with (3.33) implies that

/ \Vo|2U? dz > C/ IVo|2U? dz
RN RN

=C

RN

as in the same way as (3.32), where

(3.35)
(V|2 +VeH) de > Ce | W¢*da,
RN

3(x) = U(a)dz) = 20D

Since U(r) ~ U(r) as r — 0 and W has a compact support, we deduce from (3.32) and
(3.35) that

/ (Vo2 +V)de > Ce | Wtds > Ce/ Wede, e CRN\{0}).
RN RN RN

This means that H is subcritical. Thus Lemma 3.5 follows. O

Proof of Theorem 1.1. Assertions (1) and (2) follow from Lemma 3.1. Assertion (3)
follows from Lemmas 3.2, 3.3 and 3.5.

It remains to prove assertion (4). Let W € Cy((0,00)) be such that W > 0 and W # 0
n (0,00). Assume that H is nonnegative. For any p € R, let

16



Define

I:={peR : H, is subcritical}, i 2= ian,u.
pe

It follows from Lemmas 3.4 and 3.5 that I = (j14,00) and p. < 0. Since H,,, is nonnegative,
H,,, must be critical. Then assertion (4) follows. Therefore the proof of Theorem 1.1 is
complete by replacing W in this proof by —W. O

4 Proof of Theorem 1.2

Assume (1.2). Let H := —A + V be nonnegative and U the positive harmonic function
given in Theorem 1.1. We define the unitary operator U by

U: L*RN de)s f — U Lfe LXRY,w(z)dx),
where w(z) = U(|x|)?. Then the operator L := UHU! is given by

1

Lv:= (@)

div (w(x) Vo).

We denote by p(x,y,t) and G(z,y,t) the heat kernels of H and L, respectively. Then

p(x,y,t) = U(lzDU(Jy)G (2, y, 1) (4.1)

for z,y € RN and t > 0. In this section we study upper and lower bounds of G = G(z,y, 1)
and then obtain Theorem 1.2.

Lemma 4.1 Let z, y € RN and t > 0. Assume that w is an Ay weight on B(x,2/t) U
B(y,2v/t). Then there exists a constant C such that

x ¢ ex _|:U—y|2 .
G(wJ)S\ﬂABuAEDVQU%%v®> p< ct > )

forz, y € RN and t > 0, where C = C, 4,4 depends on [w](B(z,2v/t)) and [w](B(y,2V'1t)).
In particular, C is independent of x, y and t if w is an Ay weight on RV .

Proof. We obtain the upper bound of G = G(z,y,t) by using the standard method as
given, for example, [26, Section 6]. We give the proof for completeness of this paper.

We fix z, y € RNV and ¢t > 0. Let A € R and ¢ be a bounded smooth function on RY
such that |Ve| <1 on RY. For fy € L?(B(y,Vt),wdz), we set

f®$:/ G2 8)e O fo(wl(z)dz,  F(E,s) = MO F(E,s).  (4.3)
B(y,Vt)

Since f = f(&, s) satisfies

1

w(g)di%(w(&)ng) in RY x (0,00), (4.4)

Osf

17



we have

da
dS RN

F(gofods =2 [ VO (0. fwde
RN
= —2/ [QAvevw-VereW\Vf\?} wdE
RN
<o [ NpTPeds <20 | R(EsPude,
RN RN
which implies that

/ F(€,5) wde < X / F(£,0%wde = 2V / fo(€)Pwd¢, s> 0.
RN RN B(y,V1)

(4.5)

Let 0 < 7 < tandlet f(y,s) := f(x+/Ty/2,37/4+75/4) for (y,s) € B(0,1) x (0,1).

Then f satisfies
Osf = idiv (@Vf) in B(0,1) x (0,1),
w

where @(y) := w(z + v/7y/2). Then, by Proposition 2.1 we obtain
2 r 2 C ! s 2
J(x,7)" = f(0,0 S%/ / f(y, s)*wdyds
=IO = 5B o Soan T

c T )
w(B(z, 7)) dgds.
= 7Bz, VD) /37/4 /B(g;,\/;) (&, 5) wdeds

(4.6)

The constant C' depends on [w](B(z,2v/t)). Since |Vy| < 1, by (2.1), (4.3), (4.5) and

(4.6) we have

C T
egw(x)f o7 2 < —/ / 2 (@) =¥ (8) £ s 2, déds
@) Tw(B(x, V1)) Jar/1 )B@,vm) &)

Ce?MVi ( 20 d
< ——— sup ,S) w
W(B(HU, \/Z)) 0<s<t JRN $9) :

Ce?V! 222t 2
v d
= wBa VD) /B@,ﬁ) foldfwdl

for all t/2 < 7 < t. Furthermore, by (4.3) we obtain

Fo,7) = e MW / Gla, 2, )= EO=VW) ()0 ds
B(y,V?)

