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We introduce an accurate non-Hermitian Schrodinger-type approximation of Bloch optical equations for
two-level systems. This approximation provides a complete description of the excitation, relaxation and
decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the
wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing
are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed
formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer

comprised of interacting two-level emitters.

PACS numbers: 42.50.Ct, 78.67.-n, 32.30.-r, 33.20.-t, 36.40.Vz, 03.65.Yz

I. INTRODUCTION

Non-Hermitian quantum mechanics (NHQM) %2 is

an alternative to the standard Hermitian formalism,
enabling the solution of otherwise difficult problems.
NHQM provides powerful numerical and analytical tools
for the study of resonance phenomena **. It was proven
to be especially useful for a set of problems, for which
conventional Hermitian framework fails>. NHQM has
applications in a variety of fields, including quantum en-
tanglement, cavity quantum electrodynamics, quantum
optics when the refractive index is complex, quantum
field theory when the parity-time (PT) symmetry prop-
erties of the Hamiltonian are investigated °, atomic and
molecular physics, and electrical engineering when com-
plex potentials are introduced to simplify numerical cal-
culations 912,

NHQM finds important application in studies of the
dynamics of open systems . Open systems, which are
coupled to one or more continua have dissipative pro-
cesses determined by couplings the reservoir. Treating
the dissipation dynamics is often complicated. Non-
Hermitian Hamiltonians can be taken as an effective tool
for treating such processes. To achieve a proper descrip-
tion of the system dynamics using non-Hermitian Hamil-
tonians, the real parts of the eigenvalues are related to
the eigenenergies and the imaginary parts can be linked
to decay rates. A non-Hermitian model was presented
n'? as an alternative to the well-known Bloch equations
for treating the dynamics of a collection of two-level and
multi-level quantum systems in the weak field regime.
This model works well irrespective of the strength of the
emitter-emitter interaction but it is limited to weak ex-
citations. It is, for example, able to describe collective
effects in dense atomic vapors '>'9. However the model
fails to describe the dynamics of the system in the case of
a strong excitation induced, for instance, in the presence
of intense laser fields. In this paper, we propose to ex-

tend this model to the strong excitation regime. We show
that the extended model can accurately describe the dis-
sipative dynamics of a collection of interacting two-level
systems excited by a strong field.

The simplest quantum system, a two-level system, is
widely used to model physical problems which are of
great interest 7. Spin states of electrons are the best ex-
ample of naturally occurring two-level systems '®'”. Re-
cent advances in laser technology provide a high preci-
sion control over electromagnetic field parameters that
enable to tune the exciting fields in resonance with spe-
cific quantum levels. In such a case, the quantum dy-
namics can often be treated within the framework of a
two-level system. It is thus widely used to understand
the quantum dynamics in various systems?°22. Two-
level systems are also investigated widely for manipulat-
ing laser-matter interaction which can lead to techno-
logical breakthroughs 23 2. The model presented in this
paper is applied to two-level systems, both in the weak
and strong interaction regimes.

The paper is organized as follows. Current theoretical
models are briefly discussed and compared with our new
approach in section II. Our model is applied to a collec-
tion of two-level systems and the studies are carried out
in both the weak and intense field regimes. The weak
probe regime is discussed in section IIT A and the results
obtained for intense fields are discussed in section I1I B.
The work is summarized in section IV.

Il. THEORETICAL BACKGROUND
A. Bloch equations

We consider a two-level quantum system consisting of
levels |1) and |2), with eigenfrequencies w; and ws, re-
spectively. The system is subject to an electromagnetic
field whose career frequency wy is close to the transition



frequency wp = we — wy. The time dynamics of such
a system is represented by the dissipative Liouville-von
Neumann equation for the density matrix p(t) %7

ihowp = [H, p| —ihl'p, (1)

where H = Hy + V;(t) is the total Hamiltonian and T is
the relaxation super-operator taken in the Lindblad form.
The non-diagonal elements of I" include a pure dephasing
rate v*, and the diagonal elements of this operator consist
of the radiationless decay rate I' of the excited state under
Markov approximation 28,29 The field free Hamiltonian
Hj of the system can be written in terms of the diagonal
elements of the density matrix as

