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Model Order Reduction (MOR) methods enable reduction of the computation time when dealing with parametrized numerical 

models. Among these methods, the Proper Orthogonal Decomposition (POD) method seems to be a good candidate because of its 
simplicity and its accuracy. In the literature, the offline/online approach is generally applied but is not always required especially if the 
study focuses on the device without any coupling with others. In this paper, we propose a method to construct adaptively the reduced 
model while its utilization which limits the evaluations of the full model when appropriate. A stochastic magnetostatic example with 14 
uncertain parameters is studied by applying the Monte Carlo simulation method to illustrate the proposed procedure. In that case, it 
appears that the complexity of this method does not depend on the number of input parameters and so is not affected by the curse of 
dimensionality.   
 

Index Terms—Error estimation, Finite Element Method (FEM), Model Order Reduction (MOR), Proper Orthogonal Decomposition 
(POD), Uncertainty Quantification 

I. INTRODUCTION 

N simulation based design or in uncertainty quantification, 
parameterized models are needed. In order to obtain a good 

accuracy, numerical models based on the Finite Element (FE) 
method are often used. The issue is then the computation time 
which can be very long especially if the number of parameters 
is high, more than about a dozen. Recently, Model Order 
Reduction (MOR) methods, like the Proper Orthogonal 
Decomposition (POD) method or the Reduced Basis (RB) 
method, have been applied in computational electromagnetics 
for uncertainty quantification or design [1-2]. An 
approximation of the full parametrized model (the original FE 
model) is then sought in a space spanned by a reduced basis, 
which enables one to reduce the number of degrees of freedom 
and consequently the computation time by reducing the size of 
the equation system [3-5]. However, the accuracy of the 
reduced model is strongly related to the choice of the reduced 
basis, which is obtained from the solutions, so-called 
snapshots, of the full problem for particular input parameter 
sets. The offline/online approach is generally used to construct 
an accurate reduced model [6,7]. During the offline stage, the 
whole parameter space is spanned in order to select the best 
snapshots using a greedy algorithm based on an error 
estimator which evaluates the error of reduction [8,12]. During 
the online stage, the reduced model is evaluated intensively. 
This approach is interesting to develop a generic model 
incorporated as a building block within a bigger system. 
However, if the study holds only on the device by itself 
without any coupling with other models like, for example, 
during a design process or a robustness analysis based on a 
Monte Carlo Simulation, this decoupling between the two 

stages is not always justified.  
In this paper, we propose a procedure to construct 

adaptively the reduced model while its utilization which limits 
the evaluations of the full model when appropriate. First, the 
POD technique is briefly presented. Then, the proposed 
procedure is described. We introduce a simple error estimator 
based on [9] which bounds the error due to reduction. Finally, 
the proposed procedure is applied in the case of a stochastic 
magnetostatic problem, whose geometry is defined by 14 
parameters.  

II. REDUCTION OF A PARAMETRIC MODEL USING POD 

METHOD 

The discretization of a parameterized linear magnetostatic 
problem using the FE method on a domain D(p) leads to the 
following linear system of equations: 

S(p) X(p) = F(p)   (1) 

where p=(p1,..,pM) is the set of M input parameters, S(p) is the 
N×N stiffness matrix, F(p) is the N×1 source vector, X(p) is 
the N×1 vector of unknowns and N is the number of degrees 
of freedom. The parameters can be related to the source terms 
like the current, the material characteristics like the reluctivity 
or the physical dimensions as long as the connectivity between 
nodes and elements does not change. To account for the 
variation of the geometry of D(p), the nodes are moved. To 
reduce the numerical errors and to avoid any overlapping of 
elements, an appropriate mapping T(x,p) (x is the position)  is 
introduced, which transforms a mesh constructed on a 
reference domain Dref (defined by the nominal parameter set 
values) into a mesh of the desired parameterized domain D(p). 
The solution X(p) enables one to determine the field 
distribution and also the quantities of interest which are 
usually either linear functions of X(p) (flux) or quadratic 
functions of X(p) (energy or force). If we denote G as the 
quantity of interest which is a quadratic function of X(p), it 
can be written under the form: 
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G=X(p)t G(p) X(p)   (2) 

