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Reduction of a Finite Element Parametric Model usig Adaptive
POD Methods — Application to uncertainty quantificaion

S. Clénet, T. Hennerofy N. Id&

Y 2EP, Arts et Métiers ParisTech, 59046 Lille cedengnce
?L2EP, University of Lille 1, 59655 Villeneuve d’Agczedex, France
3University of Akron, Akron, OH 44325-3904, USA

Model Order Reduction (MOR) methods enable reductia of the computation time when dealing with parameaized numerical
models. Among these methods, the Proper Orthogon&ecomposition (POD) method seems to be a good cadatie because of its
simplicity and its accuracy. In the literature, the offline/online approach is generally applied buts not always required especially if the
study focuses on the device without any coupling thi others. In this paper, we propose a method to ostruct adaptively the reduced
model while its utilization which limits the evaluaions of the full model when appropriate. A stochatic magnetostatic example with 14
uncertain parameters is studied by applying the Mote Carlo simulation method to illustrate the propogd procedure. In that case, it
appears that the complexity of this method does natepend on the number of input parameters and so isot affected by the curse of
dimensionality.

Index Terms—Error estimation, Finite Element Method (FEM), Model Order Reduction (MOR), Proper Orthogonal Decompaition
(POD), Uncertainty Quantification
stages is not always justified.

In this paper, we propose a procedure to construct
N simulation based design or in uncertainty quasatifon, adaptively the reduced model while its utilizatiwhich limits
parameterized models are needed. In order to ohtgmod the evaluations of the full model when appropridtiest, the

accuracy, numerical models based on the Finite &er(FE) POD technique is briefly presented. Then, the psedo

method are often used. The issue is then the catipattime procedure is described. We introduce a simple estimator
which can be very long especially if the numbepafameters based on [9] which bounds the error due to rednctinally,
is high, more than about a dozen. Recently, Modele© the proposed procedure is applied in the case stbehastic

Reduction (MOR) methods, like the Proper Orthogonahagnetostatic problem, whose geometry is defined1by

Decomposition (POD) method or the Reduced Basis) (Rparameters.

method, have been applied in computational elecgretics

for uncertainty quantification or design [1-2]. An Il. REDUCTION OF APARAMETRIC MODEL USING POD

approximation of the full parametrized model (thigimal FE METHOD

model) is then sought in a space spanned by a eddoasis,  The discretization of a parameterized linear maptatic

which enables one to reduce the number of degifesaniom  ,roplem using the FE method on a domBiip) leads to the

and consequently the computation time by redudiegstze of  to|1owing linear system of equations:

the equation system [3-5]. However, the accuracythef

reduced model is strongly related to the choicthefreduced S(p) X(p) = F(p) 1)

basis, which is obtained from the solutions, sdedal wherep=(p....,nv) is the set of M input paramete&p) is the
snapshots, of the full problem for particular inmarameter NxN stiffness matrixF(p) is the Nx1 source vectoX(p) is
sets. The offline/online approach is generally usetbnstruct he Nx1 vector of unknowns and N is the number edrdes
an accurate reduced model [6,7]. During the offstege, the of freedom. The parameters can be related to theesderms
whole parameter space is spanned in order to stledbest |ike the current, the material characteristics lilke reluctivity
snapshots using a greedy algorithm based on amr erg the physical dimensions as long as the conrigctietween
estimator which evaluates the error of reductiof2 During nodes and elements does not change. To accounthéor
the online stage, the reduced model is evaluatemhsively. ygriation of the geometry db(p), the nodes are moved. To
This approach is interesting to develop a genermdeh (educe the numerical errors and to avoid any oppitay of
incorporated as a building block within a biggerstey. glements, an appropriate mappif(g,p) (x is the position) is
However, if the study holds only on the device iself jntroduced, which transforms a mesh constructed aon
without any coupling with other models like, foraemple, reference domaii, (defined by the nominal parameter set
during a design process or a robustness analysesdban a ygjyes) into a mesh of the desired parameterizetadeD(p).
Monte Carlo Simulation, this decoupling between th® The solution X(p) enables one to determine the field
distribution and also the quantities of interestichare
usually either linear functions aX(p) (flux) or quadratic
functions of X(p) (energy or force). If we denote G as the
quantity of interest which is a quadratic functiohX(p), it
can be written under the form:

I. INTRODUCTION



G=X(p)' G(p) X(p) (2) lower than N, the size of the full system (1). ®wdution of

with G(p) a NxN matrix. If the model (1-2) is used in a designthe syste_m 'S much fa_ster,l.e., re_duct:mg S'gf"“%‘“he
. o computation time even if the matri® 'S(p)¥ is dense.
process or for uncertainty quantification, the nemiof

