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The heat kernel of a Schrödinger operator with inverse square potential

We consider the Schrödinger operator H = -∆ + V (|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give their precise behavior. Second, under quite general conditions we prove an upper bound for the correspond heat kernel p(x, y, t) of the type

for all x, y ∈ R N and t > 0, where U is a positive harmonic function of H. Third, if U 2 is an A 2 weight on R N , then we prove a lower bound of a similar type.

Introduction

Heat kernel bounds of differential operators on domains of R N or Riemannian manifolds have attracted attention in recent years. We refer the reader for an account on this to the monographs of Davies [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF], Grigor'yan [START_REF] Grigor'yan | Heat Kernel and Analysis on Manifolds[END_REF] and Ouhabaz [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF]. Typically, for a second order differential elliptic operator H, the associated heat kernel p(x, y, t) (i.e. the integral kernel of the semigroup e -tH generated by -H, or the fundamental solution to the heat equation associated with H) satisfies in many cases the following upper bound These bounds are referred to as Gaussian upper bounds for p(x, y, t). Such bounds have been studied in many situations. They play an important role in several problems. For example, they are used in harmonic analysis in order to prove boundedness of some singular integral operators such as Riesz transforms or spectral multipliers, in spectral theory in order to prove p-independence of the spectrum, to prove maximal regularity for the evolution equation, and so on. For all this we refer to Chapter 7 in [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF] and references there.

There are however many cases where such upper bound cannot hold. A typical and important example is the Schrödinger operator with inverse square potential, i.e.,

H = -∆ + λ |x| 2 ,
where -(N -2) 2 /4 ≤ λ < 0. It is well known that the semigroup e -tH does not act on L p (R N ) for p outside a certain symmetric interval around 2 whose length depends on the constant λ. See Liskevich, Sobol and Vogt [START_REF] Liskevich | On the L p -theory of C 0 -semigroups associated with second-order elliptic operators, II[END_REF]. Therefore, the corresponding heat kernel p(x, y, t) does not satisfy the above classical Gaussian bound. It was proved by Milman and Semenov [START_REF] Milman | Global heat kernel bounds via desingularizing weights[END_REF], and later by Liskevich and Sobol [START_REF] Liskevich | Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients[END_REF] that the heat kernel satisfies 0 < p(x, y, t) ≤ C t -N 2 +σ (min{|x|, √ t}) -σ (min{|y|, √ t}) -σ exp -|x -y| 2 Ct for all x, y ∈ R N and t > 0, where

σ = N -2 2 - 1 2 (N -2) 2 + 4λ.
See also Barbatis, Filippas and Tertikas [START_REF] Barbatis | Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities[END_REF]. The result in [START_REF] Liskevich | Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients[END_REF] deals with a more general class of operators in the sense that ∆ is replaced by a divergence form operator with appropriate behavior of the coefficients. A lower bound of the same type was also proved in [START_REF] Milman | Heat kernel bounds and desingularizing weights[END_REF] and [START_REF] Milman | Global heat kernel bounds via desingularizing weights[END_REF]. We observe that this upper bound can be rephrased as 0 < p(x, y, t)

≤ C t -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct , (1.1) 
where U (x) = |x| -σ and it turns out that U is a positive harmonic function of H. Our aim in this paper is to prove the bounds as in (1.1) for a wide class of potentials. Thus we are led to consider first existence and behavior of positive harmonic functions.

The behavior of positive harmonic functions for Schrödinger operators have been studied by Murata [START_REF] Murata | Structure of positive solutions to (-∆ + V )u = 0 in R n[END_REF]. He studied the structure of all positive harmonic functions for the elliptic operator -∆ + V (x) in the case where V ∈ L p loc (R N ) with some p > N/2 if N ≥ 2 and p > 1 if N = 1. Furthermore, he classified the behavior of positive harmonic functions, in particular, in the case where V is a radially symmetric function on R N (see [START_REF] Murata | Structure of positive solutions to (-∆ + V )u = 0 in R n[END_REF]Section 3]). See also Remark 1.1.

In the present paper we consider a more general class of possibly negative potentials. We assume that N ≥ 2 and the radial potential V is continuous on (0, ∞) and satisfies lim r→0 r -θ r 2 V (r) -λ 1 = 0, lim r→∞ r θ r 2 V (r) -λ 2 = 0, where

λ 1 , λ 2 ∈ [λ * , ∞) with λ * := -(N -2) 2 /4, (1.2) 
for some θ > 0. We also assume that the Schrödinger operator H := -∆+V is nonnegative, that is

R N |∇φ| 2 + V φ 2 dx ≥ 0 for all φ ∈ C ∞ 0 (R N \ {0}).
We first study the behavior of positive harmonic functions in the light of Murata's paper [START_REF] Murata | Structure of positive solutions to (-∆ + V )u = 0 in R n[END_REF]. The result will be then used to prove upper and lower estimate for the heat kernel p(x, y, t). In order to state our results we introduce some definitions and notation.

We say that H is subcritical if, for any W ∈ C ∞ 0 (R N ), H -ǫW is nonnegative for small enough ǫ > 0; H is critical if H is not subcritical. On the other hand, if H is not nonnegative, then H is said to be supercritical.

For any λ ∈ [λ * , ∞), let A ± (λ) be roots of the algebraic equation α 2 + (N -2)α-λ = 0 such that A -(λ) ≤ A + (λ), that is

A ± (λ) := -(N -2) ± √ D λ 2
, where D λ := (N -2) 2 + 4λ ≥ 0.

(1.3)

Then v(r) := r A ± (λ) satisfies

v ′′ + N -1 r v ′ - λ r 2 v = 0 in (0, ∞).
Furthermore, it follows that

A -(λ) < - N -2 2 < A + (λ) if λ > λ * , A ± (λ) = - N -2 2 if λ = λ * . (1.4) 
For positive functions f and g defined on (0, R) for some R > 0, we write

f (r) ∼ g(r) as r → 0 if lim r→0 f (r) g(r) = 1.
Similarly, for positive functions f and g defined on (R, ∞) for some R > 0, we write

f (r) ∼ g(r) as r → ∞ if lim r→∞ f (r) g(r) = 1.
Furthermore, for any two nonnegative functions f 1 and f 2 defined on a set D, we write

f 1 (r) ≍ f 2 (r) for r ∈ D if there exists a positive constant C such that C -1 f 2 (r) ≤ f 1 (r) ≤ Cf 2 (r) for all r ∈ D.
Now we are ready to state the main results of this paper. The first theorem ensures the existence of positive harmonic functions for the operator H = -∆ + V and classifies the behavior of positive harmonic functions.

Theorem 1.1 Let N ≥ 2. Let V be a continuous function on (0, ∞) satisfying (1.

2).

(1) There exists a unique solution U of

U ′′ + N -1 r U ′ -V (r) U = 0 in (0, ∞), (O)
with the property U (r) ∼ r A + (λ 1 ) as r → 0.

(2) For any solution w of (O) satisfying

w(r) = o(r A -(λ 1 ) ) if λ 1 > λ * , w(r) = o r -N-2 2 | log r| if λ 1 = λ * ,
as r → 0, there exists a constant c such that w(r) = c U (r) on (0, ∞), where U is as in (1).

(3) Assume that H := -∆ + V is nonnegative. Then U (r) > 0 on (0, ∞) and

(a) U (r) ∼ c * r A + (λ 2 ) as r → ∞ if H is subcritical and λ 2 > λ * , (b) U (r) ∼ c * r A -(λ 2 ) as r → ∞ if H is critical and λ 2 > λ * , (c) U (r) ∼ c * r -N-2 2 log r as r → ∞ if H is subcritical and λ 2 = λ * , (d) U (r) ∼ c * r -N-2 2 as r → ∞ if H is critical and λ 2 = λ * ,
for some c * > 0.

(

) Assume that H is subcritical. Let W ∈ C 0 ([0, ∞)) be such that W ≥ 0 and W ≡ 0 on [0, ∞). Set H µ := -∆ + V -µW for µ ∈ R. Then there exists µ * > 0 such that (a) H µ is subcritical if µ < µ * ; (b) H µ is critical if µ = µ * ; (c) H µ is supercritical if µ > µ * . Remark 1.1 Let N ≥ 2. Let V be a continuous function on (0, ∞) satisfying (1.2). (i) In the case of λ 1 = 0, we see that V ∈ L p/2 4 
loc (R N ) for some p > N/2. Then Theorem 1.1 follows from Theorem 3.1 in [START_REF] Murata | Structure of positive solutions to (-∆ + V )u = 0 in R n[END_REF].

(ii) If V (r) ≥ λr -2 on [0, ∞) for some λ > λ * , then H is subcritical. This immediately follows from the Hardy inequality.

The next results are concerned with upper and lower bounds for the heat kernel p(x, y, t) of H = -∆ + V . Recall that the heat kernel is the fundamental solution of

∂ t u = ∆u -V (|x|)u in R N × (0, ∞).
(1.5)

We prove the following results.

Theorem 1.2 Let N ≥ 2. Let V be a continuous function on (0, ∞) satisfying (1.2) and p = p(x, y, t) the fundamental solution of (1.5). Assume that

H := -∆ + V (|x|) is nonnegative and let U be as in Theorem 1.1. If ω(x) := U (|x|) 2 is an A 2 weight on R N , then there exist positive constants C 1 and C 2 such that C 1 U (x)U (y) ω(B(x, √ t)) ω(B(y, √ t)) exp - |x -y| 2 C 1 t ≤ p(x, y, t) ≤ C 2 U (x)U (y) ω(B(x, √ t)) ω(B(y, √ t)) exp - |x -y| 2 C 2 t for all x, y ∈ R N and t > 0. Here ω(B(x, √ t)) := B(x, √ t) ω(z) dz.
We shall see in the proof that the upper bound can be made slightly more precise in the sense that the constant C 2 could chosen to be arbitrary close to 4. Indeed we prove that

p(x, y, t) ≤ C ǫ U (x)U (y) ω(B(x, √ t)) ω(B(y, √ t)) exp - |x -y| 2 (4 + ǫ)t .
for every ǫ > 0. The constant C ǫ is independent of x, y and t.