> eA\/EeMD(y)/ G(z,2,7)fo(2)wdz
B(y,V1)

18



for 7 > 0. This implies that

1/2
/ G(z,2,7)*w(z)dz
B(y,Vt)

= sup { G(z,z,7)fo(z)w(z)dz :
RN
Jo € L2(B(ya \/%)’Wdz)’ ||f0||L2(B(y,\/E),wdz) < 1}

< ViAW) sup {f(l“ﬂ') 2 fo € LA(B(y, Vi),wdz), ‘|fOHL2(B(y7\/Z)7wdz) = 1},

which together with (4.7) yields

/ G(z,z,7)w(z)dz
B(y,V1)

X sup {62)‘¢(96)J”(uv,7')2 . fo € LA(B(y, Vt),wdz), [ foll L2 waz) < 1}
CeVt
w(B(z, V1))

(4.8)

< VI @) () 222

for all t/2 <7 <t.
On the other hand, since g(§,s) := G(x,&,s) is also a solution of (4.4), similarly to
(4.6), we have

C t
Gm,y,t2§7/ / G(z, z,7)*w(z) dzdr.
(00 tw(B(y, V1)) Jst/a /By Tl

Then we deduce from (4.8) that

C 2
G(z,y,t)* < VRN —2A (W (@) =¥ (y))
00 S B VDBl V)

We choose A = W and optimize over ¢ with |Vi| < 1. This gives (4.2), and the

proof is complete. O

If w is an Ay weight on RY, then we obtain upper estimate of Lemma 4.1. We mention
that the proof actually gives the estimate

x Ce ex _|:c—y|2
N PRV Ry (&)

for every € > 0 and all 2,y € RN and t > 0. Here C., is a positive constant depending on
€. Therefore, by (4.1) we obtain the following upper estimate

CU(x)U(y) exp (_ |:C—y|2>.
JoBa D JuBa V) Ao

p(z,y,t) <

(4.9)
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This shows the upper bound of Theorem 1.2.

Next, we prove the lower bound. In the rest of this section we assume that w is an
Ay weight on RY. The idea of proof is known and has been used in the context of Riem-
mannian manifolds, see, e.g., [6], [25, Chapter 7] and references therein.

It follows from the definition of the operator L and the fact that U is a harmonic
function of H that e *1 = 1. In other words,

G(z,y, w(y)dy = 1.
RN
This together with the doubling property (2.1) and the Gaussian upper bound (4.9) imply
the diagonal lower bound
C
G(x’ z, t) > ——
w(B(z, V1))
for some constant C' > 0. See, e.g., [6] and [25, Chapter 7]. Next, one extends this
diagonal lower bound to =z and y near the diagonal. In order to do this one needs the
Holder continuity of the heat kernel G(¢,z,y). This latter property follows from the
Harnack inequality. The Holder continuity is also proved in [7], namely

(4.10)

Ct—"/2
G(z,z,t) — Gz, y,1)] < w(B(z, VD)

for some n € (0,1) and all z,y and ¢ > 0 such that |z —y| < 1/%. Using (4.10) and (4.11)
one obtains easily

|z =yl (4.11)

G(z,y,t) >

C
V@ (B, VD) w(Bly, VD)

for z,y € RN and ¢t > 0 such that |z — y| < 6/t for some constant § > 0. Finally, the
Gaussian lower bound

G(z,y,t) > ¢ ex _|:U—y|2
| yt)>¢w<B<x,ﬂ>>¢w<B<y,ﬂ>> p< ct >

follows by a chain argument and the semigroup property. See again, e.g., [6] and [25,
Chapter 7]. The equality (4.1) gives the lower estimate of Theorem 1.2. Thus the proof
of Theorem 1.2 is complete.

5 Non A, weight

In this section we study upper bounds of p = p(x,y,t) without the assumption that U? is
an A, weight on R, and prove Theorem 1.3. In what follows, we set

d:= A" (X\y) if H is subcritical, d:=A"(X\2) if H is critical.

The first lemma follows from a similar argument as in the proof of Lemma 4.1.

