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Among the model order reduction techniques, the Proper Generalized Decomposition (PGD) has shown its efficiency to solve static 

and quasistatic problems in the time domain. However, the introduction of nonlinearity due to ferromagnetic materials for example 

has never been addressed. In this paper, the PGD technique combined with the Discrete Empirical Interpolation Method (DEIM) is 

applied to solve a non-linear problem in magnetostatic coupled with the circuit equations. To evaluate the reduction technique, the 

transient state of a three phase transformer at no load is studied using the full Finite Element model and the PGD_DEIM model.  

 
Index Terms—Proper Generalized Decomposition, Empirical Interpolation Method, Non-Linear magnetostatic problem  

 

I. INTRODUCTION 

O reduce the computation time of time-dependent 

numerical models, Model Order Reduction (MOR) 

methods have been developed and presented in the literature. 

These methods consist in searching a solution in a subspace of 

the approximation space of the full numerical model [1][2]. 

They have been mainly used to solve problems in mechanics. 

In this field, the Proper Generalized Decomposition (PGD) 

method has been developed since the early 2000’s and knows 

an increasing interest in the scientific community [3][4]. For 

problems in the time domain, the PGD method consists in 

approximating the solution by a sum of separable functions in 

time and space, so-called modes. Each mode is determined by 

an iterative procedure and depends on the previous modes. In 

the case of non-linear problems, the MOR methods are not so 

efficient than in the linear case, due to the computation cost of 

the non-linear terms. In fact, the calculation of the non-linear 

terms of the reduced model requires the calculation of the non-

linear vectors or/and matrices of the full model. To circumvent 

this issue, the Discrete Empirical Interpolation Method 

(DEIM) method can be used [5][6]. This method consists in 

interpolating the non-linear terms of the full model by 

calculating only some of their entries. In the literature, the 

PGD approach has been combined with the DEIM in order to 

solve a thermal problem with a quadratic nonlinearity [7]. In 

computational electromagnetics, the PGD approach has been 

developed to study a fuel cell polymeric membrane model [8].  

In static electromagnetism, the behavior of a Soft Magnetic 

Composite Material has been modeled [9]. In the case of 

magneto-quasistatics, the skin effect in a rectangular slot or in 

a conducting plate has been addressed [10][11]. However, any 

non-linear problem has not been solved using the PGD 

combined with the DEIM in computational electromagnetics. 

In this paper, we propose to apply the PGD_DEIM 

approach to solve a 3D non-linear magnetostatic problem 

coupled with multiple external electric circuits using the 

vector potential formulation. First, the non-linear 

magnetostatic problem coupled with electric circuits is 

presented. Secondly, the PGD_DEIM approach is developed. 

Finally, a three phase transformer at no load is studied in the 

case of a sinusoidal supply and also with a PWM supply. The 

results obtained with the PGD_DEIM model are compared in 

terms of accuracy and computation time with the full model. 

II. NON-LINEAR MAGNETOSTATIC PROBLEM COUPLED WITH 

ELECTRIC CIRCUIT EQUATIONS 

Let us consider a domain D of boundary Γ (Γ=ΓB∪ΓH and 

ΓB∩ΓH=0) (Fig. 1). The problem is solved on D×[0,T] with T 

the width of the time interval. The eddy current effect is 

neglected however several stranded inductors are considered.   
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Fig. 1. Non-linear magnetostatic problem coupled with electric circuits 
 

In the case of magnetostatics, the problem can be described 

by the following equations: 
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where B is the magnetic flux density, H the magnetic field, Nj 

the unit current density vector and ij the current flowing 

through the j
th

 stranded inductor, Nst is the number of inductors 

and ν(B)(x) is the reluctivity which depends on B in the 

ferromagnetic part. To impose the uniqueness of the solution, 

boundary conditions are introduced such that:  
 

B(x, t)⋅n=0 on ΓB  and  H(x, t)×n=0 on  ΓH (4) 

with n the outward unit normal vector. In order to impose the 

voltage at the terminals of the stranded inductors, the 

following relations are added:  
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where Rj is the resistance, Φj the flux linkage and vj the 

voltage of the j
th

 inductor. To solve the problem, the vector 

potential formulation is introduced. The vector potential A is 

defined such that B(x, t)=curl A(x, t) with A(x, t)××××n=0 on ΓB. 

To take into account the non-linear behavior of the 

ferromagnetic materials, the magnetic field H(x, t) is defined 

by H(x, t)=νfpB(x, t)+Hfp(B(x, t)) with νfp a constant and  

Hfp(B(x, t))=(ν(B)(x) - νfp)B(x, t) a virtual magnetization 

vector. In the materials with a constant reluctivity ν, the same 

expression can be used with νfp =ν and Hfp(B(x, t))=0. To 

determine a solution to the problem on D×[0,T], weak forms 

of (1) and (5) can be written such that: 
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(7) 

 

with A’(x, t) and ij’(t) test functions which belong to the same 

functional spaces as A(x, t)
 
and ij(t) respectively.  