Note that in Theorem 1.2, ω ≡ U 2 is an A 2 weight on R N if A + (λ 1 ) < N/2 and C -1 r -A 1 ≤ U (r) ≤ Cr -A 2 , r ≥ 1, for some A 1 and A 2 such that -N/2 < A 2 ≤ A 1 < N/2.
Next we weaken the A 2assumption on ω and obtain an upper Gaussian estimate for p = p(x, y, t).

Theorem 1.3 Let N ≥ 2.
Let V be a continuous function on (0, ∞) satisfying (1.2). Assume that H := -∆ + V (|x|) is nonnegative and let U be as in Theorem 1.1. Furthermore, if H is critical, then we assume that

A -(λ 2 ) > - N 2 .
Then there exists a positive constant C such that

0 < p(x, y, t) ≤ C t -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct (1.6)
for all x, y ∈ R N and t > 0.

For the proof of Theorem 1.3, we apply a refinement of the technique developed in [START_REF] Ioku | Sharp decay estimates of L q -norms for nonnegative Schrödinger heat semigroups[END_REF][START_REF] Ioku | Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups[END_REF][START_REF] Ishige | Large time behaviors of hot spots for the heat equation with a potential[END_REF][START_REF] Ishige | L p norms of nonnegative Schrödinger heat semigroup and the large time behavior of hot spots[END_REF] and construct supersolutions of (1.5). Furthermore, we combine the comparison principle with the standard arguments as given, for example, [START_REF] Saloff-Coste | Uniformly elliptic operators on Riemannian manifolds[END_REF]Section 6], and prove Theorem 1.3. The final result is an observation that for a non-necessarily radial positive potential V , if one knows that there exists a harmonic function U which behaves as a polynomial on the whole R N , then the Gaussian upper bound holds. More precisely, Proposition 1.1 Suppose that V ≥ 0 and that H has a harmonic function U satisfying

C 0 |x| α ≤ U (x) ≤ C ′ 0 |x| α , x ∈ R N , for some α ≥ 0 and C 0 , C ′ 0 > 0. Then p(x, y, t) ≤ C t -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct
for all x, y ∈ R N and t > 0.

The proof of the latter result uses the standard Caffarelli-Kohn-Nirenberg inequalities. The idea is classical and we work on the weighted space L 2 (R N , |x| α dx). Then the Sobolev inequality on this weighted space (which is the Caffarelli-Kohn-Nirenberg inequality) allows us to obtain an appropriate L 2 (R N , |x| α dx) -L ∞ (R N , |x| α dx) decay of the semigroup. The standard perturbation method allows then to convert this decay into a Gaussian bound. This reasoning has already appeared in [START_REF] Barbatis | Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities[END_REF] in the context of the Schrödinger operator -∆ + λ |x| 2 . Note that the above results extend the results from the papers [START_REF] Barbatis | Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities[END_REF], [START_REF] Liskevich | Estimates of integral kernels for semigroups associated with second-order elliptic operators with singular coefficients[END_REF], [START_REF] Milman | Heat kernel bounds and desingularizing weights[END_REF] and [START_REF] Milman | Global heat kernel bounds via desingularizing weights[END_REF] mentioned above which deal with the case where V = λ |x| 2 .

Preliminaries

In this section we recall some properties for parabolic equations with A 2 weight. Throughout this section and in the rest of the paper, we denote by C generic positive constants which may have different values even within the same line.

Let ω be a nonnegative measurable function on a domain Ω ⊂ R N . Suppose that ω is an A 2 weight on Ω, that is ω, ω -1 ∈ L 1 loc (Ω) and

[ω](Ω) := sup E ω dz E ω -1 dz E dz 2 : E is a ball in Ω < ∞.
Then ω(z) dz is a measure on Ω with the doubling property, that is

ω(B(x, 2r)) ≤ Cω(B(x, r)) (2.1)
holds for all x ∈ R N and r > 0, where ω(B(x, r)) := B(x,r) ω(z) dz. For further details on A 2 weights, see e.g., [START_REF] Stein | Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals[END_REF]. We denote by L p (Ω, ω dx) (1 ≤ p < ∞) the usual Lebesgue spaces with norm

f p,ω; Ω := Ω |f (z)| p ω(z) dz 1 p
.

By H 1 (Ω, ω dx) we denote the Sobolev space defined as the completion of C ∞ (Ω) with respect to the norm

Ω (|f (z)| 2 + |∇f (z)| 2 )ω(z) dz 1 2
.

Consider the degenerate parabolic equation

∂ t v = 1 ω div (ω∇v) + cv in Ω × I, (2.2) 
where I is an open interval of R and c ∈ L ∞ (I : L ∞ (Ω)). We say that a measurable

function v on Ω × I is a solution of (2.2) if v ∈ L ∞ (I : L 2 (Ω), w dz)) ∩ L 2 (I : H 1 (Ω, w dz))
and v satisfies

I Ω {-v∂ t ϕ + ∇v • ∇ϕ -cvϕ} ω dzdt = 0 for all ϕ ∈ C ∞ 0 (Ω × I).
The following results hold (see [START_REF] Chiarenza | A remark on a Harnack inequality for degenerate parabolic equations[END_REF] and also [START_REF] Ishige | On the behavior of the solutions of degenerate parabolic equations[END_REF]).

Proposition 2.1 Assume that ω is an A 2 weight on B(0, 1). Let v be a solution of (2.2) on B(0, 1) × (0, 1). Then there exists a constant γ 1 such that

v L ∞ (B(0,1/2)×(1/2,1)) ≤ γ 1 ω(B(0, 1)) 1 0 B(0,1) v 2 ω dzdt 1 2
.

Here γ 1 depends only on N , ω(B(0, 1)) and c L ∞ (0,1:L ∞ (B(0,1))) .

Proposition 2.2 Assume that ω is an A 2 weight on B(0, 1). Let v be a nonnegative solution of (2.2) on B(0, 1) × (-1, 1). Then there exists a constant γ 2 such that sup

Q - v ≤ γ 2 inf Q + v,
where

Q -:= B 0, 1 2 × - 3 4 , - 1 4 , 
Q + := B 0, 1 2 × 1 4 , 3 4 . 
Here γ 2 depends only on N , ω(B(0, 1)) and c L ∞ (0,1:L ∞ (B(0,1))) .

By Proposition 2.2 we have:

Lemma 2.1 Let R > 0 and w an A 2 weight on B(0, R). Let v be a nonnegative solution of (2.2) on B(0, R) × (0, T ), where 0 < T < ∞. Then there exists a positive constant C such that

v(x 1 , t 1 ) ≤ Cv(x 2 , t 2 ) exp C |x 1 -x 2 | 2 t 2 -t 1 + t 2 t 1 (2.3)
for all x 1 , x 2 ∈ B(0, R/2) and 0 < t 1 ≤ t 2 ≤ T . Here C depends on ω(B(0, R)) and c L ∞ (-1,1:L ∞ (B(0,1))) .

Proof. Let x ∈ B(0, R/2) and 0 < t < T . Assume that

Q := B(x, r) × (t -r 2 , t + r 2 ) ⊂ B(0, R) × (0, T ) for some r > 0. Set ṽ(z, s) := v(x + rz, t + r 2 s), ω(z) := ω(x + rz), c(z, s) := r 2 c(x + rz, t + r 2 s),
for z ∈ B(0, 1) and s ∈ (-1, 1). Then ṽ satisfies ∂ s ṽ = 1 ω div z (ω(z)∇ z ṽ) + cṽ in B(0, 1) × (-1, 1).

Since ω(B(0, 1)) = ω(B(0, r)) ≤ ω(B(0, R)), by Proposition 2.2 we can find a positive constant c, independent of x, t and r, such that sup

Q - ṽ ≤ c inf Q + ṽ,
where Q + and Q -are as in Proposition 2.2. This implies that sup

Q -(x,t;r) v ≤ c inf Q + (x,t;r) v,
where

Q -(x, t; r) :=B x, r 2 × t - 3 4 r 2 , t - 1 4 r 2 , Q + (x, t; r) :=B x, r 2 × t + 1 4 r 2 , t + 3 4 r 2 .
Then, similarly to [1, Theorem E] and [START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF]Theorem 2], we obtain (2.3). (See also [START_REF] Ishige | An intrinsic metric approach to uniqueness of the positive Cauchy problem for parabolic equations[END_REF] and [START_REF] Ishige | Uniqueness of nonnegative solutions of the Cauchy problem for parabolic equations on manifolds or domains[END_REF].) Thus Lemma 2.1 follows. 2

3 Behavior of the harmonic function

In this section we study the behavior of positive harmonic functions for nonnegative Schrödinger operators and prove Theorem 1.

1. In what follows, for λ ∈ [λ * , ∞), set u ± λ (r) := r A ± (λ) if λ > λ * and u + λ (r) := r -N-2 2 , u - λ (r) := r -N-2 2 | log r| if λ = λ * . Furthermore, we put V λ (r) := V (r) -λr -2 .
We first study the behavior of solutions of (O) at r = 0 and r = ∞.

