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To study a multirate system, each subsystem can be solved by a dedicated sofware with respect to the physical problem and the
time constant. Then, the problem is the coupling of the solutions of the subsystems. The Waveform Relaxation Method (WRM)
seems to be an interesting solution for the coupling but until now it has been mainly applied on academic examples. In this paper,
the WRM is applied to perform the coupling of a controlled rectifier and a non-linear finite element model of a transformer.

Index Terms—Waveform relaxation method, multirate system, multi-physics and coupled problems, finite element method.

I. INTRODUCTION

AN electrical system can involve several devices with
different physics and dynamics. The simulation in the

time domain of such a set of devices can be carried out
by coupling numerical models that is to say a system of
Differential Algebraic Equations (DAE).

A direct strong coupling consists in gathering the DAE
systems and to solve them at the same time. With an indirect
strong coupling, each DAE system is solved successively until
convergence at each time step. But in both cases, the time-
step must be chosen according to the smallest time constant.
This can lead to an expensive computation time if some DAE
systems have a large number of unknowns like in the case of
Finite Element Model (FEM). A first alternative can be the
weak coupling of the DAE systems with different time-steps,
but the consistency of the coupling is most of the time not
assured. A second alternative is to reduce the FEM using a
surface response technique [1]. The issue is then to control
the accuracy of the reduced model.

The Waveform Relaxation Method (WRM) [2] allows a
consistent coupling to solve this kind of problem. The WRM
approach is an iterative process which converges in theory
to the solution of a strong coupling [3]. The method was
used for many years for the simulation of circuits [4], [5]
or transmission lines [6], and has been recently studied for
the coupling of circuit equations and a FEM [7], [8], either
by source coupling or by parameter coupling [9], [10].

In this paper, we propose to study the parameter coupling
of a FEM to circuit equations including a control loop. First,
the WRM is briefly described. Then, the interest and the basic
principle of the method is brought out on academic example.
Afterwards, a more elaborate WRM approach is applied to
study a more realistic and complex system involving a control
loop, a single phase transformer associated with a controlled
rectifier. The transformer is modeled by a non-linear FEM and
the rectifier is controlled by a Pulse Width Modulation (PWM)
technique, each subsystem being studied with a time-step
adapted to its time constant. We use the parameter coupling

WRM to allow not only the coupling between the rectifier and
the FEM, but also the control of the current into the FEM.

II. WAVEFORM RELAXATION METHOD

Let consider a system composed of r subsystems, each
subsystem i satisfying the DAE

ẏi(t) = fi(y(t), z(t)) (1)
0 = gi(y(t), z(t)), (2)

with t ∈ [0, T ] and the initial conditions y(0) = y0 and z(0) =
z0, y being the differential variables and z the algebraic
variables. The WRM computes iteratively an approximation(
ỹk(t), z̃k(t)

)
of the exact solution. The first step is the extrap-

olation step: for k = 0, ỹk(t) = y0, z̃
k(t) = z0, ∀t ∈ [0, T ].

Then at the iteration k and for the subsystem i, the algorithm
solves

˙̃yki (t) = fi(Y
k
i (t),Zki (t)) (3)

0 = gi(Y
k
i (t),Zki (t)). (4)

The value of Yk
i (resp. Zki ) depends on ỹk−1 and ỹk

(resp. z̃k−1 and z̃k) and on the relaxation schemes (Pi-
card, Jacobi or Gauss-Seidel). For example, with the Gauss-
Seidel scheme, the subsystems are solved sequentially with
Yk
i (t) = [ỹk1 , . . . , ỹ

k
i−1, ỹ

k
i , ỹ

k−1
i+1 , . . . , ỹ

k−1
r ]T, and Zki (t) =

[z̃k1 , . . . , z̃
k
i−1, z̃

k
i , z̃

k−1
i+1 , . . . , z̃

k−1
r ]T.