III. MODEL ORDER REDUCTION 

A. Proper Generalized Decomposition 

To solve (6) and (7), the PGD method can be applied. The 

vector potential A(x, t) is then approximated by a separated 

representation of space and time functions,  
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with M the number of modes of the expansion. The terms 

Rn(x), Sn(t) and the currents il(t)1≤l≤Nst in the Nst stranded 

inductors, are calculated iteratively. At the n
th
 iteration, the 

approximation of the solution is An(x, t) = Rn(x)Sn(t)+An-1(x, t) 

with Rn(x) and Sn(t) the functions to determine belonging to 

L
2

curl(D) and L
2
([0,T]) and An-1(x,t) the approximation 

determined during the previous n-1 iterations. In (6), A(x, t) is 

replaced by its approximation An(x, t). The test function is 

given by A’(x, t)= R’n(x)Sn(t)+Rn(x)S’n(t) with R’n(x) and 

S’n(t) test functions belonging to the same spaces as Rn(x) and 

Sn(t). To calculate Rn(x), Sn(t) and in(t)1≤n≤Nst, two sets of 

equations deduced from weak forms (6) and (7), are solved 

iteratively. First, we suppose that Sn(t) and in(t)1≤n≤Nst are 

known. Then, the test function becomes A’(x, t)=R’n(x)Sn(t) 

and Rn(x) is the solution of the weak formulation, 
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In (9), the term Rn(x) is a function of Sn(t) and il(t)1≤l≤Nst. We 

denote λ the operator such that Rn(x)=λ(Sn(t), il(t)1≤l≤Nst). 

Secondly, to calculate the function Sn(t) and update the 

currents il(t)1≤l≤Nst, we assume that the function Rn(x) is 

known. In this case, the test function in (6) is equal to 

R’n(x)Sn(t). Considering (6) and (7), it can be shown that the 

functions Sn(t) and il(t)1≤l≤Nst are solutions of the following 

Ordinary Differential Equation (ODE) systems:  
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Again, we define γ an operator such that (Sn(t), 

il(t)1≤l≤Nst)=γ(Rn(x)). The functions Rn(x), Sn(t) and the currents 

il(t)1≤l≤Nst are determined iteratively. At the j
th

 iteration, 

assuming that (Sn
j
(t),il

j
(t)1≤l≤Nst) are known, Rn

j+1
(x) is given by 

Rn
j+1

(x)=λ(Sn
j
(t),il

j
(t)1≤l≤Nst). Then, (Sn

j+1
(t), il

j+1
(t)1≤l≤Nst) can be 

calculated by (Sn
j+1

(t),il
j+1

(t)1≤l≤Nst)=γ(Rn
j+1

(x)). Finally, the 

solutions (Rn
j
(x), Sn

j
(t), il

j
(t)1≤l≤Nst) and (Rn

j+1
(x), Sn

j+1
(t), 

il
j+1

(t)1≤l≤Nst) are compared. Once the solutions at j
th

 and (j+1)
th
 

iterations are considered sufficiently close, one can proceed to 

the calculation of the next mode n+1. The operators λ and γ 

require the solution of (9) and (10) respectively. To solve (9), 

the field Rn(x) is approximated in the edge element space [12]. 

Then, we have
)()(
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with Rn,l the circulation of 

Rn(x) and wl(x) the interpolation function associated with the 

l
th

 edge and Ne the number of degrees of freedom. The 

Galerkin method is applied to solve (9). The ODE (10) is 

solved using an implicit Euler scheme on NT time steps. 
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B. Discrete Empirical Interpolation Method 

We define a Ne×NT matrix Mfp of Ne×1 vectors m(ti) 1≤i≤NT 

such that their entries me(ti) satisfy: 
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It can be shown that the non-linear terms FR-NL and FS-NL 

can be expressed in function of the entries of the matrix 

Mfp=(m(ti))1≤i≤NT. The entries of Mfp must be evaluated for 

each new couple (Rn
j
(x),Sn

j
(t)). With a fine mesh and a large 

number of time steps NT, the computation time of Mfp can be 

prohibitive. To tackle this issue, an alternative is to use the 

Discrete Empirical Interpolation Method [5][6][13]. After 

each computation of Rn
j
(x) and Sn

j
(t), the DEIM algorithm 

selects a small number NDEIM of most significant entries me(ti) 

(see (11)) of the vectors m(tl) (called DEIM entries). Then, 

only NDEIM non-linear terms of Mfp are computed and the other 

terms are interpolated to obtain an approximation of the matrix 

Mfp. To determine the DEIM entries, for a given mode n and 

an iteration j, the field An(x, t) is calculated for NDEIM time 

steps (for example, the NDEIM first time steps) from (8). We 

obtain then a Ne×NDEIM matrix Ms of the m(tl)(1≤l≤NDEIM). The 

matrix Ms is decomposed using a Singular Value 

Decomposition such as Ms=VΣΣΣΣW with VNe×Ne and 

WNDEIM×NDEIM orthogonal matrices and ΣΣΣΣNe×NDEIM the diagonal 

matrix of the singular values. With the DEIM, only the Nm 

most significant vectors Vi of the matrix V corresponding to 

the higher singular values of ΣΣΣΣ are stored to construct a 

projector ΨΨΨΨ (Ne×Nm). Applying a greedy algorithm, a matrix 

PNe×Nm composed of Nm vectors of the identity matrix INe×Ne is 

determined from the indices of the most significant component 

of ΨΨΨΨ. We denote I the set of these indices I=(i1,.., iNm). Then, 

for any time step tl in [0,T], the vector m(tl), and consequently 

the matrix Mfp=(m(ti))1≤i≤NT, can be approximated by: 

m(tl)≈ΨΨΨΨ(P
t
 ΨΨΨΨ)