Lemma 3.1 Let V ∈ C((0, ∞)). Assume that lim r→0 r 2-θ |V λ 1 (r)| = 0 (3.1)
for some λ 1 ∈ [λ * , ∞) and θ > 0. Then there exist solutions U ± * of (O) such that

U ± * (r) = u ± λ 1 (r) + O(r θ ′ u ± λ 1 (r)), (U ± * ) ′ (r) = (u ± λ 1 ) ′ (r) + O(r -1+θ ′ u ± λ 1 (r)), (3.2) 
as r → 0, for some θ ′ ∈ (0, θ]. Furthermore, for any solution w of (O), there exist constants C 1 and C 2 such that

w(r) = C 1 U + * (r) + C 2 U - * (r), r > 0. (3.3)
Proof. The proof is similar to [14, Section 3] but we give details for the sake of completeness. We write u ± = u ± λ 1 for simplicity. We first construct the solution U + * of (O). Set U + 1 (r) := u + (r) and define U + n (n = 2, 3, . . . ) inductively by

U + n+1 (r) := u + (r)(1 + F n (r)), (3.4) 
where

F n (r) := r 0 s 1-N [u + (s)] -2 s 0 τ N -1 u + (τ )V λ 1 (τ )U + n (τ ) dτ ds.
Let 0 < R < 1 and assume that

|U + n (r)| ≤ 2u + (r) in (0, R] (3.5) 
for some n ∈ {1, 2, . . . }. Then it follows from (1.3), (3.1) and (3.5) that

|F ′ n (r)| ≤ Cr 1-N [u + (r)] -2 r 0 τ N -1 τ -2+θ [u + (τ )] 2 dτ = Cr -1- √ D λ 1 r 0 τ -1+θ+ √ D λ 1 dτ ≤ Cr -1+θ (3.6) for r ∈ (0, R].
Taking a sufficiently small R > 0 if necessary, by (3.4) and (3.6) we have

|U + n+1 (r) -u + (r)| ≤ Cr θ u + (r) ≤ u + (r) (3.7) 
for r ∈ (0, R]. This implies that (3.5) holds for n = 1, 2, . . . . Furthermore, we see that (3.7) holds for n = 1, 2, . . . . Applying the successive approximation arguments on the existence of solutions to ordinary differential equations (see e.g., [5, Chapter 1]), we can find a function U + * ∈ C((0, R]) such that

|U + * (r) -u + (r)| ≤ Cr θ u + (r), U + * (r) = u + (r)(1 + F (r)), (3.8) 
for r ∈ (0, R], where

F (r) := r 0 s 1-N [u + (s)] -2 s 0 τ N -1 u + (τ )V λ 1 (τ )U + * (τ ) dτ ds.
Similarly to (3.6), it follows that |F ′ (r)| ≤ Cr -1+θ on (0, R], which implies that

(U + * ) ′ (r) -(u + ) ′ (r) = (u + ) ′ (r)F (r) + u + (r)F ′ (r) = O(r -1+θ u + (r)) (3.9)
as r → 0. Furthermore, since

(U + * ) ′′ + N -1 r (U + * ) ′ - λ 1 r 2 U + * = V λ 1 U + * in (0, R],
U + * satisfies (O) on (0, R]. By (3.8) and (3.9), extending U + * to the solution of (O) on (0, ∞), we obtain the desired solution U + * of (O). Next we construct the solution U - * in the case

λ 1 = λ * . We set U - 1 (r) = u -(r) and define U - n (n = 2, 3, . . . ) inductively by U - n+1 (r) := u -(r) + u + (r) Fn (r),
where

Fn (r) := r 0 s 1-N [u + (s)] -2 s 0 τ N -1 u + (τ )V λ 1 (τ )U - n (τ ) dτ ds.
Let 0 < R < 1 and assume that

|U - n (r)| ≤ 2u -(r) in (0, R] (3.10) 
for some n ∈ {1, 2, . . . }. Similarly to (3.6), by (1.2) and (3.10) we have

| F ′ n (r)| ≤ Cr 1-N [u + (r)] -2 r 0 τ N -1 τ -2+θ u + (τ )u -(τ ) dτ = Cr -1 r 0 τ -1+θ | log τ | dτ ≤ Cr -1+θ | log r| (3.11) for r ∈ (0, R]. This implies that | F (r)| ≤ Cr θ | log r|, u + (r)| F (r)| ≤ Cr -N-2 2 +θ | log r| = Cr θ u -(r)
for r ∈ (0, R]. Then, by a similar argument as in the construction of U + * we can find the desired solution U - * in the case λ = λ * . Next we construct the solution U - * in the case λ 1 > λ * . Let δ be a sufficiently small positive constant. We set U - 1 (r) := u -(r) and define U - n (n = 2, 3, . . . ) inductively by

U - n+1 (r) := u -(r)(1 + G n (r)),
where

G n (r) := r 0 s 1-N [u -(s)] -2 δ s τ N -1 u -(τ )V λ 1 (τ )U - n (τ ) dτ ds.
Similarly to (3.5), we assume

|U - n (r)| ≤ 2u -(r) in (0, δ] (3.12) 
for some n ∈ {1, 2, . . . }. Since we can assume, without loss of generality, that θ < D λ 1 , by (1.2) and (3.12) we have

|G ′ n (r)| ≤ Cr 1-N [u -(r)] -2 δ r τ N -1 τ -2+θ [u -(τ )] 2 dτ = Cr -1+ √ D λ 1 δ r τ -1+θ- √ D λ 1 dτ ≤ Cr -1+θ
for r ∈ (0, δ]. Then, taking a sufficiently small δ > 0 if necessary, we obtain

|U - n+1 (r) -u -(r)| ≤ Cr θ u -(r) ≤ u -(r)
for r ∈ (0, δ]. Repeating the above argument, we can find the desired solution U - * in the case λ > λ * . Therefore, we obtain the desired solutions U ± * of (O). Furthermore, since U ± * are linearly independent, we see (3.3). Thus Lemma 3.1 follows.

2 Lemma 3.2 Let V ∈ C((0, ∞)). Assume that lim r→∞ r 2+θ |V λ 2 (r)| = 0 (3.13)
for some λ 2 ∈ [λ * , ∞) and θ > 0. Then there exist solutions U ± * * of (O) such that

U ± * * (r) = u ± λ 2 (r) + O(r -θ ′ u ± λ 2 (r)) (3.14)
as r → ∞, for some θ ′ ∈ (0, θ]. Furthermore, for any solution w of (O), there exist constants C 1 and C 2 such that

w(r) = C 1 U + * * (r) + C 2 U - * * (r), r > 0. (3.15)
Proof. Let w be a solution of (O) on (0, ∞). Set ŵ(s) := s -N +2 w(s -1 ), which is the Kelvin transformation of w. Then ŵ satisfies

ŵ′′ + N -1 s ŵ′ -V (s) ŵ = 0 in (0, ∞), (3.16) 
where V (s

) := s -4 V (s -1 ). It follows from (3.13) that lim s→0 s -θ |s 2 V (s) -λ 2 | = lim r→∞ r 2+θ |V λ 2 (r)| = 0.
Therefore, by Lemma 3.1 we can find solutions W ± (r) of (3.16) such that

W ± (s) = u ± λ 2 (s) + O s θ ′ u ± λ 2 (s) as s → 0, (3.17) 
for some θ ′ ∈ (0, θ]. Set U ± * * (r) := r -N +2 W ∓ (r -1 ). Then U ± * * (r) are solutions of (O) on (0, ∞). Furthermore, it follows that

-A ± (λ 2 ) -N + 2 = -(N -2) ∓ (N -2) 2 + 4λ 2 2 = A ∓ (λ 2 ),
which together with (3.17) implies (3.14). Furthermore, since U ± * * are linearly independent, we obtain (3.15). Thus Lemma 3.2 follows. 2

In what follows, we set U (r) := U + * (r). Next we show the positivity of U under the assumption that H is nonnegative.

Lemma 3.3 Let V ∈ C((0, ∞)). Assume (1.2) and that H is nonnegative. Then U (r) > 0 on (0, ∞). Proof. We consider the case -λ * ≤ λ 1 ≤ 0. For n = 1, 2, . . . , set V n (r) := max{-n, V (r)}, H n := -∆ + V n . Since V n ∈ L ∞ (0, ∞
) and H n is nonnegative, by (ii) of Theorem 3.1 in [START_REF] Murata | Structure of positive solutions to (-∆ + V )u = 0 in R n[END_REF] there exists a radially symmetric and bounded function

u n = u n (|x|) ∈ C 2 (R N ) such that -∆u n + V n u n = 0 in R N , u n > 0 in R N . (3.18)
In particular, it follows from the regularity of u n that

u ′ n (0) = 0. (3.19) By (3.2) we can find R > 0 such that U (r) > 0 on (0, R]. Set U n (r) := U (R) u n (r) u n (R) .
Since U n satisfies (3.18), we have

- 1 r N -1 (r N -1 U ′ n ) ′ + V n U n = 0 in (0, ∞), which implies that 0 = r r ′ [-(s N -1 U ′ n ) ′ U + s N -1 V n U n U ] ds = -s N -1 U ′ n U s=r s=r ′ + r r ′ [s N -1 U ′ n U ′ + s N -1 V n U n U ] ds (3.20) for 0 < r ′ < r. Similarly, since U is a solution of (O), we have 0 = r r ′ [-(s N -1 U ′ ) ′ U n + s N -1 V (s)U U n ] ds = -s N -1 U ′ U n s=r s=r ′ + r r ′ [s N -1 U ′ U ′ n + s N -1 V (s)U U n ] ds (3.21) 
for 0 < r ′ < r. Since U (r) > 0, U n (r) > 0 and V (r) ≤ V n (r) on (0, R], we deduce from (3.20) and (3.21) that

r N -1 [U ′ (r)U n (r) -U (r)U ′ n (r)] -(r ′ ) N -1 [U ′ (r ′ )U n (r ′ ) -U (r ′ )U ′ n (r ′ )] = r r ′ s N -1 [V (s) -V n (s)]U U n ds ≤ 0 (3.22)
for 0 < r ′ < r ≤ R. On the other hand, it follows from (3.2) that lim

r ′ →0 (r ′ ) N -1 [U ′ (r ′ )U n (r ′ ) -U (r ′ )U ′ n (r ′ )] = 0. Taking r ′ → 0 in (3.22) together with (3.19) implies that 0 ≥ r N -1 [U ′ (r)U n (r) -U (r)U ′ n (r)] = r N -1 U n (r) 2 U (r) U n (r) ′ , 0 < r ≤ R. We deduce from U n (R) = U (R) that U (r) U n (r) ≥ U (R) U n (R) = 1, 0 < r ≤ R.
Therefore we obtain 0

< U n (r) ≤ U (r), 0 < r ≤ R. (3.23)
On the other hand, since V ∈ C((0, ∞)) and U n (R) = 1, by the Harnack inequality and regularity theorems for elliptic equations in a similar way to the Perron method, we can find a function Ũ ∈ C 2 ((0, ∞)) such that

lim n→∞ U n -Ũ C 2 (I) = 0
for any compact set I in (0, ∞). Then Ũ is a solution of (O) on (0, ∞). Furthermore, by (3.23) we see that

Ũ (r) ≥ 0 in (0, ∞), Ũ (r) ≤ U (r) in (0, R], Ũ (R) = U (R) > 0. (3.24)
Using the Harnack inequality again, we obtain

Ũ (r) > 0 in (0, ∞). (3.25)
Furthermore, by Lemma 3.1 there exist constants C 1 and C 2 such that

Ũ (r) = C 1 U + * (r) + C 2 U - * (r) in (0, ∞). (3.26) Since A -(λ 1 ) < A + (λ 1 )
, by (3.24) and (3.26) we see that C 2 = 0 and