20



Lemma 5.1 Let V' be a continuous function on (0,00) satisfying (1.2). Assume that
H := —A+V(|z|) is nonnegative and let U be as in Theorem 1.1. Then, for any e € (0, 1],
there exists a constant C' such that

12
p(z,y,t) < Ct 2 exp (—%) (5.1)
for all z, y € RN \ B(0,ev/t) and t > 0. In particular,

_x U(min{|a|, vt})U (min{yl, vt}) |z —yl?
p(.%',y,t) <Ct U(\/%)2 Xp <_ Ct )

(5.2)

for all z, y € RN\ B(0,ev/t) and t > 0.

Proof. Let ¢ € (0,1], #, y € RN \ B(0,ev/t) and ¢t > 0. Similarly to the proof of
Lemma 4.1, let A € R and let ¢ be a bounded smooth function 1 on RY such that
|V)| <1 on RN, For any fo € L?(B(y,eVt)), set

F(Es) = / p(E, 2, 8)e M fo(2) dz, (€, s) = MO f(E, 5).
B(y,eVt)

Then it follows from the nonnegativity of H that

d

2
% RNF(§7S) d§

:—2/ e 2Af VY - Vf + [VfI?+ V2] de

RN

— =2 [ (V@R V] dg e [ v ag
RN RN

<22 [ PTePdg<ov [ R e,
RN RN

which implies that

F(e, )2 de < P / fol€)? de.

RV B(y,V/t)

Let 0 <n <t. Set
f(€8) = fla+0ct,n + 0%s) with 6=/, V(€)= 6V (a + 5ec).
Since f satisfies 0sf = Agf — V(€)f on RV x (0,00), we have
Osf=Acf —V()f in RN x (—16¢2,00).
Furthermore,
o+ 8e€] > |o] — S VAlE = eV — Vil 2 SvVEZ Sym (5.3)

for x € RV \ B(0,ey/t) and € € B(0,2). Since |V (|z])| < C|z|~2 by (1.2), we deduce from
(5.3) that )
V()| < Co*Pla+6e| > <C, €€ B(0,2).
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Then it follows from Proposition 2.1 that

. 0 .
1£(0,0)[? SC/1 /B(O ! |fI? deds.

Since  — 0%¢2 > 3n/4 and Je < e/, it follows that

n
S <069 [ e s asas
n—o2e x,0¢

N

n
<oy / / F(€.5)? deds
3n/4 ) Ba.evD)

for z € RN\ B(0,ev/t) and 0 < 7 <t < 1. Then we apply a similar argument as in the
proof of Lemma 4.1 to obtain (5.1). Furthermore, it follows from Theorem 1.1 that

U(min{|z|, ev/t}) < U(min{|z|,vt}) and U(evt) = U(V1) (5.4)
for € R™ and t > 0. Then we deduce from (5.1) and (5.4) that

¥ Ulmin{Je. e iU minlyl. V) (- y|2>

p(w,y,t) <Ct™ 2

U(ev/t)? Ct
iy UGmin{la], VAU Gmindlyl, vVE) ([ Jo —yP
= U(VD)? o <_ Ct )

for all z, y € RN \ B(0,ev/t) and t > 0. So we have (5.2), and the proof is complete. O
Combining Lemma 5.1 with Lemma 4.1, we obtain upper estimates of p = p(x,y,t) in the

case where 0 <t <1 and AT()\;) < N/2.

Lemma 5.2 Assume the same conditions as in Theorem 1.3 and A*T(\1) < N/2. Then
there exists a constant C' such that

_x U(min{jz], v#})U (min{ly|, v't}) |z —yl
p(z,y,t) < Ct Uiy exp ( )

- (5.5)

forallz, yc RY and 0 <t < 1.

Proof. Let G = G(z,y,t) be as in Section 4. Let 0 < ¢ < 1. The proof is divided into the
following four cases:

(i) =,y € RM\ B(0,v1); (i) =,y € B(0,V1);

(iii) =€ RN\ B(0,v1), y€ B(0,v1);  (iv) =€ B(0,v/1), y € RN\ B(0,V1).

In case (i) (5.5) follows from Lemma 5.1. So we have only to consider cases (ii), (iii) and

(iv).
Consider case (ii). It follows from Theorem 1.1 that U(|z|) ~ |z[4" ) as |z| — 0.
Combining (1.4) with the assumption AT (A1) < N/2, we see that AT(\1) € (—N/2,N/2),
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which means that w(z) = U(|z])? is an Ay weight on B(0,2). Then Lemma 4.1 implies
that )
|z —y|

- ( )
G(z,y,t exp | — .
Ct
%u VOB, VD)
Furthermore, it follows from Theorem 1.1 and (2.1) that

W(B(E,V5)) = w(B(£,2V5)) > w(B(0,V5)) = 53 T470) = 53U (V5)?2 (5.7

for £ € B(0,+/s) and 0 < s < 1. By (4.1), (5.6) and (5.7) we obtain

CU(\%!) (ly]) |z —yl?
\/W B(y, V1)) exp<_ ct )

(B(x,
< cr OO )

_ (mm{\x! \/}) (min{|y|, vt}) |z —yl?