: . From, the solutiorX,(p), an approximation of the FE solution
solutions of the FE model car!‘ be very .h|gh _for &yda can be deriveX(p)=% X,(p). The accuracy of the method is
parameter number M due to the “curse of dimensityfiallo closely related to the choice of the parameters.(p;) used
decrease the computation time, one should eitmeit khe y P RIS 4.z

. .~ to determine the reduced basis. It should be ntitad the
number of calls leading to a loss of accuracy duce the size .
. . - POD method can also be seen as solver of an FEieqgua
of the linear system of equations (1) using a MO&hud. system. Indeed, it leads to an approximate solutiéK,(p)
The POD method, detailed in the following, is offi¢he most Y ) i PP \P

popular MOR methods. Consider Z parameter setsadains with th? same format as the '.:E SOIUt'(.)n of the |ﬁnbbl_em
(p,...,p%9) and the NxZ matrixX of the associated solutions (1). This means that the solutidd X(p) is fully compatible

(X(pY.,....X(p%), so-called snapshots. We define the lineal'th the FE postprocessor (Fig.1).

spaceK spanned by the vectorX(),...,.X(p?). We denote
the NxR matrix ¢ (R<Z) of the vectors ¥',..¥F), an _ _ o
orthogonal basis of the space K. The mat#k can be In the literature, the POD method is often combinét an

obtained by a Singular Value Decomposition (SVD)tloé offlinglonline approach. During,.the ofﬂine stqgm.iterative
matrix X. The idea of the POD method is to seek aflgorithm, called greedy algorithm, is applied inder to
approximation of the solution of (1) in the spagewhich determlne. the best snapshots. Suppose that, aff.’t.tmfanon
means thatX(p) is approximated by the following linear of the offline stage, the snapshots have been rdeted for

Ill. ADAPTIVE PROCEDURE

combination: the parameter setspY{...p') and ¥ '=(W'.W) the
R i corresponding reduced basis. To determine the sregshot
X(p) =¥ X, (p) =3 x, (p)¥ (3)  X(p™Y), we seek the parametei’ which maximizes an error
i=1

the estimatomn(p,% ). The termn(p,% ') estimates the error of
the reduction process, i.e. the error between thetisns of
the full modelX(p) and of the reduced modk(p) without
requiring the solution of the full problem.Suchiesttors are
available in the literature [6-8]. These are gelterderived
¥'S(p) ¥ X:(p) =¥ "' F(p) (4) from the residuaR(p):

The size of the system (4) is then equal to R, wisanuch R(p)=F(p)-S(p) ¥X.(p) (5)

Replacing X(p) by the approximation (3) in (1),
equation system to be solved becomes overdetermiBgd
applying the Galerkin method, the vecky(p) has to satisfy
an RxR linear system of equations:

Generation of the samplp¥...,pY)
i=1

p' .
POD extension
| Preprocessing Calcumlz’;ir?:ll?‘fs’[?p% ‘rEduced
o * and the vectd#F(p')
g Matrix Assembling Add X(p') to v
%‘ S(p'), F(p") snapshot Soilutloniof thei
b M,(p) X«(p)=F(p)
— L S(p'),F(p") Update
[AC T \ 4 Reduction error estimation
I
-(es Solution 'ﬁ N )
'8 S(p') X(p") = F(p') Solution of the | NO
g X (p) [ e S
) S(p)X(p)=F(p) YES
Postprocessing : -
Calculation of the quantit Reconstruction of the FE
of interest G solutionX (p')=¥X,(p")
YE

NO

Estimation of the statistics of G fron
the sample (G1),...,G(Y))

Fig. 1. Flowchart of the implantation of the ade@tPOD extension along a FE standard softwarerfoentainty quantification using the Monte Carlo
Simulation Method (U the size of the sample)




The crude one consists in solving the reduced prolibr a

“sufficiently” dense set of pointSin the parameter space and

to selecp™
of the estimator. Oncp

solved and the solutiak(p

a new orthogonal basi® "~ is derived by applying a SVD.
The process is repeated until the error reachesesciibed
threshold. Then, the online stage concerns the maayies
parameters analysis stage where the reduced medeted
intensively. This approach can be very useful whea
reduced parametric model is used during the ordtage as a
building block of a model of a large system becaitisean
represent a device on a large parameter range gatid
accuracy while being very fast. However, if one tggaost to
evaluate once a quantity of interest for a sequeate
parameter setsp{..,p"} like for uncertainty quantification or
optimization, this dissociation in two stages i$ necessarily
required. Moreover, during the offline stage, theeegly
algorithm requires the evaluation of the reducedi@®on the
dense set S, which size is affected by the “cur$e
dimensionality”. The idea is then to evaluate therdity of
interest G with the reduced model for egttand to evaluate
the error of reduction. If the error of reductior too
significant, the full problem is then solved fortparameter
setp' and the snapshot set is updated as well as theedd