C 1 = 1, that is Ũ (r) = U + * (r) = U (r) on (0, ∞). Therefore we deduce from (3.25) that U (r) > 0 on (0, ∞).
It remains to consider the case

λ 1 > 0. Let k ∈ {1, 2, . . . } be such that λ 1 < ω k := k(N + k -2). For any φ ∈ C ∞ (R N +2k \ {0}) and ω ∈ S N +2k-1 , set φ ω (r) := φ(rω), ψ ω (r) := r k φ ω (r).
Since H is nonnegative, we have

0 ≤ 1 |S N -1 | R N |∇ψ ω | 2 + V ψ 2 ω dx = ∞ 0 |ψ ′ ω | 2 + V ψ 2 ω r N -1 dr = ∞ 0 r 2k |φ ′ ω | 2 + 2kr 2k-1 φ ω φ ′ ω + k 2 r 2k-2 φ 2 ω + r 2k V φ 2 ω r N -1 dr = ∞ 0 |φ ′ ω | 2 + k 2 r -2 φ 2 ω + V φ 2 ω r N +2k-1 dr + ∞ 0 kr N +2k-2 [(φ ω ) 2 ] ′ dr = ∞ 0 |φ ′ ω | 2 + Ṽ φ 2 ω r N +2k-1 dr ≤ |S N +2k-1 | -1 R N+2k |∇φ| 2 + Ṽ φ 2 dx,
where Ṽ (r) := V (r) -ω k r -2 . This means that H := -∆ N +2k + Ṽ is nonnegative operator on R N +2k . Furthermore, (1.2) holds with λ 1 and λ 2 replaced by

λ1 := λ 1 -ω k > - (N + 2k -2) 2 4 and λ2 := λ 2 -ω k > - (N + 2k -2) 2 4 ,
respectively. Therefore, by Lemma 3.3 in the case λ * < λ 1 ≤ 0 we can find a solution u = u(r) of

u ′′ + N + 2k -1 r u ′ -Ṽ (r) = 0 in (0, ∞), u(r) > 0 in (0, ∞), u(r) = r a + O(r a+θ ) as r → 0,
where

a := -(N + 2k -2) + (N + 2k -2) 2 + 4(λ 1 -ω k ) 2 = -k + A + (λ 1 ).
Then Ũ (r) := r k u(r) is a solution of (O) and it satisfies

Ũ (r) > 0 in (0, ∞), Ũ (r) ∼ r A + (λ 1 ) as r → 0.
It follows from Lemma 3.1 that U (r) = Ũ (r) > 0 on (0, ∞). Thus Lemma 3.3 follows. 2

Next we study the asymptotic behavior of U (r) as r → ∞.

Lemma 3.4 Let V ∈ C((0, ∞)). Assume (1.2) and that -∆ + V (|x|) -W (|x|) is nonneg- ative for some W ∈ C 0 ((0, ∞)) with W ≥ 0, W ≡ 0 in (0, ∞).
Then there exists a positive constant c such that

U (r) ∼ cr A + (λ 2 ) if λ 2 > λ * , U (r) ∼ cr -N-2 2 log r if λ 2 = λ * , as r → ∞.
Proof. Since -∆ + V -W is nonnegative, by Lemmas 3.1 and 3.3 we can find a function

U W ∈ C 2 ((0, ∞)) satisfying U ′′ W + N -1 r U ′ W -(V (r) -W (r))U W = 0 in (0, ∞), U W > 0 in (0, ∞), U W (r) = r A + (λ 1 ) (1 + o(1)) as r → 0. (3.27) 
On the other hand, U satisfies

U ′′ + N -1 r U ′ -(V (r) -W (r))U = W (r)U in (0, ∞). Define Ũ (r) = U W (r)(1 + F W (r)),
where

F W (r) := r 0 s 1-N [U W (s)] -2 s 0 τ N -1 U W (τ )W (τ )U (τ ) dτ ds ≥ 0.
Since W has a compact support, F W (r) = 0 for all sufficiently small r > 0. Furthermore, by (3.27) we have

Ũ ′′ + N -1 r Ũ ′ -(V (r) -W (r)) Ũ = W U in (0, ∞).
Then Û := U -Ũ satisfies

Û ′′ + N -1 r Û ′ -(V (r) -W (r)) Û = 0 in (0, ∞), Û (r) = U (r) -U W (r) = o r A + (λ 1 )
as r → 0.

This together with Lemma 3.1 imply that Û = 0 in (0, ∞), that is,

U (r) = U W (r)(1 + F W (r)) in (0, ∞). (3.28)
On the other hand, by Lemmas 3.2 and 3.3 we see that, either

(a) U W (r) ∼ c 1 u - λ 2 (r) or (b) U W (r) ∼ c 2 u + λ 2 (r) as r → ∞
, where c 1 and c 2 are positive constants.

Consider the case λ 2 > λ 1 . Assume that (a) holds. Since W has a compact support and U > 0 on (0, ∞), we take a sufficiently large constant R > 0 so that

U W (r)F W (r) ≥ CU W (r) r R s 1-N [U W (s)] -2 ds ≥ Cr -(N-2)- √ D(λ 2 ) 2 r 1 s -1+ √ D(λ 2 ) ds ≥ Cr -(N-2)+ √ D(λ 2 ) 2 = Cr A + (λ 2 ) (3.29)
for all sufficiently large r. On the other hand, if (b) holds, then it follows from (3.28) that

U (r) ≥ U W (r) ≥ Cr A + (λ 2 ) (3.30)
for all sufficiently large r. In both cases of (a) and (b), U (r) ≥ Cr A + (λ 2 ) for all sufficiently large r. Then Lemma 3.4 in the case λ 2 > λ * follows from Lemma 3.2. Consider the case λ 2 = λ * . If (a) holds, then, similarly to (3.30), we have

U (r) ≥ U W (r) ≥ Cr -N-2 2
log r for all sufficiently large r. If (b) holds, then, similarly to (3.29), we have 

U W (r)F W (r) ≥ CU W (r) r R s 1-N [U W (s)] -2 ds ≥ Cr -N-2 2 r 1 s -1 ds ≥ Cr -N-2
U (r) ≥ cr A + (λ 2 ) if λ 2 > λ * , U (r) ≥ cr -N-2 2 log r if λ 2 = λ * , (3.31) 
for all sufficiently large r > 0, then

H := -∆ + V is subcritical. Proof. Let φ ∈ C ∞ 0 (R N \ {0}). Set φ(x) := φ(x)/U (|x|).
Then we have

|∇ φ| 2 = U ∇φ -φ∇U U 2 2 = U 2 |∇φ| 2 -2U φ∇φ∇U + φ 2 |∇U | 2 U 4 = U 2 |∇φ| 2 -U ∇|φ| 2 ∇U + φ 2 |∇U | 2 U 4 .
This implies that

R N |∇ φ| 2 U 2 dx = R N |∇φ| 2 + φ 2 ∇ ∇U U + φ 2 |∇U | 2 U 2 U 2 dx = R N (|∇φ| 2 + V φ 2 ) dx.
(3.32)

Let Ṽ satisfy (1.2) and Ṽ (r) > λ * r -2 on (0, ∞). Let W ∈ C ∞ 0 (R N ) be such that W ≥ 0 on R N . By the Hardy inequality there exists ǫ > 0 such that

R N |∇ψ| 2 + ( Ṽ -ǫW )ψ 2 dx ≥ 0 for ψ ∈ C ∞ (R N \ {0}).
(3.33) Furthermore, by Lemma 3.4 we can find a positive function Ũ ∈ C 2 ((0, ∞)) such that

Ũ ′′ + N -1 r Ũ ′ -Ṽ Ũ = 0 in (0, ∞), Ũ (r) ∼ r A + (λ 1 ) as r → 0, Ũ (r) ∼ cr A + (λ 2 ) as r → ∞ if λ > λ * , Ũ (r) ∼ cr -N-2 2 log r as r → ∞ if λ = λ * , (3.34) 
for some constant c > 0. Since U (r) = r A + (λ 1 ) (1 + o(1)) as r → 0, it follows from (3.31) and (3.34) that U (r) ≥ C -1 Ũ (r) on (0, ∞). This together with (3.33) implies that

R N |∇ φ| 2 U 2 dx ≥ C R N |∇ φ| 2 Ũ 2 dx = C R N (|∇ φ| 2 + Ṽ φ2 ) dx ≥ Cǫ R N W φ2 dx, (3.35) 
as in the same way as (3.32), where

φ(x) = Ũ (|x|) φ(x) = Ũ (|x|) U (|x|) φ(x).
Since U (r) ∼ Ũ (r) as r → 0 and W has a compact support, we deduce from (3.32) and (3.35) that

R N (|∇φ| 2 + V φ 2 ) dx ≥ Cǫ R N W φ2 dx ≥ Cǫ R N W φ 2 dx, φ ∈ C ∞ 0 (R N \ {0}).
This means that H is subcritical. Thus Lemma 3.5 follows. 2

Proof of Theorem 1.1. Assertions (1) and (2) follow from Lemma 3.1. Assertion (3) follows from Lemmas 3.2, 3.3 and 3.5. It remains to prove assertion (4). Let W ∈ C 0 ((0, ∞)) be such that W ≥ 0 and W ≡ 0 on (0, ∞). Assume that H is nonnegative. For any µ ∈ R, let

H µ := -∆ + V + µW. Define I := {µ ∈ R : H µ is subcritical}, µ * := inf µ∈I µ.
It follows from Lemmas 3.4 and 3.5 that I = (µ * , ∞) and µ * ≤ 0. Since H µ * is nonnegative, H µ * must be critical. Then assertion (4) follows. Therefore the proof of Theorem 1.1 is complete by replacing W in this proof by -W . 2

4 Proof of Theorem 1.2

Assume (1.2). Let H := -∆ + V be nonnegative and U the positive harmonic function given in Theorem 1.1. We define the unitary operator U by

U : L 2 (R N , dx) ∋ f -→ U -1 f ∈ L 2 (R N , ω(x) dx),
where ω(x) = U (|x|) 2 . Then the operator L := U HU -1 is given by

Lv := - 1 ω(x) div (ω(x)∇v).
We denote by p(x, y, t) and G(x, y, t) the heat kernels of H and L, respectively. Then

p(x, y, t) = U (|x|)U (|y|)G(x, y, t) (4.1) 
for x, y ∈ R N and t > 0. In this section we study upper and lower bounds of G = G(x, y, t) and then obtain Theorem 1. In particular, C is independent of x, y and t if w is an A 2 weight on R N .