(5.6)

which implies (5.5) in case (ii).
Consider case (iii). Set 7 := v2ty/|y| and g(¢,s) := G(x,&,s). Recalling that w is
As weight on B(0,2), we apply Lemma 2.1 to g to obtain

_ 512
9(y.t) < Cg(§,2t) exp (C@) < Cy(§.21),

which together with (4.1) implies

Ulyl) - o~ Uyl _ Uly) -
p(x,y,t) < CU(@DP(%% 2t) = CU(@)p(:&y,?t) < CU(ﬁ)p(w,y, 2t). (5.8)

Since |z| > v/t = ey/2t with € = 1//2, applying Lemma 5.1, we have

plz,5,20) < C(2t) % U (min{|z|, v2t})U (min{|g|, v2t}) exp( |x—y|2>

U(v/20)?2 20t
_yUminflal, V31 [ Jaf?
<Ct U(vai) exp (— o1 >
_y U(minfla], v}) |z —y|?
<ot T e (EE).

This together with (5.8) implies (5.5) in case (iii). Since p(z,y,t) = p(y,z,t), we also
obtain (5.5) in case (iv). Thus Lemma 5.2 follows. O

Next we obtain upper estimates of p = p(x,y,t) in the case where 0 < ¢t < 1 and
AT(\) > NJ2.
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Lemma 5.3 Assume the same conditions as in Theorem 1.3 and A*(\1) > N/2. Then
there exists a constant C' such that

_~ U(min{|z], v#})U (min{ly|, v't}) |z —yf?
p(z,y,t) < Ct Uiy exp ( >

- (5.9)

forallz, y€ RN and 0 <t < 1.

For this aim, we prepare the following lemma, which is useful to obtain upper estimates of
p = p(x,y,t) inside a parabolic cone. A similar lemma has been used in the study of the
behavior of the solutions of the heat equation with a potential (see e.g., [11, 12, 15, 16]).

Lemma 5.4 Assume the same conditions as in Theorem 1.1. Let T > 0. Furthermore,
assume that
¢(t) ==t [log(c +1)]7

is monotone decreasing on (T,00), where v1, 72 € R and ¢ > 1. Let k > 0 be such that

—s¢'(s) < KkC(s), s € (T,00). (5.10)
Define
o = 1-N —2 * N-1 2
F[U|(x) .—U(|x|)/0 s [U(s)] </0 T U(t) d7'> ds,
w(z,t) :=((s) [U(|x|) - ﬁs_lF[U](x)] .
Then

ow > Aw —V(jz)w in RN x (T,00).

Proof. It follows that AF — V(|z|)F = U(|z|) for # € RN. This together with (5.10)
implies

ow — Aw + V(jz)w > [¢'(t) + st XW)]Ux) >0, zeRN, te (T, ).
Thus Lemma 5.4 follows. O

Proof of Lemma 5.3. For any ¢ > 0, we define

Hy = ~A 4 Vollal),  Vallal) = 7 WV y(jai)

(Iz]) +o

Let py = po(x,y,t) be the fundamental solution corresponding to e~ . It follows from
Theorem 1.1 and (1.2) that

Vo2l < V()] < Clal2 in RY,  Vo(r) ~ Ar 24700 s p 0. (5.10)

In particular, since AT (A1) > 0, we see that V, € L. (R") for some ¢ > N/2. Further-

loc
more, U, := U + ¢ is a positive harmonic function for H, and

/ [IVel* + Vo?] dz :/
RN RN
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21 U2dz >0

y
U

(e




for all p € C§°(RY), which means that H, is nonnegative on L?(R").