basis®¥ . This method enables to evaluate the full modé&l on
when it is necessary. The algorithm of the propasethod
has been given in Fig. 1 in the case of the MongeloC
Simulation Method (MCSM) when the parameter sets,
which the model is evaluated, are defireegriori. We can

equal to the point db giving the maximum value

"1 is determined, the full problem is
i+1

i+1

f

notice that the number M of input parameters does n

influence the algorithm complexity and so is ndeeted by
the curse of dimensionnality, preserving this propef the

MCSM. One can note that the adaptive POD can biyeas

extended to any procedure where the parameter aets
iteratively determined like in the case of a degigocedure.

IV. ERROR ESTIMATION

The previous procedure requires the evaluatiomeferror
of reduction. Several error estimators derived frahe
residual have been proposed in the literaturehénfollowing,
an estimator is derived from [10] which is not resaily
efficient for large FE problems but which providesror
bounds. We suppose that the stiffness mat8yp) is
symmetric positive definite which is the case vatandard FE
gauged potential formulations of static field perbk. The

error g.4(p, ¥ ) due to the reduction method is defined by:

Eed (0, ¥ )= AX'(p) S(p) AX(p) (6)

whereAX(p) is a vector equal tX(p)- ¥ X.(p). The error is

function of the residual (see (5)):

€ed (P, ¥ )=R'(p) S*(P) R(p) ()
This expression can also not be used in practisause it

) is added to the snapshot set anglequires the solution &*(p) R(p) which is of the size of the

full problem. However, we can introduce the follogierror
estimator:

n’(p. ¥ )= R(p) S*(po) R(p) ®)

The parametep, is a “well chosen” value gi. The inverse
of S(pg) has to be calculated only once and then storéatéoe
the adaptive process. If the parametesse related only to the
reluctivity v(x,p) with x the position on D, we denotg,,(x)
andva(X) such that:

Vmin(X)< V(X,p)< Vmax(X)  Up DxOD (9)

In the case of the vector potential formulationcén be
shown that [10]:

KiinN’(0, ¥ ) <€ (0, ¥ ) <KmaxN’(P, ¥ )

with the coefficients kn=minp[V(X,p0)/Vmax(X)] and
Kmax=maxop[V(X,Po)/Vimin(X)]. We can see that an error bound
can be expressed as a function of the estimatahdrscalar
potential formulation, an error bound can be alstragted
while considering the permeability instead of thkictivity. It
should be also noted that the previous error bqurogherty
can be retrieved when the parameters are relatetheo
geometry. In fact, changing the geometry of the a@iord(p)

is equivalent to changing the permeability on aenefice
domain D (see [9]). The permeabilities on the reference
domain D are then functions of the dimensions and can be
bounded as in (9).

0 (10)

V. APPLICATION

We consider a magnetic holder modelled by a 2D &d&or
potential formulation. The geometry of the devisedefined
by 14 parameters, which are represented in Fig2.
parameters are dimensions and 3 are material dR&asics.
The quantity of interest is the force experiencgdhz mobile
plate when the coil is not energized (due onlyhi permanent
magnet). The force has been calculated using thewiglh
Stress Tensor. We have fixed nominal values for the
parameters [f™ and consider the parametérgs a uniform
random variable in [0.98™,1.19™"] except B which has an
interval of variation of [0.95B°™1.058™". The FE mesh
consists of 2846 nodes and 2750 rectangular elemd&hie
modifications of geometry are taken into accountniyving
the nodes proportionally to dimension variationshe(t
transformationT(x,p) is a dilatation/contraction). We want to
estimate the mean and the standard deviation dfotice and

equal to zero wheAX(p) is equal to zero, that is to say, wherlso to determine the parameters that contributentiost to

the FE solution is equal to the solution given bg teduced

problem & X(p). This error cannot be calculated in practic
because it requires the calculation of the solu¥gp) of the

FE problem. However, the error can be expresseda as

the variability of the force. Then, the most effici way to

éower the variability of the force is to reduce traiability of

these parameters. This global sensitivity has heetertaken
by estimating the Sobol indices. The MCSM has hesd to
estimate the sample mean and standard deviationtrand



Sobol indices, applying the methods proposed in.[We [7]
have applied the algorithm presented in Fig.1 fosample
length U equal to 500. The entries of the paranssty, have
been taken equal to the nominal valug¥™p Since the
estimator is homogeneous to an energy, the relatillee ofe
has been defined versus the energy of the problem
parameterized witlp,. A criterion€ equal to zero means that

the full problem is solved for each parameter sefization.