Proof. We obtain the upper bound of G = G(x, y, t) by using the standard method as given, for example, [START_REF] Saloff-Coste | Uniformly elliptic operators on Riemannian manifolds[END_REF]Section 6]. We give the proof for completeness of this paper.

We fix x, y ∈ R N and t > 0. Let λ ∈ R and ψ be a bounded smooth function on

R N such that |∇ψ| ≤ 1 on R N . For f 0 ∈ L 2 (B(y, √ t), ω dz), we set f (ξ, s) := B(y, √ t)
G(ξ, z, s)e -λψ(z) f 0 (z)ω(z) dz, F (ξ, s) := e λψ(ξ) f (ξ, s).

(4.3) Since f = f (ξ, s) satisfies ∂ s f = 1 ω(ξ) div ξ (ω(ξ)∇ ξ f ) in R N × (0, ∞), (4.4) 
we have

d ds R N F (ξ, s) 2 ω dξ = 2 R N e 2λψ(ξ) f (∂ s f )ω dξ = -2 R N 2λe 2λψ f ∇ψ • ∇f + e 2λψ |∇f | 2 ω dξ ≤ 2λ 2 R N e 2λψ f 2 |∇ψ| 2 ω dξ ≤ 2λ 2 R N F (ξ, s) 2 ω dξ, which implies that R N F (ξ, s) 2 ω dξ ≤ e 2λ 2 s R N F (ξ, 0) 2 ω dξ = e 2λ 2 s B(y, √ t) f 0 (ξ) 2 ω dξ, s > 0. (4.5)
Let 0 < τ ≤ t and let f (y, s) := f (x + √ τ y/2, 3τ /4 + τ s/4) for (y, s) ∈ B(0, 1) × (0, 1). Then f satisfies

∂ s f = 1 ω div (ω∇ f ) in B(0, 1) × (0, 1)
, where ω(y) := ω(x + √ τ y/2). Then, by Proposition 2.1 we obtain

f (x, τ ) 2 = f (0, 0) 2 ≤ C ω(B(0, 1)) 1 0 B(0,1) f (y, s) 2 ω dyds ≤ C τ ω(B(x, √ τ )) τ 3τ /4 B(x, √ τ ) f (ξ, s) 2 ω dξds. (4.6) 
The constant C depends on [ω](B(x, 2 √ t)). Since |∇ψ| ≤ 1, by (2.1), (4.3), (4.5) and (4.6) we have

e 2λψ(x) f (x, τ ) 2 ≤ C τ ω(B(x, √ t)) τ 3τ /4 B(x, √ τ ) e 2λ(ψ(x)-ψ(ξ)) F (ξ, s) 2 ω dξds ≤ Ce 2λ √ t ω(B(x, √ t)) sup 0<s<t R N F (ξ, s) 2 ω dξ ≤ Ce 2λ √ t ω(B(x, √ t)) e 2λ 2 t B(y, √ t) f 0 (ξ) 2 ω dξ (4.7)
for all t/2 ≤ τ ≤ t. Furthermore, by (4.3) we obtain

f (x, τ ) = e -λψ(y) B(y, √ t) G(x, z, τ )e -λ(ψ(z)-ψ(y)) f 0 (z)ω dz ≥ e -λ √ t e -λψ(y) B(y, √ t)
G(x, z, τ )f 0 (z)ω dz for τ > 0. This implies that

B(y, √ t) G(x, z, τ ) 2 ω(z) dz 1/2 = sup R N G(x, z, τ )f 0 (z)ω(z) dz : f 0 ∈ L 2 (B(y, √ t), ω dz), f 0 L 2 (B(y, √ t),ω dz) ≤ 1 ≤ e λ √ t e λψ(y) sup f (x, τ ) : f 0 ∈ L 2 (B(y, √ t), ω dz), f 0 L 2 (B(y, √ t),ω dz) ≤ 1 ,
which together with (4.7) yields

B(y, √ t) G(x, z, τ ) 2 ω(z) dz ≤ e 2λ
√ t e -2λ(ψ(x)-ψ(y))

× sup e 2λψ(x) f (x, τ ) 2 :

f 0 ∈ L 2 (B(y, √ t), ω dz), f 0 L 2 (R N ,ω dz) ≤ 1 ≤ e 2λ √ t e -2λ(ψ(x)-ψ(y)) Ce 2λ √ t ω(B(x, √ t)) e 2λ 2 t (4.8)
for all t/2 ≤ τ ≤ t.

On the other hand, since g(ξ, s) := G(x, ξ, s) is also a solution of (4.4), similarly to (4.6), we have

G(x, y, t) 2 ≤ C tω(B(y, √ t)) t 3t/4 B(y, √ t)
G(x, z, τ ) 2 ω(z) dzdτ.

Then we deduce from (4.8) that

G(x, y, t) 2 ≤ C ω(B(x, √ t))ω(B(y, √ t)) e 4λ √ t+2λ 2 t-2λ(ψ(x)-ψ(y)) .
We choose λ = ψ(x)-ψ(y) 2t and optimize over ψ with |∇ψ| ≤ 1. This gives (4.2), and the proof is complete. 2 If w is an A 2 weight on R N , then we obtain upper estimate of Lemma 4.1. We mention that the proof actually gives the estimate

G(x, y, t) ≤ C ǫ ω(B(x, √ t)) ω(B(y, √ t)) exp - |x -y| 2 (4 + ǫ)t
for every ǫ > 0 and all x, y ∈ R N and t > 0. Here C ǫ is a positive constant depending on ǫ. Therefore, by (4.1) we obtain the following upper estimate

p(x, y, t) ≤ C ǫ U (x)U (y) ω(B(x, √ t)) ω(B(y, √ t)) exp - |x -y| 2 (4 + ǫ)t . (4.9)
This shows the upper bound of Theorem 1.2. Next, we prove the lower bound. In the rest of this section we assume that w is an A 2 weight on R N . The idea of proof is known and has been used in the context of Riemmannian manifolds, see, e.g., [START_REF] Th | Off-diagonal heat kernel lower bounds without Poincaré[END_REF], [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF]Chapter 7] and references therein.

It follows from the definition of the operator L and the fact that U is a harmonic function of H that e -tL 1 = 1. In other words,

R N G(x, y, t)ω(y)dy = 1.
This together with the doubling property (2.1) and the Gaussian upper bound (4.9) imply the diagonal lower bound

G(x, x, t) ≥ C ω(B(x, √ t)) (4.10)
for some constant C > 0. See, e.g., [START_REF] Th | Off-diagonal heat kernel lower bounds without Poincaré[END_REF] and [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF]Chapter 7]. Next, one extends this diagonal lower bound to x and y near the diagonal. In order to do this one needs the Hölder continuity of the heat kernel G(t, x, y). This latter property follows from the Harnack inequality. The Hölder continuity is also proved in [START_REF] Cruz-Uribe | Gaussian bounds for degenerate parabolic equations[END_REF], namely

|G(x, x, t) -G(x, y, t)| ≤ Ct -η/2 ω(B(x, √ t)) |x -y| η (4.11)
for some η ∈ (0, 1) and all x, y and t > 0 such that |x -y| ≤ for x, y ∈ R N and t > 0 such that |x -y| ≤ δ √ t for some constant δ > 0. Finally, the Gaussian lower bound

G(x, y, t) ≥ C ω(B(x, √ t)) ω(B(y, √ t)) exp - |x -y| 2 Ct
follows by a chain argument and the semigroup property. See again, e.g., [START_REF] Th | Off-diagonal heat kernel lower bounds without Poincaré[END_REF] and [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF]Chapter 7]. The equality (4.1) gives the lower estimate of Theorem 1.2. Thus the proof of Theorem 1.2 is complete.

Non A 2 weight

In this section we study upper bounds of p = p(x, y, t) without the assumption that U 2 is an A 2 weight on R N , and prove Theorem 1. [START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF]. In what follows, we set

d := A + (λ 2 ) if H is subcritical, d := A -(λ 2 ) if H is critical.
The first lemma follows from a similar argument as in the proof of Lemma 4.1.

Lemma 5.1 Let V be a continuous function on (0, ∞) satisfying (1.2). Assume that H := -∆ + V (|x|) is nonnegative and let U be as in Theorem 1.1. Then, for any ǫ ∈ (0, 1], there exists a constant C such that

p(x, y, t) ≤ Ct -N 2 exp - |x -y| 2 Ct (5.1)
for all x, y ∈ R N \ B(0, ǫ √ t) and t > 0. In particular,

p(x, y, t) ≤ Ct -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct (5.2)
for all x, y ∈ R N \ B(0, ǫ √ t) and t > 0.

Proof. Let ǫ ∈ (0, 1], x, y ∈ R N \ B(0, ǫ √ t) and t > 0. Similarly to the proof of Lemma 4.1, let λ ∈ R and let ψ be a bounded smooth function ψ on R N such that |∇ψ| ≤ 1 on R N . For any

f 0 ∈ L 2 (B(y, ǫ √ t)), set f (ξ, s) := B(y,ǫ √ t)
p(ξ, z, s)e -λψ(z) f 0 (z) dz, F (ξ, s) := e λψ(ξ) f (ξ, s).