In the proof, the letter C, denotes a generic constant independent of x, y, t and o.
Since H, is nonnegative, for any € € (0, 1], we apply Lemma 5.1 with the aid of (5.11) to
obtain

D)
po(t,x,y) < Cut™ 2exp< ’C*ty’> (5.12)

for all z, y € RV \ B(0,ev/t) and t > 0. On the other hand, since U2 is an Ay weight
on B(0,R) for any R > 0, we apply a similar argument as in the proof of Lemma 5.2 to
obtain

pa(xaya ) < CRO't__

U (minfle, VDU (mindlyl, V) ([ = ol
e e () e

for all z, y € B(0,R) and 0 < t <1, where Cp is a constant depending on R and o.
Let € be a sufficiently small positive constant to be chosen later. Let z, y € RY and
0 <t < 1. In what follows, we divide the proof into the following four cases:

(i) z,y € RN\ B(0,eV/1); (i) z,y € B(0,eV1);
(iii) 2z € RN\ B(0,ev1), y € B(0,eV1); (iv) € B(0,evt), y € RV \ B(0,ev/1).

Similarly to Lemma 5.2, by Lemma 5.1 we have (5.9) in case (i).
We consider case (iii). Define

={(&5) e RY x (0,1] : [¢] < e/5},
= {(¢, s) e RN x [0,1] : €] = eV/s}.

Let r:= (N + AT ()\1))/2 and set

()
()

WEs) = pole &), wlEs) = 5T [U(el) — s FIUL)ED)]
|2 |2 (5.14)
£(6.5) = v(6) — v (2 ) wieoo)
where v is a positive constant. It follows from Lemma 5.4 that
Dz < Az —Vy(l€))z in RY x (0,00). (5.15)
Since U(r) =< rA"(A1) on (0,1) and At (A\;) > 0, we have
€] s
FIUAED) = Unleh [ 5V ([ 7102 ar ) as
0 0
€] s
<UL [N O o ([T et 0 o ar) as
0 0 (5.16)

€]
< Ua(’f‘)/ SliN[C*flUflSAﬂ)‘l) +1]7%- %SN(C*UASAHAI) +1)%ds

o(IED), (&) € De(?).

o (I€]) <
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Taking a sufficiently small € > 0 if necessary, by (5.14) and (5.16) we obtain

1 (/\) N+A A1) .
w(§,s) > 35 UL (€)= SW(leh +o] in De(t).
This implies that
+
w(&,s) > % S P D.(t), (5.17)
w(en) > g U > T ey
>0 e M2 on 9,D,.(t)\ {(0,0)}.
On the other hand, it follows from (5.12) that
_£2 2
v(&,8) = po(z,&,8) < Cos™2 exp <—%> <C.s % exp <— glt) (5.19)

on 9,Dc(t) \ {(0,0)}. Then, by (5.18) and (5.19), taking a sufficiently large constant ~ if
necessary, we have
2(&,8) <0 on 9,D.(t)\ {(0,0)}. (5.20)
On the other hand, since |z| > ey/t and AT(\;) > 0, by (5.13) we see that
N+AT ()
lims™— 2 =
lims— 2 v(&s) =0

uniformly for £ in a neighborhood of the origin. Then, by (5.17) we see that

z(§,5) <0 (5.21)

for (£,s) € Dc(t) if s is sufficiently small. Therefore, by (5.15), (5.20) and (5.21) we apply
the comparison principle to obtain z < 0 on D,(¢). This together with (5.14) implies that

pali.6:5) = v(6,) < vep (~2E ) (e ) 0T e v (1)
B gl B 7t
for (£,s) € Dc(t) and 0 < ¢ < 1. Taking (&, s) = (y,t), we obtain
A 2
palint) <050 () esp (-1
N+AT (A — yl?
< UL (ly)) exp (—‘xc f‘ ) (5.22)
_y U(min{ly|,ev/t}) + 0 | —y?
< Oyt U exp< ox >

Passing to the limit as 0 — 0, we deduce that

_~ U(min{ly|, ev/t}) |z —yl?

p(x,y,t) < Cut ™2 U(vD) ep( o >
_x U(min{|y[, v#}) |z —y|?

= (Vi) ep<_ Cit )
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which means that (5.9) holds in case (iii). Since p(z,y,t) = p(y,x,t), we also obtain (5.9)
in case (iv).
It remains to consider case (ii). Let /& := (N + 2A7()\1))/2 and set

5(6,5) = Pol€y9), D& s) =T T [Us(l€D) — s~ FIUI(ED]
. . v\ (5.23)
£(6.5) = 1(6,) = 7B/ Ulminlyl, V) + alexp (~127 ) ..
where 7/ is a positive constant. It follows from Lemma 5.4 that
952 < AeZ —V,(l€))z in RN x (0,00). (5.24)

For (&,5) € 8,D(t) \ {(0,0)}, we see that £ € RN \ B(0,ey/5). Since U(r) =< rA" 1) on
(0,1) and At (A1) > 0, we apply (5.9) and (5.22) to obtain

) _y Umin{lyl,ev/sh) +o [ [£—yf’
He =G U5 »(-55)

N+AT ()

<C,s~— 7 [C.U(min{|y|, eVt}) + o] exp( MZ) (5.25)

N+AT(A)

2
<C,s~ 2 [C.U(min{|y|,eVt}) + o] exp( |Cy|t>

for (£,s) € 9,Dc(t) \ {(0,0)}. On the other hand, taking a sufficiently small e > 0 if
necessary, by (5.16) we have

1 _n+2at()

w(E,s) > isfoaﬂxD in D(t).