with G(p) a N×N matrix. If the model (1-2) is used in a design 
process or for uncertainty quantification, the number of 
solutions of the FE model can be very high for a large 
parameter number M due to the “curse of dimensionality”. To 
decrease the computation time, one should either limit the 
number of calls leading to a loss of accuracy or reduce the size 
of the linear system of equations (1) using a MOR method. 
The POD method, detailed in the following, is one of the most 
popular MOR methods. Consider Z parameter set realisations 
(p1,…,pZ) and the N×Z matrix X of the associated solutions 
(X(p1),…,X(pZ)), so-called snapshots. We define the linear 
space K spanned by the vectors (X(p1),…,X(pZ)). We denote 
the N×R matrix ΨΨΨΨ  (R≤Z) of the vectors (ΨΨΨΨ1,..,ΨΨΨΨR), an 
orthogonal basis of the space K. The matrix ΨΨΨΨ  can be 
obtained by a Singular Value Decomposition (SVD) of the 
matrix X. The idea of the POD method is to seek an 
approximation of the solution of (1) in the space K, which 
means that X(p) is approximated by the following linear 
combination: 

(((( )))) (((( )))) (((( ))))∑∑∑∑
====

====≈≈≈≈
R

1i

i
rixΨΨΨΨ ΨppXpX r   (3) 

Replacing X(p) by the approximation (3) in (1), the 
equation system to be solved becomes overdetermined. By 
applying the Galerkin method, the vector Xr(p) has to satisfy 
an R×R linear system of equations: 

ΨΨΨΨ t S(p) ΨΨΨΨ  Xr(p) =ΨΨΨΨ t F(p)    (4) 

The size of the system (4) is then equal to R, which is much 

lower than N, the size of the full system (1). The solution of 
the system is much faster,i.e., reducing significantly the 
computation time even if the matrix ΨΨΨΨ tS(p)ΨΨΨΨ  is dense. 
From, the solution Xr(p), an approximation of the FE solution 
can be derived X(p)=ΨΨΨΨ Xr(p). The accuracy of the method is 
closely related to the choice of the parameters (p1,…,pZ) used 
to determine the reduced basis. It should be noted that the 
POD method can also be seen as solver of an FE equation 
system. Indeed, it leads to an approximate solution ΨΨΨΨ Xr(p) 
with the same format as the FE solution of the full problem 
(1). This means that the solution ΨΨΨΨ Xr(p) is fully compatible 
with the FE postprocessor (Fig.1).  

III.  ADAPTIVE PROCEDURE 

In the literature, the POD method is often combined with an 
offline/online approach. During, the offline stage, an iterative 
algorithm, called greedy algorithm, is applied in order to 
determine the best snapshots. Suppose that, at the i th iteration 
of the offline stage, the snapshots have been determined for 

the parameter sets (p1,…,pi)  and ΨΨΨΨ i=(ΨΨΨΨ1,..,ΨΨΨΨi) the 
corresponding reduced basis. To determine the next snapshot 
X(pi+1), we seek the parameter pi+1 which maximizes an error 

estimator η(p,ΨΨΨΨ i). The term η(p,ΨΨΨΨ i) estimates the error of 
the reduction process, i.e. the error between the solutions of 
the full model X(p) and of the reduced model Xr(p) without 
requiring the solution of the full problem.Such estimators are 
available in the literature [6-8]. These are generally derived 
from  the residual R(p): 

R(p)=F(p)-S(p)ΨΨΨΨ Xr(p)   (5) 
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Fig. 1. Flowchart of the implantation of the adaptive POD extension along a FE standard software for uncertainty quantification using the Monte Carlo 

Simulation Method (U the size of the sample) 
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The crude one consists in solving the reduced problem for a 
“sufficiently” dense set of points S in the parameter space and 
to select pi+1 equal to the point of S giving the maximum value 
of the estimator. Once pi+1 is determined, the full problem is 
solved and the solution X(pi+1) is added to the snapshot set and 