Subsystems are solved on the overall time domain [0, T ],
then the waveforms are transfered from one subsystem to
the others. Consequently, each subsystem can be solved with
respect to its own time-step. Since the waveforms yi and
zi of each subsystem are sampled with different time-steps,
interpolation technics are required to reconstruct a waveform
consistent with the other time steps.

III. ACADEMIC PROBLEM

To introduce the problematic of the targeted applications and
the interests of the WRM, we consider the coupling of a LC
filter with a transformer. The LC filter contains a PWM voltage
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source and supplies the transformer with a filtered voltage. To
simulate such a device, a very small time-step is necessary to
deal with the PWM. As the amplitude of high order harmonics
of the voltage applied to the transformer are very small due
to the LC filter, the time-step could be larger for this part
of the device. If a finite element model of the transformer is
considered with the smallest time-step, the computation time
can be extremely high. A strong coupling is so inappropriate in
this case. On the contrary, the waveform relaxation approach
seems well-adapted to simulate the device since a time-step
adapted to each subsystem can be used.
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Fig. 1. Strong coupling and WRM models of the device.

The PWM voltage source has a 50 Hz fondamental fre-
quency and a 20 kHz switching frequency. As a first step, the
model in Fig. 1(a) is solved with a strong coupling by a FEM.
The resulting voltage and currents are presented in Fig. 2 to 4.
The current iR appears to be a smooth and regular waveform
with a 50 Hz frequency.

As a second step, the device is split in two subsystems with
the LC filter on one hand, the FEM on the other hand (Fig.
1(b)). The LC circuit is simulated with a time-step adapted
to the PWM (2.10−7 s), and the FEM with a time-step 500
times larger. The coupling is done by supplying the primary
coil of the transformer by the interpolated voltage vc from
the circuit; then the current iR in the winding is interpolated
and imposed to the circuit as a source. This kind of WRM
is called source coupling. The interpolation is a simple linear
interpolation between two points.

The results plotted on the same Fig. 2 to 4 show quite
good similarity. The introduction of a coarse time-stepping
for the transformer and of the interpolation leads to a waste of
precision. Nevertheless, the error indicated in Table I are really
weak. Then, after 6 WRM iterations, the error is less than
1.23%. The convergence of the process is very fast, as it can
be seen on Fig. 5: after 6 iterations, the criterion convergence
is less than 10−7. The most important information to notice is
that the computation time to simulate only one period is very
long with the strong coupling. Several weeks are needed to
obtain results, whereas with the WRM the results are available
in several hours (Table I).
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Fig. 2. Voltage vc.
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Fig. 3. Current iR.
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Fig. 4. Current iL.
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Fig. 5. Convergence criterion of the WRM.
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The computation time is considerably reduced with the
WRM because the number of arithmetic operations itself is
reduced compared to a strong coupling. We call nu1 (re-
spectively nu2) the number of unknowns of the FE problem
(resp. the circuit problem) and nt1 (respectively nt2) the
number of time-steps of the FE problem (resp. the circuit
problem). The conjugate gradient (CG) is used to solve the
matrix system of the FE problem. The complexity of the
CG, including convergence, is in O(n3u1) for a full matrix
(O(n2u1) per iteration with a convergence in nu1 iterations
at the most) or O(nαu1), α < 2 for a sparse matrix. In
our problem, nu1 >> nu2 and nt2 >> nt1, so we can
consider a complexity of O(nt2n

α
u1) for a strong coupling

and O(Knt1n
α
u1) for a WRM coupling, with K the maximum

number of WRM iterations. As nt2 >> nt1, in most of the
case, nt2 > Knt1 and so the computation time could be
reduced.