Ho = huy [1X1] + hews [2)(2] - (2)

The interaction of the system with the applied field is
written in the dipole approximation

Vi(t) = h(t) (12)(1] + [1)2]), 3)

where €(t) represents the instantaneous Rabi frequency
describing the coupling between the quantum system
and the applied field. Egs. (1)-(3) lead to a set of first
order differential equations describing the dynamics of
two-level quantum systems usually referred to as optical
Bloch equations *°

Orp11 = i2(t)(p12 — pa1) + paa, (4a)
Opr2 = 1Q(t)(p11 — p22) + (iwp —Y)p12,  (4b)
Op2r = iQt)(p22 — p11) — (iwp +¥)p21,  (4o)

( ) — )

Orpaz = 1Q(t)(p21 — p12) — I'paz, (4d

where v = ~* + T'/2.

B. Non-Hermitian wave packet approximations

The dynamics of two-level quantum systems can also
be represented using the non-Hermitian formalism. In
this case the quantum state of the two-level system is
represented as a wave packet |¥(¢)) formed by the super-
position of the two states |1) and |2) with time-dependent
coefficients ¢ (t) and c2(t) as

(W(t) = ca(t) 1) +ca(t) [2) - (5)

In the usual case, the wave packet given in Eq. (5) is
the solution of the time-dependent Schrodinger equation
(TDSE) described by the Hamiltonian H which is a Her-
mitian operator. The addition of empirical imaginary
parts +ifiy1(t)/2 and —ihvy2(t)/2 to the eigenenergies of
the system leads to a non-Hermitian dynamics. 1 () is
the gain factor of the ground state and ~»(t) is the decay
rate of the excited state.

It can be shown by projecting the TDSE onto the
states |1) and |2) that the new coefficients ¢; (t) and co(?)
obey a set of coupled differential equations '

i0) (2) = (wl o —%?(tw) (2) - (6

Taking pj;(t) = c;(t) c;(t) we can write equations for the
modified density matrix elements pj; (), where the super-
script s represents the non-Hermitian Schrodinger-type

model
aipiy = Q) (pla — p51) + 71011, (7a)
s : s s : 727y
Oipia = iQ2(t) (P11 — po2) + [WB - ]012 , (7b)

2
s . S s . Y2 = S
depsy = iQ(t)(p3e — p51) — [iwp + 2 1]021 , (Tc)
Oep3s = 1) (P31 — pia) — V2 P32 - (7d)

2
The empirical gain and decay factors 7 (t) and 2 (t) are
the parameters that have to be modeled properly so that
the dynamics of the system is reproduced accurately.
Using the first-order perturbation theory we can ac-
curately describe the coherences of the system '*. By
comparing Eqgs. (7b) and (7¢) with Eqgs. (4b) and (4c¢), the
empirical gain and decay factors can be related to the de-
cay and decoherence rates of the system via

Bl =) =27 =2 +T. ®

In the non-Hermitian model presented in Ref. [14], which
we call non-Hermitian model number 1 (NH1), an addi-
tional condition on the conservation of the total norm
i.€,

P11 (t) + p3a(t) =1 9)

was taken into account. This yields the following defini-
tion of the empirical gain and decay factors

I )
N0 = IR e@F (102)

20 = R e@F

These rates can be plugged into Eq. (6), which can be
solved to find the complex coefficients ¢; () and ¢z (t) and
hence to describe the dynamics of the two-level system
accurately. The details and applications of this approach
can found in Ref. [14].

NH1 model fails when the system is exited with a high
intensity pulse. Indeed, it is evident from Egs. (10a)
and (10b) that the empirical gain and decay factors cho-
sen to mimic the dynamics of the system diverge when
the exited state is populated at 50%. Thus it is clear that
NH1 is inadequate to describe the dynamics of two-level
systems driven by an intense laser field. It is the conser-
vation of the norm, i.e Eq. (9), which brings this pole to
the model. We show below that if we drop this condition
it is possible to solve this problem and to describe the
coherence dynamics accurately.