a new orthogonal basis ΨΨΨΨ i+1 is derived by applying a SVD. 
The process is repeated until the error reaches a prescribed 
threshold. Then, the online stage concerns the many-queries 
parameters analysis stage where the reduced model is used 
intensively. This approach can be very useful when the 
reduced parametric model is used during the online stage as a 
building block of a model of a large system because it can 
represent a device on a large parameter range with good 
accuracy while being very fast. However, if one wants just to 
evaluate once a quantity of interest for a sequence of 
parameter sets {p1..,pU} like for uncertainty quantification or 
optimization, this dissociation in two stages is not necessarily 
required. Moreover, during the offline stage, the greedy 
algorithm requires the evaluation of the reduced models on the 
dense set S, which size is affected by the “curse of 
dimensionality”. The idea is then to evaluate the quantity of 
interest G with the reduced model for each pi and to evaluate 
the error of reduction. If the error of reduction is too 
significant, the full problem is then solved for the parameter 
set pi and the snapshot set is updated as well as the reduced 

basis ΨΨΨΨ . This method enables to evaluate the full model only 
when it is necessary. The algorithm of the proposed method 
has been given in Fig. 1 in the case of the Monte Carlo 
Simulation Method (MCSM) when the parameter sets, for 
which the model is evaluated, are defined a-priori. We can 
notice that the number M of input parameters does not 
influence the algorithm complexity and so is not affected by 
the curse of dimensionnality, preserving this property of the 
MCSM. One can note that the adaptive POD can be easily 
extended to any procedure where the parameter sets are 
iteratively determined like in the case of a design procedure.  

IV.  ERROR ESTIMATION 

The previous procedure requires the evaluation of the error 
of reduction. Several error estimators derived from the 
residual have been proposed in the literature. In the following, 
an estimator is derived from [10] which is not necessarily 
efficient for large FE problems but which provides error 
bounds. We suppose that the stiffness matrix S(p) is 
symmetric positive definite which is the case with standard FE 
gauged potential formulations of static field problems. The 

error ered(p,ΨΨΨΨ ) due to the reduction method is defined by: 

ered
2(p,ΨΨΨΨ )= ∆Xt(p) S(p) ∆X(p)   (6) 

where ∆X(p) is a vector equal to X(p)-ΨΨΨΨ Xr(p). The error is 
equal to zero when ∆X(p) is equal to zero, that is to say, when 
the FE solution is equal to the solution given by the reduced 

problem ΨΨΨΨ Xr(p). This error cannot be calculated in practice 
because it requires the calculation of the solution X(p) of the 
FE problem. However, the error can be expressed as a 

function of the residual (see (5)): 

 ered
2(p,ΨΨΨΨ )= Rt(p) S-1(p) R(p)   (7) 

This expression can also not be used in practise because it 
requires the solution of S-1(p) R(p) which is of the size of the 
full problem. However, we can introduce the following error 
estimator: 

η2(p,ΨΨΨΨ )= Rt(p) S-1(p0) R(p)   (8) 

The parameter p0 is a “well chosen” value of p. The inverse 
of S(p0) has to be calculated only once and then stored before 
the adaptive process. If the parameters p are related only to the 
reluctivity ν(x,p) with x the position on D, we denote νmin(x) 
and νmax(x) such that: 

νmin(x)≤ ν(x,p)≤ νmax(x) ∀p ∀x∈D (9) 

In the case of the vector potential formulation it can be 
shown that [10]: 

kminη2(p,ΨΨΨΨ ) ≤ered
2(p,ΨΨΨΨ ) ≤kmax η2(p,ΨΨΨΨ )  (10) 

with the coefficients kmin=minx∈D[ν(x,p0)/νmax(x)] and 
kmax=maxx∈D[ν(x,p0)/νmin(x)]. We can see that an error bound 
can be expressed as a function of the estimator. In the scalar 
potential formulation, an error bound can be also extracted 
while considering the permeability instead of the reluctivity. It 
should be also noted that the previous error bound property 
can be retrieved when the parameters are related to the 
geometry. In fact, changing the geometry of the domain D(p) 
is equivalent to changing the permeability on a reference 
domain Dref (see [9]). The permeabilities on the reference 
domain Dref are then functions of the dimensions and can be 
bounded as in (9).  