Then it follows from the nonnegativity of H that

d ds R N F (ξ, s) 2 dξ = -2 R N e 2λψ 2λf ∇ψ • ∇f + |∇f | 2 + V f 2 dξ = -2 R N |∇(e λψ f )| 2 + V (e λψ f ) 2 dξ + 2λ 2 R N e 2λψ f 2 |∇ψ| 2 dξ ≤ 2λ 2 R N e 2λψ f 2 |∇ψ| 2 dξ ≤ 2λ 2 R N F (ξ, s) 2 dξ, which implies that R N F (ξ, s) 2 dξ ≤ e 2λ 2 s B(y, √ t) f 0 (ξ) 2 dξ. Let 0 < η ≤ t. Set f (ξ, s) := f (x + δǫξ, η + δ 2 ǫ 2 s) with δ = √ η/4, Ṽ (ξ) := δ 2 ǫ 2 V (x + δǫξ). Since f satisfies ∂ s f = ∆ ξ f -V (ξ)f on R N × (0, ∞), we have ∂ s f = ∆ ξ f -Ṽ (ξ) f in R N × -16ǫ -2 , ∞ . Furthermore, |x + δǫξ| ≥ |x| - ǫ 4 √ η|ξ| ≥ ǫ √ t - ǫ 4 √ t|ξ| ≥ ǫ 2 √ t ≥ ǫ 2 √ η (5.3) for x ∈ R N \ B(0, ǫ √ t) and ξ ∈ B(0, 2). Since |V (|x|)| ≤ C|x| -2 by (1.2), we deduce from (5.3) that | Ṽ (ξ)| ≤ Cδ 2 ǫ 2 |x + δǫξ| -2 ≤ C, ξ ∈ B(0, 2).
Then it follows from Proposition 2.1 that

| f (0, 0)| 2 ≤ C 0 -1 B(0,1) | f | 2 dξds. Since η -δ 2 ǫ 2 ≥ 3η/4 and δǫ ≤ ǫ √ t, it follows that f (x, η) 2 ≤ C(δǫ) -N -2 η η-δ 2 ǫ 2 B(x,δǫ) |f (ξ, s)| 2 dξds ≤ Cη -N 2 -1 η 3η/4 B(x,ǫ √ t) |f (ξ, s)| 2 dξds for x ∈ R N \ B(0, ǫ √ t) and 0 < η ≤ t ≤ 1.
Then we apply a similar argument as in the proof of Lemma 4.1 to obtain (5.1). Furthermore, it follows from Theorem 1.1 that

U (min{|x|, ǫ √ t}) ≍ U (min{|x|, √ t}) and U (ǫ √ t) ≍ U ( √ t) (5.4)
for x ∈ R N and t > 0. Then we deduce from (5.1) and (5.4) that

p(x, y, t) ≤ Ct -N 2 U (min{|x|, ǫ √ t})U (min{|y|, ǫ √ t}) U (ǫ √ t) 2 exp - |x -y| 2 Ct ≤ Ct -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct
for all x, y ∈ R N \ B(0, ǫ √ t) and t > 0. So we have (5.2), and the proof is complete. 2

Combining Lemma 5.1 with Lemma 4.1, we obtain upper estimates of p = p(x, y, t) in the case where 0 < t ≤ 1 and A + (λ 1 ) < N/2.

Lemma 5.2 Assume the same conditions as in Theorem 1.3 and A + (λ 1 ) < N/2. Then there exists a constant C such that

p(x, y, t) ≤ Ct -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct (5.5)
for all x, y ∈ R N and 0 < t ≤ 1.

Proof. Let G = G(x, y, t) be as in Section 4. Let 0 < t ≤ 1. The proof is divided into the following four cases:

(i) x, y ∈ R N \ B(0, √ t); (ii) x, y ∈ B(0, √ t); (iii) x ∈ R N \ B(0, √ t), y ∈ B(0, √ t); (iv) x ∈ B(0, √ t), y ∈ R N \ B(0, √ t).
In case (i) (5.5) follows from Lemma 5.1. So we have only to consider cases (ii), (iii) and (iv). Consider case (ii). It follows from Theorem 1.1 that U (|x|) ∼ |x| A + (λ 1 ) as |x| → 0. Combining (1.4) with the assumption A + (λ 1 ) < N/2, we see that A + (λ 1 ) ∈ (-N/2, N/2), which means that ω(x) = U (|x|) 2 is an A 2 weight on B(0, 2). Then Lemma 4.1 implies that

G(x, y, t) ≤ C ω(B(x, √ t)) ω(B(y, √ t)) exp - |x -y| 2 Ct . (5.6) 
Furthermore, it follows from Theorem 1.1 and (2.1) that

ω(B(ξ, √ s)) ≍ ω(B(ξ, 2 √ s)) ≥ ω(B(0, √ s)) ≍ s N 2 +A + (λ 1 ) ≍ s N 2 U ( √ s) 2 (5.7) 
for ξ ∈ B(0, √ s) and 0 < s ≤ 1. By (4.1), (5.6) and (5.7) we obtain

p(x, y, t) ≤ CU (|x|)U (|y|) ω(B(x, √ t)) ω(B(y, √ t)) exp - |x -y| 2 Ct ≤ Ct -N 2 U (|x|)U (|y|) U ( √ t) 2 exp - |x -y| 2 Ct = Ct -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct ,
which implies (5.5) in case (ii). Consider case (iii). Set ỹ := √ 2ty/|y| and g(ξ, s) := G(x, ξ, s). Recalling that w is A 2 weight on B(0, 2), we apply Lemma 2.1 to g to obtain

g(y, t) ≤ Cg(ỹ, 2t) exp C |y -ỹ| 2 t ≤ Cg(ỹ, 2t),
which together with (4.1) implies

p(x, y, t) ≤ C U (|y|) U (|ỹ|) p(x, ỹ, 2t) = C U (|y|) U ( √ 2t) p(x, ỹ, 2t) ≤ C U (|y|) U ( √ t) p(x, ỹ, 2t). (5.8) Since |x| ≥ √ t = ǫ √ 2t with ǫ = 1/ √ 2, applying Lemma 5.1, we have p(x, ỹ, 2t) ≤ C(2t) -N 2 U (min{|x|, √ 2t})U (min{|ỹ|, √ 2t}) U ( √ 2t) 2 exp - |x -ỹ| 2 2Ct ≤ Ct -N 2 U (min{|x|, √ 2t}) U ( √ 2t) exp - |x| 2 Ct ≤ Ct -N 2 U (min{|x|, √ t}) U ( √ t) exp - |x -y| 2 Ct .
This together with (5.8) implies (5.5) in case (iii). Since p(x, y, t) = p(y, x, t), we also obtain (5.5) in case (iv). Thus Lemma 5.2 follows. 2

Next we obtain upper estimates of p = p(x, y, t) in the case where 0 < t ≤ 1 and A + (λ 1 ) ≥ N/2. Lemma 5.3 Assume the same conditions as in Theorem 1.3 and A + (λ 1 ) ≥ N/2. Then there exists a constant C such that

p(x, y, t) ≤ Ct -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct (5.9)
for all x, y ∈ R N and 0 < t < 1.

For this aim, we prepare the following lemma, which is useful to obtain upper estimates of p = p(x, y, t) inside a parabolic cone. A similar lemma has been used in the study of the behavior of the solutions of the heat equation with a potential (see e.g., [START_REF] Ioku | Sharp decay estimates of L q -norms for nonnegative Schrödinger heat semigroups[END_REF][START_REF] Ioku | Sharp decay estimates in Lorentz spaces for nonnegative Schrödinger heat semigroups[END_REF][START_REF] Ishige | Large time behaviors of hot spots for the heat equation with a potential[END_REF][START_REF] Ishige | L p norms of nonnegative Schrödinger heat semigroup and the large time behavior of hot spots[END_REF]).

Lemma 5.4 Assume the same conditions as in Theorem 1.1. Let T ≥ 0. Furthermore, assume that

ζ(t) := t γ 1 [log(c + t)] γ 2
is monotone decreasing on (T, ∞), where γ 1 , γ 2 ∈ R and c > 1. Let κ > 0 be such that

-sζ ′ (s) ≤ κζ(s), s ∈ (T, ∞). (5.10) 
Define

F [U ](x) :=U (|x|) |x| 0 s 1-N [U (s)] -2 s 0 τ N -1 U (τ ) 2 dτ ds, w(x, t) :=ζ(s) U (|x|) -κs -1 F [U ](x) . Then ∂ t w ≥ ∆w -V (|x|)w in R N × (T, ∞).
Proof. It follows that ∆F -V (|x|)F = U (|x|) for x ∈ R N . This together with (5.10) implies

∂ t w -∆w + V (|x|)w ≥ [ζ ′ (t) + κt -1 ζ(t)]U (x) ≥ 0, x ∈ R N , t ∈ (T, ∞).
Thus Lemma 5.4 follows. 2

Proof of Lemma 5.3. For any σ > 0, we define

H σ := -∆ + V σ (|x|), V σ (|x|) := V (|x|) U (|x|) + σ U (|x|).
Let p σ = p σ (x, y, t) be the fundamental solution corresponding to e -tHσ . It follows from Theorem 1.1 and (1.2) that

|V σ (|x|)| ≤ |V (|x|)| ≤ C|x| -2 in R N , V σ (r) ∼ λ 1 r -2+A + (λ 1 ) as r → 0. ( 5.11) 
In particular, since A + (λ 1 ) > 0, we see that V σ ∈ L q loc (R N ) for some q > N/2. Furthermore, U σ := U + σ is a positive harmonic function for H σ and

R N |∇ϕ| 2 + V σ ϕ 2 dz = R N ∇ ϕ U σ 2 U 2 σ dz ≥ 0 for all ϕ ∈ C ∞ 0 (R N ), which means that H σ is nonnegative on L 2 (R N
). In the proof, the letter C * denotes a generic constant independent of x, y, t and σ. Since H σ is nonnegative, for any ǫ ∈ (0, 1], we apply Lemma 5.1 with the aid of (5.11) to obtain

p σ (t, x, y) ≤ C * t -N 2 exp - |x -y| 2 C * t (5.12) 
for all x, y ∈ R N \ B(0, ǫ √ t) and t > 0. On the other hand, since U 2 σ is an A 2 weight on B(0, R) for any R > 0, we apply a similar argument as in the proof of Lemma 5.2 to obtain

p σ (x, y, t) ≤ C R,σ t -N 2 U σ (min{|x|, √ t})U σ (min{|y|, √ t}) U σ ( √ t) 2 exp - |x -y| 2 C R,σ t (5.13) 
for all x, y ∈ B(0, R) and 0 < t ≤ 1, where C R,σ is a constant depending on R and σ.

Let ǫ be a sufficiently small positive constant to be chosen later. Let x, y ∈ R N and 0 < t ≤ 1. In what follows, we divide the proof into the following four cases:

(i) x, y ∈ R N \ B(0, ǫ √ t); (ii) x, y ∈ B(0, ǫ √ t); (iii) x ∈ R N \ B(0, ǫ √ t), y ∈ B(0, ǫ √ t); (iv) x ∈ B(0, ǫ √ t), y ∈ R N \ B(0, ǫ √ t).
Similarly to Lemma 5.2, by Lemma 5.1 we have (5.9) in case (i).