From the dynamical Egs. (4b) and (4c), it is clear that
an accurate description of the coherences p13(t) and
p21(t) requires an accurate evaluation of the population
difference A(t) = paa(t)—p11(t). From Egs. (4d) and (4a)
we obtain

8tA = 2iQ(t)(p21 — p12) — 2Fp22 . (11)



A similar evolution equation can be derived from the
non-Hermitian model by taking the difference between
Egs. (7d) and (7a)

A = 2iQ(t) (31 — pla) — (M pl1 +72052) . (12)

By comparing Eq. (12) with Eq. (11) we see that a correct
description of the population difference requires that

n® e +r2t) |et) =20 e, (13)
And from Egs. (13) and (8) we finally get

(0= 2y jealt)
N0 = DR+ 0P
_ 2y]er(®)® + 20 |ea(t)[?
aOF + a0

(14a)

Y2(1) (14b)

The time-dependent gain and decay rates derived above
is the main result of the manuscript. To compare it with
other approaches it will be called NH2 onwards.

It is clear that Eqs. (14a) and (14b) do not have any
pole compared to Egs. (10a) and (10b). Thus these re-
fined gain and decay factors can be used for simulating
the system dynamics in both weak and strong fields. An
application and a comparison of these models are dis-
cussed in the next section.

I1l.  APPLICATION TO A UNIFORM NANO-LAYER

In this section we consider a collection of identical two-
level systems assumed to form a uniform layer consisting
of n emitters per cm?®. It is also assumed that this layer
is finite in z direction and infinite in both x and y. All
emitters are prepared initially in their ground state |1).
An z-polarized incident electromagnetic (EM) pulse of
duration 7 propagating in the z-direction interacts the
layer, as shown in Fig.1. A part of the incident radia-
tion is reflected and the remaining part passes through
the system. The EM field propagating in the medium is
also partially absorbed by the coupled two-level emitters,
setting up the dynamics and other associated effects as
described, for example, in Ref. [15, 16, 31-33].

The dynamics of the EM field E,(z,t) and Hy(z,t) is
described by Maxwell’s equations in the time domain

Ho 8tHy = _8ZELE7
€0 8th = —8ZHy — atP;m

(15a)
(15Db)

where o and €y are the permeability and permittivity
of the free space, respectively. These equations are im-
plemented and solved using a generalized finite-difference
time-domain technique where both the electric and mag-
netic fields are propagated in discretized spatial and tem-
poral grids as described in Ref. [34]. The interaction of
the EM fields with the two-level emitters polarizes the
medium giving rise to a macroscopic polarization P, (z, )

T
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A Transmitted Field
Mol B -
VVV u | | L
y ‘

Reflected Field

—

l
Nano Layer

FIG. 1. (Color online) A schematic view of the system. An in-
finite slab of width £ composed of identical two-level emitters
is exposed to a laser pulse. A part of the EM field is re-
flected and the remaining part is either transmitted through
or absorbed by the layer of emitters.

which is related to the microscopic transition dipoles i,
via

Pu(z,8) = n(pa), (16)

where (p1,) stands for the expectation value of the point-
wise dipole at position z and time ¢t. The polarization of
the medium results in a modification of the effective local
electric field. This modification is taken into account for
the proper inclusion of the dipole-dipole couplings in the
system. This is especially important when the system
density increases. It can be done by defining the local
field Ejoc(z,t) experienced by the emitters using the well-
known Lorentz-Lorenz correction *°,

P.(z,1)

Eioc )t =E, ,t
oe(2s1) = Eaeyt) 4 T2

(17)

The polarization P,(z,t) of Eq. (16) is the link between
the field dynamics described by Egs. (15a) and (15b) and
the quantum description of the system 43539, The sys-
tem is modeled using both the exact coupled Maxwell-
Liouville dynamical equations (4) and the non-Hermitian
equations (6) in their NH1 and NH2 variations. The den-
sity matrix elements p;;(z,t) and the wave packet compo-
nents ¢;(z, t) are calculated using the fourth order Runge-
Kutta method. The calculated transmitted and reflected
fields give access to the corresponding Poynting vector

Sw) = | Ex(w) Hy(w)|, (18)

where E,(w) and PNIy (w) are the Fourier components of
the transmitted or reflected EM fields. Their evalua-
tion and subsequent normalization with respect to the
incident energy flux allows to calculate the reflection,
R(w), and transmission, T'(w). The part of the energy
absorbed and dissipated by the medium can be caclu-
lated as A(w) =1 —T(w) — R(w).