V. APPLICATION 

We consider a magnetic holder modelled by a 2D FE vector 
potential formulation. The geometry of the device is defined 
by 14 parameters, which are represented in Fig.2. 11 
parameters are dimensions and 3 are material characteristics. 
The quantity of interest is the force experienced by the mobile 
plate when the coil is not energized (due only to the permanent 
magnet). The force has been calculated using the Maxwell 
Stress Tensor. We have fixed nominal values for the 
parameters pi

nom and consider the parameter pi as a uniform 
random variable in [0.9pi

nom,1.1pi
nom] except Br which has an 

interval of variation of [0.95Br
nom,1.05Br

nom]. The FE mesh 
consists of 2846 nodes and 2750 rectangular elements. The 
modifications of geometry are taken into account by moving 
the nodes proportionally to dimension variations (the 
transformation T(x,p) is a dilatation/contraction). We want to 
estimate the mean and the standard deviation of the force and 
also to determine the parameters that contribute the most to 
the variability of the force. Then, the most efficient way to 
lower the variability of the force is to reduce the variability of 
these parameters. This global sensitivity has been undertaken 
by estimating the Sobol indices. The MCSM has been used to 
estimate the sample mean and standard deviation and the 
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Sobol indices, applying the methods proposed in [11]. We 
have applied the algorithm presented in Fig.1 for a sample 
length U equal to 500. The entries of the parameter set p0 have 
been taken equal to the nominal values pi

nom. Since the 
estimator is homogeneous to an energy, the relative value of ε 
has been defined versus the energy of the problem 
parameterized with p0. A criterion ε equal to zero means that 
the full problem is solved for each parameter set realization. 
The number of snapshots is then equal to U.  In Table 1, we 
have reported the number of solutions of the full problem 
(snapshots) as well as the estimation of the mean and the 
standard deviation for different values of the criterion ε for the 

estimator η2(p,ΨΨΨΨ ) (see section IV). As expected, we can see 
that the number of snapshots increases as ε decreases. A good 
accuracy on the mean and the standard deviation is obtained 
with 6 snapshots. In that case, the full problem has been 
solved 6 times, the remaining 494 points have been obtained 
using the reduced model with a maximum size equal to 6. We 
have reported in Table II the Sobol indices calculated for 
different values of ε. We can see that the Sobol indices even 
with low percentage can be calculated accurately. The 
remanent magnetization Br is the most influential parameter. A 
new MCSM has been launched with a smaller range for Br of 
2.5% instead of 5% while starting the procedure with the 
snapshots calculated during the first round and fixing an error 
of  ε=1,5 10-6. The mean and the standard deviation of the 
force are equal to 78.07N and 8.09N respectively. This 
calculation does not require any additional call to the full 
model.   

VI. CONCLUSION   

In this paper, we have proposed an adaptive POD method to 
solve uncertainty quantification problems based on sampling 
technics or optimization problems. The application shows that 
this method is promising and in future works, we propose to 
extend it in the case of an affine decomposition of the full 
parametric problem by using the Reduced Basis Method. 
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Fig.2. Half of the geometry of the magnetic holder and  the definition of the 
parameters (rcul, raim, rbob, rclo, e, ep, hclo, haim, hent, hbob, hpm, Br νiron, νa)  
 

TABLE I: ESTIMATION OF THE MEAN AND THE STANDARD DEVIATION FOR 

DIFFERENT VALUES OF THE ERROR CRITERION ε 
Relative error 

ε 
Full problem 

solutions 
Mean (N) Standard 

deviation (N) 
1,5⋅10-2 1 77.87 7.549 
1,5⋅10-4 6 78.11 8.743 
1,5⋅10-6 16 78.11 8.857 
0 (Full problem) U 78.11 8.858 

 
TABLE II:  FIRST ORDER SOBOL INDICES (IN %) CALCULATED FROM THE FULL 

MODEL AND FROM THE ADAPTIVE PROCEDURE FOR DIFFERENT VALUES OF THE 

ERROR 
Relative 
error ε 

1,5⋅10-2 1,5⋅10-4 1,5⋅10-6 Full 

rcul 0.00 1.49 2.21 2.30 
raim 0.00 3.15 3.77 3.60 
rbob 6.14 0.22 0.3 0.31 
rclo 30.5 15.9 14.3 14.6 
e 0.29 1.49 1.58 1.60 
ep 0.46 5.92 6.92 7.08 
hclo 0.27 0.36 0.33 0.30 
haim 9.38 17.8 16.4 16.2 
hent 0.14 3.04 2.84 2.70 
hbob 0.06 0.92 0.85 0.91 
hpm 0.16 1.98 2.11 1.94 
Br 35.8 25.5 26.0 26.0 

νiron 2.96 11.4 12.2 12.0 
νa 13.3 9.31 9.14 9.10 

 