We consider case (iii). Define

D ǫ (t) := (ξ, s) ∈ R N × (0, t] : |ξ| < ǫ √ s , ∂ p D ǫ (t) := (ξ, s) ∈ R N × [0, t] : |ξ| = ǫ √ s .
Let κ := (N + A + (λ 1 ))/2 and set v(ξ, s) := p σ (x, ξ, s), w(ξ, s)

:= s -N+A + (λ 1 ) 2 U σ (|ξ|) -κs -1 F [U σ ](|ξ|) , z(ξ, s) := v(ξ, s) -γ exp - |x| 2 γt w(ξ, s), (5.14) 
where γ is a positive constant. It follows from Lemma 5.4 that

∂ s z ≤ ∆z -V σ (|ξ|)z in R N × (0, ∞). (5.15) 
Since U (r) ≍ r A + (λ 1 ) on (0, 1) and A + (λ 1 ) > 0, we have

F [U σ ](|ξ|) = U σ (|ξ|) |ξ| 0 s 1-N [U σ (s)] -2 s 0 τ N -1 U σ (τ ) 2 dτ ds ≤ U σ (|ξ|) |ξ| 0 s 1-N [C -1 * s A + (λ 1 ) + σ] -2 s 0 τ N -1 (C * r A + (λ 1 ) + σ) 2 dτ ds ≤ U σ (|ξ|) |ξ| 0 s 1-N [C -1 * σ -1 s A + (λ 1 ) + 1] -2 • 1 N s N (C * σ -1 s A + (λ 1 ) + 1) 2 ds ≤ C * 2N |ξ| 2 U σ (|ξ|) ≤ C * ǫ 2N sU σ (|ξ|), (ξ, s) ∈ D ǫ (t).
(5.16)

Taking a sufficiently small ǫ > 0 if necessary, by (5.14) and (5.16) we obtain

w(ξ, s) ≥ 1 2 s -N+A + (λ 1 ) 2 U σ (|ξ|) = 1 2 s -N+A + (λ 1 ) 2 [U (|ξ|) + σ] in D ǫ (t).
This implies that

w(ξ, s) ≥ 1 2 s -N+A + (λ 1 ) 2 σ in D ǫ (t), (5.17) 
w(ξ, s) ≥ 1 2 s -N+A + (λ 1 ) 2 U (|ξ|) ≥ C * s -N+A + (λ 1 ) 2 (ǫ √ s) A + (λ 1 ) ≥ C * ǫ A + (λ 1 ) s -N 2 on ∂ p D ǫ (t) \ {(0, 0)}.
(5.18)

On the other hand, it follows from (5.12) that for (ξ, s) ∈ D ǫ (t) and 0 < σ ≤ 1. Taking (ξ, s) = (y, t), we obtain

v(ξ, s) = p σ (x, ξ, s) ≤ C * s -N 2 exp - |x -ξ| 2 C * s ≤ C * s -N 2 exp
p σ (x, y, t) ≤ γt -N+A + (λ 1 ) 2 U σ (|y|) exp - |x| 2 γt ≤ C * t -N+A + (λ 1 ) 2 U σ (|y|) exp - |x -y| 2 C * t ≤ C * t -N 2 U (min{|y|, ǫ √ t}) + σ U ( √ t) exp - |x -y| 2 C * t .
(5.22)

Passing to the limit as σ → 0, we deduce that

p(x, y, t) ≤ C * t -N 2 U (min{|y|, ǫ √ t}) U ( √ t) exp - |x -y| 2 C * t ≤ C * t -N 2 U (min{|y|, √ t}) U ( √ t) exp - |x -y| 2 C * t ,
which means that (5.9) holds in case (iii). Since p(x, y, t) = p(y, x, t), we also obtain (5.9) in case (iv). It remains to consider case (ii). Let κ := (N + 2A + (λ 1 ))/2 and set ṽ(ξ, s) := p σ (ξ, y, s), w(ξ, s)

:= s -N+2A + (λ 1 ) 2 U σ (|ξ|) -κs -1 F [U σ ](|ξ|) , z(ξ, s) := ṽ(ξ, s) -γ ′ [γ ′ U (min{|y|, ǫ √ t}) + σ] exp - |y| 2 γ ′ t w(ξ, s), (5.23) 
where γ ′ is a positive constant. It follows from Lemma 5.4 that

∂ s z ≤ ∆ ξ z -V σ (|ξ|)z in R N × (0, ∞). (5.24) 
For (ξ, s) ∈ ∂ p D ǫ (t) \ {(0, 0)}, we see that ξ ∈ R N \ B(0, ǫ √ s). Since U (r) ≍ r A + (λ 1 ) on (0, 1) and A + (λ 1 ) > 0, we apply (5.9) and (5.22) to obtain ṽ(ξ, s)

≤ C * s -N 2 U (min{|y|, ǫ √ s}) + σ U ( √ s) exp - |ξ -y| 2 C * s ≤ C * s -N+A + (λ 1 ) 2 [C * U (min{|y|, ǫ √ t}) + σ] exp - |y| 2 C * s ≤ C * s -N+A + (λ 1 ) 2 [C * U (min{|y|, ǫ √ t}) + σ] exp - |y| 2 C * t (5.25)
for (ξ, s) ∈ ∂ p D ǫ (t) \ {(0, 0)}. On the other hand, taking a sufficiently small ǫ > 0 if necessary, by (5.16) we have

w(ξ, s) ≥ 1 2 s -N+2A + (λ 1 ) 2 U σ (|x|) in D ǫ (t).
Then, similarly to (5.17) and (5.18), we see that

w(ξ, s) ≥ 1 2 s -N+2A + (λ 1 ) 2 σ in D ǫ (t), (5.26) 
w(ξ, s) ≥ ṽ(ξ, s) = 0 uniformly for ξ in a neighborhood of the origin. This together with (5.17) implies that z(ξ, s) ≤ 0 (5.29) for (ξ, s) ∈ D ǫ (t) if s is sufficiently small. Therefore, by (5.24), (5.28) and (5.29) we apply the comparison principle to obtain z ≤ 0 on D ǫ (t). This together with (5.23) implies that

1 2 s -N+2A + (λ 1 ) 2 U (|ξ|) ≥ C * s -N+2A + (λ 1 ) 2 (ǫ √ s) A + (λ 1 ) ≥ C * ǫ A + (λ 1 ) s -N+A + (λ 1 )
p σ (ξ, y, s) = ṽ(ξ, s) ≤ γ ′ [γ ′ U (min{|y|, ǫ √ t}) + σ] exp - |y| 2 γ ′ t w(ξ, s) ≤ C * s -N+2A + (λ 1 ) 2 [C * U (min{|y|, ǫ √ t}) + σ]U σ (|y|) exp - |y| 2 C * t
for (ξ, s) ∈ D ǫ (t). Taking (ξ, s) = (x, t) and passing to the limit as σ → 0, by (5.4) we obtain

p(x, y, t) = lim σ→0 p σ (x, y, t) ≤ C * t -N+2A + (λ 1 ) 2 U (min{|y|, ǫ √ t})U (|x|) exp - |y| 2 C * t ≤ C * t -N+2A + (λ 1 ) 2 U (min{|y|, √ t})U (|x|) exp - |x -y| 2 C * t ≤ C * t -N 2 U (min{|y|, √ t})U (min{|x|, √ t}) U ( √ t) 2 exp - |x -y| 2 C * t .
which means that (5.9) holds in case (ii). Thus Lemma 5.2 follows. 2

We complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Let ǫ be a sufficiently small positive constant. Due to Lemmas 5.2 and 5.3, it suffices to prove (1.6) in the case t > 1.

Let t > 1. Similarly to Lemma 5.3, the proof is divided into the following four cases:

(i) x, y ∈ R N \ B(0, ǫ √ t); (ii) x, y ∈ B(0, ǫ √ t); (iii) x ∈ R N \ B(0, ǫ √ t), y ∈ B(0, ǫ √ t); (iv) x ∈ B(0, ǫ √ t), y ∈ R N \ B(0, ǫ √ t).
In case (i), by Lemma 5.1 we have (1.6). Consider case (iii). Define

E ǫ (t) := (ξ, s) ∈ R N × (1, t] : |ξ| < ǫ √ s , ∂ p E ǫ (t) := (ξ, s) ∈ R N × (1, t] : |ξ| = ǫ √ s ∪ {(ξ, 1) ∈ R N × {1} : |ξ| ≤ ǫ}. Let ζ(s) := s -N+d 2 [log(2 + s)] -1 if λ 2 = λ * and H is subcritical, s -N+d 2 otherwise. It follows from Theorem 1.1 that ζ(s) ≍ s -N 2 U ( √ s) -1 in (1, ∞). (5.30) Since N + d > 0, we can find κ > 0 such that -sζ ′ (s) ≤ κζ(s) on (1, ∞). Set v(ξ, s) := p(x, ξ, s), w(ξ, s) := ζ(s) U (|ξ|) -κs -1 F [U ](|ξ|) , z(ξ, s) := v(ξ, s) -C 1 exp - |x| 2 C 1 t w(ξ, s), (5.31) 
where C 1 is a positive constant to be chosen later. It follows from Lemma 5.4 that 

∂ s z ≤ ∆ ξ z -V (|ξ|)z in R N × (1, ∞). ( 5 
Ct ≤ Cζ(t)U (|y|) exp - |x -y| 2 Ct ≤ Ct -N 2 U (min{|y|, ǫ √ t}) U ( √ t) U (min{|x|, ǫ √ t}) U (ǫ √ t) exp - |x -y| 2 Ct ≤ Ct -N 2 U (min{|x|, √ t})U (min{|y|, √ t}) U ( √ t) 2 exp - |x -y| 2 Ct .
Thus (1.6) holds in case (iii). Since p(x, y, t) = p(y, x, t), (1.6) also holds in case (iv). It remains to prove (1.6) in case (ii). Set

S := 1 if |x| ≤ 1, S := |x| 2 if |x| > 1.
Then it follows that

1 ≤ S < t, U (min{|x|, √ S}) = U (|x|). (5.38) We show that v(ξ, S) = p(x, ξ, S) ≤ CS -N 2 U ( √ S) -2 U (|x|)U (|ξ|) exp - |x| 2 Ct (5.39)
for all ξ ∈ B(0, ǫ √ S). In the case S = 1, that is |x| ≤ 1, combining Lemmas 5.2 and 5.3 with (5.38), we have (5.39). So we consider the case S > 1, that is |x| > 1. Let w and z be as in (5.31). Then z satisfies (5.32) on R N × (1, S]. Furthermore, by (1.6) in cases (i) and (iii) we see that Then, by the comparison principle we see that z(ξ, s) ≤ 0 on E ǫ (S). This together with (5.30) implies that

v(ξ, s) = p(x, ξ, s) ≤ Cs -N 2 U (min{|x|, √ s})U (min{|ξ|, √ s}) U ( √ s) 2 exp - |x -ξ| 2 Cs ≤ Cs -N 2 exp - |x| 2 Ct (5.40) for (ξ, s) ∈ R N × (1, S] with |ξ| = ǫ √ s and that v(ξ, 1) ≤ C U (min{|x|, 1})U (min{|ξ|, 1}) U ( 
v(ξ, S) ≤ C 1 S -N 2 U ( √ S) -1 U (|ξ|) exp - |x| 2 C 1 t = C 1 S -N 2 U ( √ S) -2 U (|x|)U (|ξ|) exp - |x| 2 C 1 t
for all ξ ∈ B(0, ǫ √ S), which implies (5.39) in the case S > 1. Therefore inequality (5.39) holds.