Then, similarly to (5.17) and (5.18), we see that

1 _N+24T(00)

w(E,s) > gs*fa in  D(t), (5.26)
+0x +
w69 2 g ) 2 0 I ey
5.27
> Cet Mg N+A2 el o OD.(t).

Taking a sufficiently large constant 4/ if necessary, by (5.25) and (5.27) we have
Z(&,5) <0 on 0,D(t)\ {(0,0)}. (5.28)

Furthermore, by (5.13) we see that

At ()
lims oz 0(&,5) =0

s—0

uniformly for £ in a neighborhood of the origin. This together with (5.17) implies that
H(€5) <0 (5.29)
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for (¢,s) € Dc(t) if s is sufficiently small. Therefore, by (5.24), (5.28) and (5.29) we apply
the comparison principle to obtain Z < 0 on D(t). This together with (5.23) implies that

2
Pol€.4,5) = (E,5) < 71U min{Jy). eVF}) + o] exp (—’;j—‘) (e, )

_ Nt24T ()

2
<Cs™ 2 [CU(min{lylevE)) + o]Us(Jyl) exp <_|g|t>

for (¢,s) € D.(t). Taking (&,s) = (z,t) and passing to the limit as ¢ — 0, by (5.4) we
obtain

+ 2
pla9.0) = Jim oo 0t) < Cot™ 55 U minly VAU el exp (- )
+ .12
< Cu= " G (min{ly), VDU (jal) exp (— e )
. . 2
< - Ulminl VDU oinlleh /B o (L),
U(v/1)? Cit

which means that (5.9) holds in case (ii). Thus Lemma 5.2 follows. O
We complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let € be a sufficiently small positive constant. Due to Lem-
mas 5.2 and 5.3, it suffices to prove (1.6) in the case ¢t > 1.
Let ¢ > 1. Similarly to Lemma 5.3, the proof is divided into the following four cases:

(i) @,y e RV\ B0, ev1); (i) z,y € B(0,ev);
(iii) =€ RN\ B(0,ev1), y € B(0,eV1); (iv) € B(0,ev/t), y € RN\ B(0,e\/1).

In case (i), by Lemma 5.1 we have (1.6).
Consider case (iii). Define

{(¢&,5) e RV x (1,1] : [¢] < ev/5},
(&,

t )
s) RN x (11] 1 ¢ = ev/5} U {(&,1) e RN x {1} : ¢ < }.

E(t) :
OpEc(t) ==

Let

s‘#[log@ +5)]7! if Ay = A, and H is subcritical,
((s) = N+d
2

s otherwise.

It follows from Theorem 1.1 that
C(s)= s 2U(Vs)™! in (1,00). (5.30)
Since N +d > 0, we can find k > 0 such that —s¢’(s) < x{(s) on (1,00). Set

(& s) = px,&5),  w(E,s) = ((s) [U(IE]) — s FIUNEN]

jz?

£(605) = 0(6.5) - Croxp (- ) w(e.s)

(5.31)
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where (] is a positive constant to be chosen later. It follows from Lemma 5.4 that
Osz < Agz —V(|€))z in RN x (1,00). (5.32)
Since (1.6) holds in the case 0 < ¢t < 1, we see that

v(6,1) = pla,&,1) < Lindzh INUmin{e] 1), <_ M)
| o C

U(1)2
(| )|2 (5.33)
T
< _
< cuehexs (-7 )
for £ € B(0,1). Furthermore, by Lemma 5.1 we have
_y |z —¢J? _y jz?
< — < = .
v(&s) < Cs™ 2 exp( ok > < Cs 2 exp( o (5.34)

for (¢,5) € RN x (1,t) with |¢| = ey/5. On the other hand, taking a sufficiently small ¢ > 0
if necessary, by (5.16) with o = 0 we have

w(&;s) >

1
F6UE) i Et).
In particular,

w(&.1) > ZCU() (5.35)

for £ € B(0,¢€). In addition, by (5.30) we see that
w(E,s) > C s (5.36)

for (&,5) € RN x (1,t) with |¢| = ey/s. Taking a sufficiently large C if necessary, by
(5.33), (5.34), (5.35) and (5.36) we have

2(€,5) <0 on Op,E(t). (5.37)

Therefore, by (5.32) and (5.37) we apply the comparison principle to obtain z < 0 on
E(t). This implies that

x|? 72
plan6,) = 0(6.5) < Coxp (150wl < cCoUieh e (-7 )

on E(t). Taking (§,s) = (y,t), by (5.4) and (5.30) we obtain

jz?