The different models describing the quantum dynamics
of two-level systems in the medium can be compared in



the weak as well as in the strong excitation regime. To
compare the new model NH2 with the well-established
Maxwell-Liouville model and the recently introduced
non-hermitian approach NH1, we calculate transmission
and reflection from a layer of thickness ¢/ = 600nm.
The medium is composed of identical two-level emitters
with transition energy hwp = 2eV and transition dipole
e = 4.0D. The dephasing rate is v* = 10 THz and the
nonradiative decay rate is I' = 1 THz. The layer is ex-
cited with a laser pulse with a Gaussian envelop of dura-
tion 7 = 10fs (FWHM) whose career frequency is reso-
nant with the transition frequency. The response of the
system towards the incident field is finally calculated as
a function of the relative detuning § = (w — wg)/7.

Media composed of a large number of interacting
dipoles can respond to the incident EM field in a collec-
tive manner due to the strong dipole-dipole interactions.
As demonstrated in Ref. [16] for the same kind of ge-
ometry in the linear excitation regime, the strength of
the dipole-dipole interaction can be quantified by a di-
mensionless parameter = A/, where A = nu2/(9heg).
Since the cooperative nature of the system can signifi-
cantly alter its dynamics, the calculations are done in
both the weak and strong interaction regimes. The co-
operative behavior of the system is setting up gradually
as the density increases. It induces a considerable mod-
ification in the local fields. The validity of the proposed
model NH2 has to be checked in both limits. We con-
sider two specific cases of interaction regimes: one with
n = 1.3 x 10~7 which shows no cooperative response and
the second case with 1 = 1.3 exhibiting a strong cooper-
ative behavior.

A. Weak excitation limit

In the weak probe regime, the system is excited with
a laser pulse of small amplitude Fy. For the numeri-
cal simulations we have chosen Fy = 1V/m, such that
the system responds linearly to the field with an excita-
tion probability much smaller than one. If the density is
small, the atoms respond almost independently. On the
contrary, in the strong interaction regime reached at large
densities, dipole-dipole interactions alter the response of
the system, resulting in a dramatic change of reflection
and transmission spectra.

Fig. 2 shows the response calculated for a weak probe.
The results obtained using the quantum dynamics of the
system via optical Bloch equations are shown as black
curves. The results for NH1 and NH2 models are shown
as inverted plots as they are on top of the black curve.
The blue curves are obtained by modeling the system via
NH1 and the red marks via the new model NH2.

Panels (a) and (b) show the reflection and transmis-
sion from the nano-layer of weakly interacting systems.
The transmitted pulse is almost identical to the incident
pulse due to the weak reflection and weak excitation of
the system. One can notice that the three models agree

Reflection Transmission

20 (a)

0.0

10* R(w)

1.0+

0.3 -10.2
0.6

| | | | | | | | 104
-4 -2 0 2 4 -8 —4 0 4 8
Detuning §

Detuning §

FIG. 2. (Color online) Response of the medium towards a
weak probe. The black curves are the responses calculated
using the Maxwell-Liouville model. The responses calculated
via the non-Hermitian models are shown as inverted plots.
The blue curves and the red asterisks represent NH1 and NH2
models respectively. Panels (a) and (b) show the reflection
and transmission from the layer consisting of weakly interact-
ing two-level systems, with n = 1.3 x 10~". Panels (b) and (c)
are the same for strongly interacting two-level systems, with
n=1.3.

perfectly irrespective of the different descriptions of co-
herences that are taken into account, even in the strong
interaction regime which is shown in panels (c) and (d).
In this regime, the system responds like a dissipative mir-
ror near the transition energy even though it is weakly
excited 16, The non-Hermitian models NH1 and NH2
follow all the features of this cooperative behavior per-
fectly, proving their ability to describe the dynamics of
two-level coupled systems flawlessly within the limits of
the approximation taken into account.