-1
mDEIM(tl) 

(12) 

with mDEIM(tl) the Nm×1 vector of entries (me(tl))e∈I 

C. PGD_DEIM Model 

The strategy of the coupling between the PGD approach and 

the DEIM is given in the algorithm in Fig. 2. The internal loop 

(j index) corresponds to the two steps for the computation of 

the functions Rn(x), Sn(t) and il(t)1≤l≤Nst (section III-A) and the 

approximation of the matrix Mfp obtained from the DEIM 

(section III-B). The internal loop is stopped if the number of 

iterations is bigger than Imaxnl or when the errors εnl-R, εnl-S  and 

εnl-i on  Rn(x), Sn(t) and il(t)1≤l≤Nst between two successive 

iterations are smaller than a criterion εnl. After each 

computation of a mode (Rn(x), Sn(t)) and also of the updating 

currents il(t)1≤l≤Nst, an additional step can be added in order to 

recalculate all functions Sk(t)1≤k≤n and il(t)1≤l≤Nst to reduce the 

number of modes [2]. The external loop corresponds to the 

enrichment step (n index), this is stopped if the number of 

modes is reached or when the difference of the currents 

between two successive iterations is smaller than a criterion ε. 
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Fig. 2. Algorithm of the PGD_DEIM model 

IV. APPLICATION 

A 3D three phase EI transformer at no load is studied. Only 

one quarter of the transformer is modeled (Fig. 3.a) with the 

non-linear magnetic behavior of the iron core (Fig. 3.b). The 

3D mesh is made of 12659 nodes and 67177 tetrahedra.  
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Fig. 3. Three phase EI transformer (a) and the B(H) curve of the 

ferromagnetic material (b) 

 

First, the three phases of the transformer are supplied by 

sinusoidal voltages at a frequency equal to 50 Hz. The time 

interval of simulation is fixed to [0;67 ms] with a time step of 

67 µs. We compare the results obtained from the full model 

with those from a PGD_DEIM model where the first 40 time 

steps and the last 40 time steps (NDEIM=80) are used to 

approximate Mfp(A(x, t)) with the DEIM (see III-B). Figure 4 

presents the error of the currents versus the number of modes. 

With 20 modes, the error is smaller than 2% for each current. 

Figure 5 compares the evolution of the currents obtained from 

reference and PGD_DEIM model at the beginning of the 

transient state where we can see a good agreement between 

the two models. In term of computation time, the full model 

and the PGD_DEIM model with 20 modes require 118 min 

and 56 min respectively. Then, the speed up is 2.1.  
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Fig. 4. Error of the currents as a function of the number of modes  
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Fig. 5. Evolution of the currents obtained from reference and PGD_DEIM 

model at the beginning of the simulation 

 

Now, the three phases of the transformer are supplied by 2-

level PWM voltages, and the carrier frequency is equal to 50 

Hz. The switching frequency is equal to 5 kHz. The time 

interval of simulation is fixed to [0;0.2 s] with a time step of 

10µs. In these conditions, the number of time steps is 20000. 

To limit the variation of the currents, an inductance is placed 

in series with each winding. For the DEIM, we select 50 

vectors m(ti) at the beginning and the end of the simulation 

interval every 0.5 ms. It enables to cover the range of variation 

of the non-linear entries of Mfp. The evolutions of the error for 

the currents versus of the number of modes are presented in 

Fig. 6. With 12 modes, the error is smaller 0.5% for each 

current. Figure 7 presents the evolution of the currents 

obtained from reference and PGD_DEIM model at the 

beginning of the simulation. In term of computation time, the 

reference model and the PGD_DEIM model require 1510 min 

and 22 min respectively, the speed up is 26. 
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Fig. 6. Error of the currents as a function of the number of modes 
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Fig. 7. Evolution of the currents obtain from reference and PGD_DEIM model 

at the beginning of the simulation 

V. CONCLUSION 

The Proper Generalized Decomposition method associated 

with the Discrete Empirical Interpolation Method has been 

applied to solve a 3D non-linear FE magnetostatic problem 

coupled with the circuit equations. The accuracy of the 

reduced model depends on the number of modes and the 

number of DEIM terms. On the studied example, it appears 

that the more the number of time step, the more the speed up 

between the PGD_DEIM model and the full model. This 

confirms the fact that the PGD seems to be very attractive 

when the number of time steps requires to be high. 
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