T — 2
pla,y.t) < CCOU(lyl) exp (—a> < CCtU () exp (J 4l )

iy Uminlyl, oV/2) Ulmin{lel, Vi) [ |z P
=TT fon e ()
_x Umin{lal, VDU (oinlyl, V) [ Je =y
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Thus (1.6) holds in case (iii). Since p(x,y,t) = p(y,x,t), (1.6) also holds in case (iv).
It remains to prove (1.6) in case (ii). Set
S:=1 if |z] <1, S:=|z* if |z > 1.
Then it follows that
1<S <t Umin{z|,VS}) = U(z|). (5.38)
We show that
|z

o€:8) = (o, 5) < €5~ FUWE) Ullahulhenn (<) G0

for all ¢ € B(0,¢eV/S). In the case S = 1, that is |z| < 1, combining Lemmas 5.2 and 5.3
with (5.38), we have (5.39). So we consider the case S > 1, that is |z| > 1. Let w and 2

be as in (5.31). Then z satisfies (5.32) on R" x (1, 5]. Furthermore, by (1.6) in cases (i)
and (iii) we see that

x U(min{|z|, /s})U(min{|{], v/s}) exp ( |z — §!2>
Cs

U(& s) :p(m,f,s) <Cs = U(\/E)Q

2
< Cs™ 2 exp <—|2—|t>

(5.40)

for (¢,s) € RN x (1, 8] with |£] = €y/s and that
o(,1) < CU(min{ym\,1})U(min{y§\,1}) o <_¥>

U(1)? » (5.41)

< CUMU([¢]) exp (‘E)

for &€ € B(0,¢). Then, by (5.35), (5.36), (5.40) and (5.41), taking a sufficiently large C} if
necessary, we see that

2(€,5) <0 on O,E(5).

Then, by the comparison principle we see that z(£,s) < 0 on E.(S). This together with
(5.30) implies that

_N 1 _ﬁ
v(§, ) < OLST2UWVS) MU () exp { — 57

_N _ X
— 15 YU /E) U el esw (- ;)
for all ¢ € B(0,¢V/S), which implies (5.39) in the case S > 1. Therefore inequality (5.39)

holds.
We complete the proof of (1.6) in case (ii). Let

- s log(2 + s)]~2 if A2 = A\, and H is subcritical,
((s) = _ N42d .
s T2 otherwise.
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It follows from Theorem 1.1 and (5.30) that

E(s) = s 2UVs) 2 =< U(Vs)2¢(s) in (1,00). (5.42)
Since N 4 2d > 0, we can find & > 0 such that —s¢’(s) < &((s) on (1,00). Set

@(E, ) = () [U(I]) — Rs T FIU(IED]

£(608) = v(6es) - Calal)exp - g1 ) (€. o)
where (5 is a positive constant to be chosen later. Then, by Lemma 5.4 we see that

9:2 < AeZ—V(|€)z in RN x (1,00). (5.43)

Since (1.6) holds in case (iv), it follows from (5.30) and (5.38) that

_ _~ U(min{|z|, /s})U (min{[¢], /s}) |z = ¢?
v(&,s) =p(x,§,s) <Cs ANEE exp <_T>

< CC(s)U(|z]) exp (‘%2)

(5.44)

for (&,5) € RN x [S,t] with |¢| = ey/s. Furthermore, similarly to (5.35) and (5.36), taking
a sufficiently small € > 0 if necessary, we deduce from (5.42) that

(6,9) > 56U e = C7(s) (5.45)
for (&,s) € RN x (S, 1] with |z| = €/s and
B(6,5) > SUSU(E)) > 075~ FU(VE) U (e (5.46)

for ¢ € B(0,eV/S). By (5.39), (5.44), (5.45) and (5.46), taking a sufficiently large Cy if
necessary, we see that
£<0 (5.47)

for all (¢,s) € RN x [S,t] with |£| = ey/s and all (¢, 5) with || < e/S. By (5.43) and
(5.47) we apply the comparison principle to obtain Z < 0 for all (§,s) € RN x [S,t] with
|€] < €y/s. This implies