In the non-Hermitian approximations NH1 and NH2,
the accuracy obtained in describing the optical response
of the system is achieved because the coherence pio(t)
is correctly described due to the choice made in Eq. (8).
This is however obtained at the cost of loosing the ac-
curacy in the description of the excited state population
p22(t), whose decay rate differs significantly from its ex-
pected value T since it equals to v2(t) in this case.

Fig. 3 compares the evolution of the excited state popu-
lations and coherences calculated at a point 290 nm inside
the nano-layer using two different models. As previously,
the results obtained with the optical Bloch equations are
shown in black. The blue curves with squares show the
NHI1 results and the red asterisks are for NH2 model. Ini-
tially, the excited state populations shown in panel (a)
and described by the two non-Hermitian models follow
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FIG. 3. (Color online) Panel (a) shows the excited state popu-
lation p22(t) and panel (b) shows the absolute value of the co-
herence |p12(¢)| in the strong interaction regime corresponding
to n = 1.3 calculated 290 nm inside the nano-layer. The black
curves show the results obtained via the Maxwell-Liouville
model. The dashed blue curve with squares and the red as-
terisks depict the results of NH1 and NH2 models respectively.
All other parameters are as in Fig. 2.

the exact dynamics but they decay far too quickly since
in this particular case vo(t) quickly exceeds I'. On the
contrary, the evolution of the coherences shown in panel
(b) are identical in the different models considered. This
ensure a correct description of the system’s optical re-
sponse since the macroscopic polarization is proportional
to the coherence in the linear regime.

It is also worth noticing in panels (a) and (b) of Fig. 3
that the excited state populations and the coherences of
NH1 and NH2 models show the same evolution. This
is due to the fact that in the weak excitation limit, i.e
le1(t)* > |e2(t)]?, the decay rates v2(t) of these two
models are identical.

B. Strong excitation limit

It was already mentioned that NH1 model is expected
to fail as the intensity of the applied field increases. This
is due to the presence of a pole in the definition (10) of
the gain and decay rates 1 (t) and v2(t) when |c;(¢)]? =
le2(t)|?. The improved model NH2 is designed to avoid
this unphysical behavior.

To test the validity of NH2 compared to optical Bloch
equations, the system is now excited by a high incident
field with a peak amplitude of Eq = 109 V/m (about
0.02au). This field is high enough to significantly popu-
late the excited state. Fig.4 shows the evolution of the
density matrix elements describing the quantum dynam-
ics of the system for three different models.

Panels (a) and (b) are the ground state populations
in the weak and strong interaction regimes respectively.
Similarly, panels (c) and (d) show the excited state pop-
ulations and panels (e) and (f) show the coherences.
The reference populations and coherences obtained by
integrating optical Bloch equations are shown as solid

n=13x10""7
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FIG. 4. (Color online) Evolution of the populations and co-
herences of the system in the strong excitation regime. The
black curves show the evolution of the density matrix ele-
ments using the Maxwell-Liouville model as functions of time
in units of 1/5. The dotted blue and dashed red curves rep-
resent the evolution of the density matrix elements of NH1
and NH2 models respectively. Panels (a), (c¢) and (e), on the
left, are for a layer consisting of weakly interacting two-level
emitters with n = 1.3 x 107", Panels (b), (d) and (f), on
the right, are for strongly interacting two-level emitters with
n = 1.3. The values are calculated at a point 290 nm inside
the cell.

black curves. As expected, the NHI1 results (blue dot-
ted curves) deviate significantly at early times from the
optical Bloch model, even for the coherences. It can be
noticed that this deviation appears as soon as the system
approaches an inversion of population, with |c;(¢)]? =
lea ()]

When the excited state population reaches almost 50%
it exhibits fast oscillations proving clearly the inability of
NH1 model to attain higher excited state population due
to a very fast increase (divergent pole) of the empirical
gain and decay factors 7 (t) and ~y2(t). Since the pop-
ulations |c;(¢)|? and |co(t)]? are used to evaluate v;(t)
and o(t) it affects the accuracy of the coherences in the
system, as can be seen in panels (e) and (f). In both
the weak and strong interaction regimes, NH1 model is
inadequate for the description of the dynamics initiated
by strong fields.