(8]

[10]

The number of snapshots is then equal to U. IneTabwe [17]
have reported the number of solutions of the fubhbtem
(snapshots) as well as the estimation of the mewh the [12]

standard deviation for different values of theeastdne¢ for the

estimatorn?(p, ¥ ) (see section V). As expected, we can see
that the number of snapshots increases decreases. A good
accuracy on the mean and the standard deviatiobt&ned
with 6 snapshots. In that case, the full problens baen
solved 6 times, the remaining 494 points have hd#ained
using the reduced model with a maximum size equél We
have reported in Table Il the Sobol indices catmdafor
different values ok. We can see that the Sobol indices even
with low percentage can be calculated accurateljie T
remanent magnetization B the most influential parameter. A
new MCSM has been launched with a smaller rang® farf
2.5% instead of 5% while starting the procedurehwihe
snapshots calculated during the first round anichdi>an error

of €=1,5 10°. The mean and the standard deviation of the
force are equal to 78.07N and 8.09N respectivellis T
calculation does not require any additional callthe full
model.
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VI. CONCLUSION

In this paper, we have proposed an adaptive PODaudei
solve uncertainty quantification problems basedsampling
technics or optimization problems. The applicattiows that
this method is promising and in future works, wepgmse to
extend it in the case of an affine decompositiorthaf full
parametric problem by using the Reduced Basis Mktho
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TABLE I: ESTIMATION OF THE MEAN AND THE STANDARD DEVIATION FQR

DIFFERENT VALUES OF THE ERROR CRITERIOSI

Relative error  Full problem  Mean (N) Standard
€ solutions deviation (N)

1,510 1 77.87 7.549

1,510* 6 78.11 8.743

1,510° 16 78.11 8.857

0 (Full problemr U 78.11 8.858

TABLE Il: FIRST ORDER SOBOL INDICE$IN %) CALCULATED FROM THE FULL
MODEL AND FROM THE ADAPTIVE PROCEDURE FOR DIFFERENVALUES OF THE

ERROR
REFERENCES Ff;:itr';’e 1,5107 1,510° 1,510° Full
[1] M.A. Drissaoui, S. Lanteri, P. Leveque, F. Musy, Nicolas, R. Feul 0.00 1.49 2.21 2.30
Perrussel, D. Voyer, A Stochastic Collocation Meti@ombined With a Faim 0.00 3.15 3.77 3.60
Reduced Basis Method to Compute Uncertainties inmé¥ical Tbot 6.14 0.2z 0.c 0.21
Dosimetry,| EEE Trans. Mag., vol.48(2), 2012. Iclo 30.5 15.9 14.3 14.6
[2] Y. Sato, F. Campelo. H. Igarashil, Fast Shape Qgtion of Antennas e 0.29 1.49 1.58 1.60
Using Model Order Reduction, CEFC2014, Aix-les-Baifrance & 0.46 5.92 6.92 7.08
[3] D. Schmidthausler, S. Schops, M. Clemens, Linedsface Reduction et 0.27 0.36 0.33 0.30
for Quasistatic Field Simulations to Accelerate €&pd Computations, Naim 9.38 17.8 16.4 16.2
|EEE Trans. Mag., vol. 50(2), 2014 Nen 0.14 3.04 2.84 2.70
[4] V. de la Rubia, U. Razafison, and Y. Maday, Re#abast Frequency Pt 0.06 0.92 0.85 0.91
Sweep for Microwave Devices via the Reduced-Basethid, |EEE hore 0.16 1.98 2.11 1.94
Trans. Micro. Th. And Tech.,vol.57(12), pp. 2923-2937, 2009 B 35.8 255 26.0 26.0
[5] S. Burgard, O. Farle, R. Dyczij-Edlinger, An h Adiap Sub-domain Viron 2.96 11.4 12.2 12.0
Approach to Parametric Reduced Order ModeliftEE Trans. Mag., A 13.3 9.31 9.14 9.10
vol. 51(3), 2015
[6] M.W. Hess, P. Benner, Fast Evaluation of Time—Haimdaxwell's

Equations Using the Reduced Basis MethiitEE Trans. Micro. Th.
And Tech., vol. 61(6), pp. 2265-2274, 2013.