2 jz?

p(a,6.5) = v(E,5) < CoU(|a]) exp (—ﬂ) (€, 5) < Cul(s)U (U (€] exp (—m>

for all (£,5) € RY x [S,t] with |¢| < ey/s. Taking (&,5) = (y,t), by (5.4) and (5.42) we
obtain

p(z,y,t) < CCOU(|=)U(|y|) exp <_%>

_x U(min{|z|, vI})U (min{|y|, vt}) |z —yl?
Ui o, (1o

This means that (1.6) holds in case (ii). Thus Theorem 1.3 follows. O
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6 Positive potentials

Proof of Proposition 1.1. We shall use the classical idea that a polynomial decay of
a heat kernel is equivalent to a Sobolev inequality. We use this to the kernel G(x,y,t) of
the operator Lv = —%div (U(x)?Vv) used in the proof of Theorem 1.2. The LP-spaces in
consideration here are LP(RY, U(x)%dx) and since by assumption U(x) ~ |z|* a Sobolev
inequality in this setting is a Caffarelli-Kohn-Nirenberg type inequality. This strategy was
already used in [2] to obtain similar bounds for the heat kernel of —A + # for a positive
real w.

Let L and G(x,y,t) be as in the proof of Theorem 1.2. Let A € R and ¢ € C®°(RY)
and bounded with |Vé| < 1. Let Ly, := e *Le* and ky 4(,y,t) its associated heat
kernel. The bilinear form associated to the operator L) 4 is given by

Erolu,v) = / (L pu)oU(z)?dx
RN
= V(eMu)V (e 0)U (z)*dx
RN
= / [Vu-Vo + AuVe-Vo — AwVe-Vu — Nuv] U(r)*da.
RN
In particular, the quadratic form satisfies

Exolu,u) = / [[Vul?> = N|u?] U(z)*da.
RN

Recall the weighted Sobolev inequality due to Caffarelli-Korn-Nirenberg [3]

HVUH%%RN,@P%QJ) 2 CHUH%po(RN,\xPadm)a (6.1)
where pg := %J_\TT__Z;O)C} This together with the fact that U(x) ~ |z|® implies that
Eno(u,u) + A2 /RN [uPU(@)?dx > Cllull7py v jafz0de)-

It is a classical fact that the semigroup e ***¢ is bounded from L?(RY,U2dz) into
LPo (RN, U%dz) with norm bounded by Ct~1/ 2¢X’t The same strategy as in the proof
of a Gaussian upper for the heat kernel of uniformly elliptic operator (see, e.g., [8] or
[25]) allows to iterate this estimates and see that the semigroup e~***¢ is bounded from
L2(RN,U%dz) into L°(RYN, U2dz) with norm bounded by Ct=N/4=/2¢X*t Thys,

/ |kxo(@, y. )]0 (y)2dy < Ct~ 2~
RN

Set Ry ¢(x,y,t) := e 2@ p(x,y,1)erMW) | The latter estimate immediately gives

2
_N xT
| Wneten 0P < o (%) e (6.2

"Here one needs of course N > 2 + 2a. In the case N < 2 + 2a, we use a Gagliardo-Nirenberg type
inequality instead of (6.1). See [3].
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On the other hand, since V is non-negative we have the domination property

_lz—y?

p(x,y,t) < (47775)_%6 Tt

This and the fact that |[V¢| < 1 imply
/RN IRy (2, y,t)|?dy < Ot~ 7 21, (6.3)

Combining (6.3) and (6.2) yields

2a
Ry o(z,y,t)%d <ot (min 1,m> et
[ VBaola ity < 1.2

By the semigroup property and the assumption U(x) ~ |z|* we have

Ry o(z,y,t) = /RNRms(x,z,t/Q)RA,¢(z,y,t/2)dz

1/2 1/2
</ |R)\7¢(x,z,t/2)|2dz> </ |R)\7¢(z,y,t/2)|2dz>
RN RN

Ct 2 <min(1, %))a (min(L %))aem

_x U(min{Jz], vt} )U (min{ly|, v}) e
U (V)2 '

IN

IN

IN

Ct

Hence

_x U(min{|z|, VEHU (min{|y|, V) 2¢ xo@)-sm))
p(z,y,t) < Ct U(\/E)Q At (B(2)—o(y))

We change ) into —\ and then optimize as usual over A and ¢ to obtain the upper estimate
in Theorem 1.1. O
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