On the other hand, as seen in panels (e) and (f), the
new model NH2 (dashed red line) follows perfectly the
coherence of the system in both weak and strong inter-
action regimes in intense fields. This is obtained at the
cost of losing the accuracy in the description of the pop-



ulations, as we can see in panels (a), (b), (c) and (d).

To see how accurately the non-Hermitian models
mimic the coherence dynamics of two-level systems in
strong fields, the difference Api2(t) = |p12(t) — p5o(t)| of
the coherence calculated using the optical Bloch equa-
tions and using the non-Hermitian models are shown in
Fig.5 in a semi-logarithmic scale.
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FIG. 5. (Color online) Differences in coherences Apia(t) in
strong field dynamics. The dashed blue curves are the abso-
lute value of the difference between the coherences obtained
with the optical Bloch equations and with NH1 model. The
red curve is the same difference but with respect to NH2
model. Panel (a) (log scale) is the weak interaction regime
corresponding to 7 = 1.3 x 10™7 and the panel (b) (log scale)
is the strong interaction regime with n = 1.3.

The dashed blue curve shows Ap12(t) as a function of
time in units of 1/ for NH1 model and the red curve is
for NH2 model. Panel (a) shows the comparison in the
weak interaction regime and panel (b) shows the com-
parison in the strong interaction regime. It is clear that
the introduction of NH2 model improves greatly the er-
ror, which is always smaller than 1%, in comparison with
the previous model whose accuracy is not acceptable in
strong fields. Finally, the calculated optical response of
the system is shown in Fig. 6.

Panels (a) and (b) are the reflected and transmitted
pulses from the weakly interacting system while panels
(c) and (d) are the same for strongly interacting systems.
The black curves are the results of the Maxwell-Liouville
model. The red marks, which are the results of NH2
model, are always in very good agreement, thus validat-
ing the approximations made to derive the empirical gain
and decays factors in NH2 model.

In the weak interaction regime, the system transmits
almost all the incident energy. This is the reason for the
agreement of the transmitted pulse obtained with NH1
model (dashed blue curve) in panel (b). However, for the
reflection seen in panel (a), even if it is small, NH1 model
shows a clear mismatch with the optical Bloch equations,
not only in the peak value, but also on the two sidebands
which appear due to the strong excitation of the system.
On the contrary, NH2 model (red asterisks) is in perfect
agreement with the optical Bloch equations for all values
of the detuning.
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FIG. 6. (Color online) System’s response to a strong probe.
The nano-layer is excited with a Gaussian pulse of FWHM
10 fs and peak amplitude 0.02 au. The black curves are the
responses calculated using the Maxwell-Liouville model. The
dashed blue curve and the red asterisks represent the results
obtained with NH1 and NH2 models respectively. Panels (a)
and (b) show the reflection and transmission from the layer
consisting of weakly interacting two-level systems with n =
1.3 x 1077. Panels (c) and (d) show the same spectra for
strongly interacting two-level systems with n = 1.3.

The failure of NH1 model, and in contrast the strik-
ing validity of NH2 model, are even more pronounced
when the dipoles interact strongly, as seen in panels (c)
and (d). Along with the nonlinearities introduced by the
intense field, the dipole-dipole interactions modify the
system response to a large extend '°. All features of the
spectra obtained using the Bloch optical model are very
well reproduced by NH2 model, proving its ability to deal
with any interaction regime. In panel (c) we see that the
transmission is clearly affected by the collective response
of the medium '°, a feature that the first model fails to
reproduce.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have proposed an improved non-
Hermitian approximation of the optical Bloch equations
where one propagates the wave function of a quan-
tum system instead of a complete density matrix. This
method provides an accurate description of the dynam-
ics of single two-level emitters, as well as ensembles of
coupled two-level emitters in both the weak and strong
excitation limits, thus allowing numerical simulations in
strong fields. In the case of coupled two-level emitters,
the proposed model takes into account the collective op-
tical response of coupled emitters.
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