We complete the proof of (1.6) in case (ii). Let where C 2 is a positive constant to be chosen later. Then, by Lemma 5.4 we see that This means that (1.6) holds in case (ii). Thus Theorem 1.3 follows. 2

ζ(s) := s -N+2d 2 [log(2 + s)] -2 if λ 2 = λ * and H is subcritical, s -N+2d
∂ s z ≤ ∆ ξ z -V (|ξ|)z in R N × (1, ∞). ( 5 

Positive potentials

Proof of Proposition 1.1. We shall use the classical idea that a polynomial decay of a heat kernel is equivalent to a Sobolev inequality. We use this to the kernel G(x, y, t) of the operator Lv = -1 U 2 div (U (x)2 ∇v) used in the proof of Theorem 1.2. The L p -spaces in consideration here are L p (R N , U (x) 2 dx) and since by assumption U (x) ∼ |x| α a Sobolev inequality in this setting is a Caffarelli-Kohn-Nirenberg type inequality. This strategy was already used in [START_REF] Barbatis | Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities[END_REF] to obtain similar bounds for the heat kernel of -∆ + w |x| 2 for a positive real w.

Let L and G(x, y, t) be as in the proof of Theorem 1.2. Let λ ∈ R and φ ∈ C ∞ (R N ) and bounded with |∇φ| ≤ 1. Let L λ,φ := e -λφ Le λφ and k λ,φ (x, y, t) its associated heat kernel. The bilinear form associated to the operator L λ,φ is given by

E λ,φ (u, v) = R N (L λ,φ u)vU (x) 2 dx = R N ∇(e λφ u)∇(e -λφ v)U (x) 2 dx = R N ∇u•∇v + λu∇φ•∇v -λv∇φ•∇u -λ 2 uv U (x) 2 dx.
In particular, the quadratic form satisfies where p 0 := 2(N -2α) N -2-2α . 1 This together with the fact that U (x) ∼ |x| α implies that

E λ,φ (u, u) + λ 2 R N |u| 2 U (x) 2 dx ≥ C u 2 L p 0 (R N ,|x| 2α dx) .
It is a classical fact that the semigroup e -tL λ,φ is bounded from L 2 (R N , U 2 dx) into L p 0 (R N , U 2 dx) with norm bounded by Ct -1/2 e λ 2 t . The same strategy as in the proof of a Gaussian upper for the heat kernel of uniformly elliptic operator (see, e.g., [START_REF] Davies | Heat Kernels and Spectral Theory[END_REF] or [START_REF] Ouhabaz | Analysis of Heat Equations on Domains[END_REF]) allows to iterate this estimates and see that the semigroup e -tL λ,φ is bounded from L 2 (R N , U 2 dx) into L ∞ (R N , U 2 dx) with norm bounded by Ct -N/4-α/2 e λ 2 t . Thus,

R N |k λ,φ (x, y, t)| 2 U (y) 2 dy ≤ Ct -N 2 -α e 2λ 2 t .
Set R λ,φ (x, y, t) := e -λφ(x) p(x, y, t)e λφ(y) . The latter estimate immediately gives e λ 2 t e λ(φ(x)-φ(y)) .

We change λ into -λ and then optimize as usual over λ and φ to obtain the upper estimate in Theorem 1.1. 2

  |p(x, y, t)| ≤ C |B(x, √ t)| |B(y, √ t)| e -|x-y| 2 ct , where |B(x, r)| denotes the volume of the open ball of the manifold with center x and radius r and |x -y| denotes the Riemannian distance between the two points x and y. In the Euclidean setting (i.e. R N ) the above estimate reduces to |p(x, y, t)| ≤ Ct -N/2 e -|x-y| 2 ct .

2 2

 2 for all sufficiently large r. In both cases of (a) and (b), U (r) ≥ Cr -N-log r for all sufficiently large r. Then Lemma 3.4 in the case λ 2 = λ * follows from Lemma 3.2. Thus the proof of Lemma 3.4 is complete. 2Next we employ the arguments in [9,Lemma 6] and prove the following lemma. Lemma 3.5 Let V ∈ C((0, ∞)). Assume (1.2) and that H is nonnegative. If there exists a positive constant c such that

2 on

 2 ∂D ǫ (t). (5.27) Taking a sufficiently large constant γ ′ if necessary, by (5.25) and (5.27) we have z(ξ, s) ≤ 0 on ∂ p D ǫ (t) \ {(0,

  Theorem 1.1 and (5.30) that ζ(s) ≍ s -N 2 U ( √ s) -2 ≍ U ( √ s) -1 ζ(s) in (1, ∞).(5.42)Since N + 2d > 0, we can find κ > 0 such that -s ζ′ (s) ≤ κζ (s) on (1, ∞). Set w(ξ, s):= ζ(s) U (|ξ|) -κs -1 F [U ](|ξ|) , z(ξ, s) := v(ξ, s) -C 2 U (|x|) exp -|x| 2 C 2 t w(ξ, s),

E

  λ,φ (u, u) = R N |∇u| 2 -λ 2 |u| 2 U (x) 2 dx.Recall the weighted Sobolev inequality due to Caffarelli-Korn-Nirenberg[START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF] ∇u 2 L 2 (R N ,|x| 2α dx) ≥ C u 2 L p 0 (R N ,|x| 2α dx) ,(6.1)

  .43) Since(1.6) holds in case (iv), it follows from (5.30) and (5.38) that v(ξ, s) = p(x, ξ, s) ≤ Cs -N By (5.43) and (5.47) we apply the comparison principle to obtain z ≤ 0 for all (ξ, s) ∈ R N × [S, t] with |ξ| ≤ ǫ √ s. This implies p(x, ξ, s) = v(ξ, s) ≤ C 2 U (|x|) exp -|x| 2 C 2 t w(ξ, s) ≤ C 2 ζ(s)U (|x|)U (|ξ|) exp -|x| 2 C 2 t for all (ξ, s) ∈ R N × [S, t] with |ξ| ≤ ǫ √ s.Taking (ξ, s) = (y, t), by (5.4) and (5.42) we

	2 ≤ Cζ(s)U (|x|) exp -U (min{|x|, √ s})U (min{|ξ|, U ( √ s) 2 Ct |x| 2	√ s})	exp -	|x -ξ| 2 Cs	(5.44)
	√ s and					
	w(ξ, S) ≥ S). By (5.39), (5.44), (5.45) and (5.46), taking a sufficiently large C 2 if 1 2 2 U ( √ S) -2 U (|ξ|) (5.46) ζ(S)U (|ξ|) ≥ C -1 S -N necessary, we see that √ for ξ ∈ B(0, ǫ
	z ≤ 0						(5.47)
	obtain					
	p(x, y, t) ≤ C ζ(t)U (|x|)U (|y|) exp -≤ Ct -N 2 U (min{|x|, √ t})U (min{|y|, |x| 2 Ct U ( √ t) 2	√	t})	exp -	|x -y| 2 Ct	.

for (ξ, s) ∈ R N × [S, t] with |ξ| = ǫ √ s. Furthermore, similarly to (5.35) and (5.36), taking a sufficiently small ǫ > 0 if necessary, we deduce from (5.42) that w(ξ, s) ≥ 1 2 ζ(s)U (|ξ|) ≥ C -1 ζ(s) (5.45) for (ξ, s) ∈ R N × (S, t] with |x| = ǫ for all (ξ, s) ∈ R N × [S, t] with |ξ| = ǫ √ s and all (ξ, S) with |ξ| < ǫ √ S.

  |R λ,φ (x, y, t)| 2 dy ≤ Ct -N On the other hand, since V is non-negative we have the domination propertyp(x, y, t) ≤ (4πt) -N 2 e -|x-y| 2This and the fact that |∇φ| ≤ 1 implyR N |R λ,φ (x, y, t)| 2 dy ≤ Ct -N 2 e 2λ 2 t . |R λ,φ (x, y, t)| 2 dy ≤ Ct -NBy the semigroup property and the assumption U (x) ∼ |x| α we haveR λ,φ (x, y, t) = R N R λ,φ (x, z, t/2)R λ,φ (z,y, t/2)dz |R λ,φ (x, z, t/2)| 2 dz |R λ,φ (z, y, t/2)| 2 dz

								(6.3)
	Combining (6.3) and (6.2) yields			
		R N			2	min(1,	|x| √ t	)	2α	e 2λ 2 t .
						1/2		1/2
		≤	R N				R N
		≤ Ct -N 2 ≤ Ct -N 2	min(1, U (min{|x|, |x| √ t √ ) U ( α t})U (min{|y|, min(1, |y| √ t √ ) √ t) 2	α t})	e λ 2 t e λ 2 t .
	Hence	p(x, y, t) ≤ Ct -N 2	U (min{|x|,	√ U ( t})U (min{|y|, √ t) 2	√	t})
		R N				2	|x| √ t	2α	e 2λ 2 t .	(6.2)

4t

.

Here one needs of course N >

+ 2α. In the case N ≤ 2 + 2α, we use a Gagliardo-Nirenberg type inequality instead of (6.1). See[START_REF] Caffarelli | First order interpolation inequalities with weights[END_REF].
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