TABLE I
COMPUTATION TIME, COMPLEXITY AND ERRORS FOR 6 WRM

ITERATIONS

Strong coupling WRM coupling
Computation time 13 days 7h8min 2h40min
Error on iR - 1.13%
Error on vc - 0.67%

IV. INDUSTRIAL APPLICATION

The WRM is applied to study a more complex device. Let us
consider a transformer and its associated rectifier as in Fig. 6.
The rectifier is controlled to provide a direct voltage vdc of 800
V and a current is into the secondary winding in phase with the
voltage v20; moreover, a current ich is imposed into the rectifier
circuit as a load current. The control based on a PWM requires
a very small time-step ∆tr = 5.10−6s. The transformer is
modeled by a FE method with a magnetic vector potential
formulation. This model is non-linear: the reluctivity depends
on the magnetic field. The voltages v10 and vs are respectively
imposed to the primary and secondary windings. The solution
of the FEM using the time-step ∆tr is unaffordable in terms of
computation time. The WRM allows to use a larger time-step
allowing to drastically reduce the computation time.
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Fig. 6. Complete device of the traction transformer

The WRM is applied to perform the coupling between the
FEM of the transformer and the circuit model of the rectifier. A
classic source coupling, as the one used in the previous section,
does not allow to control the current is into the secondary
winding because it would be imposed as a source to the circuit
rectifier part. Therefore, a parameter coupling is used [9],
[10]. An equivalent circuit of the transformer is introduced
into the rectifier circuit (Fig.7) with a resistance R and an
inductance L. The resistance is the same than in the FEM, and
the inductance is obtained by a calculation based on a linear
FEM of the transformer. Then, a residual current source ires
is added (Fig. 7) to guarantee the consistency of the coupling.
The non-linear effects of the tranformer are introduced into the
electrical circuit by the residual current, without any change
in the equivalent model.

At the kth iteration of the WRM process, the source of
the FEM is the voltage vks , and its solution provides the
current iks in the secondary winding. The voltage vks is given
by the solution of the electrical circuit model composed of
the equivalent circuit of the transformer and the controlled
rectifier. In this model, the residual current ikres is a source;
the voltage vkdc is controlled to be equal to 800 V and the
current ik2 is also controlled to be in phase with the voltage
v20. The residual current is such that ikres = ik−1

s − ik−1
L . Over

the iterations of the WRM process, the current iks converges to
ik2 . At the end of the process, iks is in phase with the voltage
v20. Fig. 8 presents the convergence criterion related to the
current is of the WRM process. The convergence is less clear
compared to the academic example. Nevertheless, the WRM
gives solutions relatively stable. According to the parameter
coupling, the current iks tends to be in phase with the voltage
v20 (Fig. 9). Furthermore, Fig. 11 shows that the voltage vdc
is close to 800 V. Fig. 10 shows the current ip into the primary
winding for non-linear FEM.

To compute this simulation on a time interval of 2 seconds,
3 days 9 hours 31 minutes are needed to perform 4 WRM
iterations, but 99.81% of the computation time is dedicated to
solve the FEM. This should be compared with the 3 months
estimated to perform the simulation using the same time step
for the control loop and the FEM. The WRM converges to the
exact solution as proved in [9], so the solution is supposed to
be close to the exact one.
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Fig. 8. Convergence criterion of the WRM for the traction transformer.
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Fig. 7. WRM parameter coupling for the traction transformer.
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Fig. 10. Current ip into the primary winding for the non-linear FEM.
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V. CONCLUSION

The WRM is well-adapted to the coupling and the simu-
lation of multirate systems because it allows to use a time
discretisation per subsystem.. A first application presented the
source coupling approach on an academic case. Comparisons
with a strong coupling showed small errors and a speed up of
120. A second application showed the interest of the parameter
coupling for control the current in a non-linear FEM coupled
to a rectifier.
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[7] S. Schöps, H. De Gersem, and A. Bartel, “A cosimulation framework for
multirate time integration of field/circuit coupled problems,” Magnetics,
IEEE Transactions on, vol. 46, no. 8, pp. 3233 –3236, aug. 2010.

[8] J. d. D. Nshimiyimana, F. Plumier, P. Dular, and C. Geuzaine, “Opti-
mized waveform relaxation methods for modeling electromagnetic field-
circuit problems,” in Proceedings of CEFC, may 2014.

[9] A. Bartel, M. Brunk, M. Günther, and S. Schöps, “Dynamic iteration
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