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Ergodicity of the Ehrenfest wind-tree model

We consider aperiodic wind-tree models, and show that for a generic (in the sense of Baire) configuration the windtree dynamics is ergodic in almost every direction.

Nous considérons une modèle apériodique de vent dans les arbre et nous montrons que pour une configuration générique (dans le sens de Baire) la dynamique de vent-arbre est ergodique dans presque-toute direction.

Introduction

In 1912 Paul et Tatyana Ehrenfest wrote a notable encyclopedia article on the foundations of statistical mechanics [EhEh]. The first chapter of this article "The Older Formulation of Statistico-mechanical investigations (Kineto-statistics of the Molecule)" discusses the work of Boltzmann and Maxwell on gas dynamics. In the Appendix to Section 5 of this chapter the Ehrenfests say "it seems advisable to explain" the work of Maxwell-Boltzmann "on a muchsimplified model". This model, now known as the Ehrenfest wind-tree model, is the subject of this article. In the Ehrenfest wind-tree model, a point particle (the "wind") moves freely on the plane and collides with the usual law of geometric optics with and infinite number of irregularly placed identical square scatterers (the "trees").

The second chapter of the Ehrenfests' article "The Modern Formulation of Statistico-Mechanical Investigation (Kineto-Statistics of the Gas Model)" can Email addresses: alba.malaga@polytechnique.edu (Alba Málaga Sabogal), serge.troubetzkoy@univ-amu.fr (Serge Troubetzkoy).

be viewed as the birth place of the term "ergodic". 1 Our main result is the study of the wind-tree model in the framework of (infinite) ergodic theory. There is a natural first integral of the model, if we fix the initial direction, then orbits take only four directions. We show that for almost every value of this first integral the Ehrenfest wind-tree is ergodic for generic (in the sense of Baire) configurations. This continues our previous work where we have shown that the generic in the sense of Baire windtree model is recurrent [START_REF] Troubetzkoy | Typical recurrence for the Ehrenfest wind-tree model[END_REF]), minimal in almost every direction, and has a dense set of periodic points ( [MSTr]).

The wind-tree model has been intensively studied by physicists, see for example [BiRo], [DeCoVB], [Ga], [HaCo], [VBHa], [WoLa] and the references therein. From the mathematical rigorous point of view, there have been many recent results about the dynamical properties of a periodic version of windtree models, scatterers are identical square obstacles one obstacle centered at each lattice point. The periodic wind-tree model has been shown to be re-1. A nice discussion of the history of the birth of ergodic theory is given in the first chapter of the book [GaBoGe].

current ( [HaWe], [HuLeTr], [AvHu]), to have abnormal diffusion ( [DeHuLe], [De]), and to have an absence of ergodicity in almost every direction ( [FrUl]); furthermore the periodic wind-tree model can not have a minimal direction.2 Periodic wind-tree models naturally yield infinite periodic translation surfaces, ergodicity in almost every direction for such surfaces have been obtained only in a few situations [HoHuWe], [HuWe], [RaTr].

We work in the following setup: the plane is tiled by one by one cells with corners on the lattice Z 2 , inside each cell we place a square tree of a fixed size with the center chosen arbitrarily. Our main result is that for the generic in the sense of Baire wind-tree configuration, for almost all directions the wind-tree model is ergodic, is in stark contrast to the situation for the periodic wind-tree model. This result can be viewed as the confirmation of the ergodic hypothesis in the framework of the Ehrenfest wind-tree model.

Our proofs hold in a more general setting than the one described above, for example we can vary the size of the square, or use certain other polygonal trees; the class of possible extensions are the same as those discussed in [MSTr] in the framework of generic minimality in almost every direction.

The method of proof is by approximation by finite wind-tree models where the dynamics is well understood. There is a long history of proving results about billiard dynamics by approximation which began with the article of Katok and Zemlyakov [KaZe]. This method was used in several of the results on wind-tree models mentioned above [HuLeTr], [AvHu], [START_REF] Troubetzkoy | Typical recurrence for the Ehrenfest wind-tree model[END_REF], see [START_REF] Troubetzkoy | Approximation and billiards Dynamical systems and Diophantine approximation[END_REF] for a survey of some other usages in billiards. The idea of approximating infinite measure systems by compact systems was first studied in [MS].

Definitions and main result

Consider the plane R 2 tiled by one by one closed square cells with corners on the lattice Z 2 . Fix r ∈ [1/4, 1/2). We consider the set of 2r by 2r squares, with vertical and horizontal sides, centered at (a, b) contained in the unit cell [0, 1] 2 , this set is naturally parametrized by

A := {t = (a, b) : r a 1 -r, r b 1 -r}
with the usual topology inherited from R 2 . Our parameter space is A Z 2 with the product topol-ogy. It is a Baire space. Each parameter g = (a i,j , b i,j ) (i,j)∈Z 2 ∈ A Z 2 corresponds to a wind-tree table in the plane in the following manner: the tree inside the cell corresponding to the lattice point (i, j) ∈ Z 2 is a 2r by 2r square with center at position (a i,j , b i,j ) + (i, j). The wind-tree table B g is the plane R 2 with the interiors of the union of these trees removed. Note that trees can intersect only at the boundary of cells.

The billiard flow φ t is the unit speed free motion on the interior of B g with elastic collision from the boundary of B g (the boundary of the union of the trees). The phase space Ω g of the billiard flow is thus the cartesian product of B g × S 1 with inwards and outwards pointing unit vectors identified according to the elastic collision rule at the boundary of B g . The billiard flow φ t on the phase space preserves the volume measure µ × λ where µ is the area measure on B g and λ the length measure on S 1 . Note that µ is an infinite measure.

For each θ let [θ] be the set of all possible directions under the billiard flow starting in direction θ, i.e.

[θ] = {±θ, ±(π -θ)}. We will refer to the billiard flow restrict to the set {(x, ψ) ∈ Ω g : ψ ∈ [θ]} as the billiard flow φ θ t in the direction θ ; it preserves the measure µ× d where d is the discrete measure on [θ].

A flow ψ t preserving a measure m is called ergodic if for each Borel measurable A, m(ψ t (A)△A) = 0 ∀t ∈ R implies that m(A) = 0 or µ(A c ) = 0. A map T preserving a measure n is called ergodic if for each Borel measurable set A, n(T -1 A△A) = 0 implies that n(A) = 0 or n(A c ) = 0. Theorem 2.1 There is a dense G δ subset G of parameters A Z 2 such that for each g ∈ G there is a dense G δ subset of directions H ⊂ S 1 of full measure such that the billiard flow on Ω g in the direction θ is ergodic every θ ∈ H.

Note that we will use different cross-sections than those used in [MSTr]. Let D n := (x, y) ∈ R 2 : max(|x|, |y|) = n and D := n 1 D n . We will consider various first return maps of the billiard flow on the wind-tree table associated to a parameter g,

T g : D × S 1 → D × S 1 T g θ : D × [θ] → D × [θ] T g n : D n × S 1 → D n × S 1 T g n,θ : D n × [θ] → D n × [θ]
. We will apply this definitions only in the cases where D n do not intersect any tree.

The advantage of this cross-sections is that the maps T g θ and T g n,θ have natural invariant length measures which do not depend on the parameter g: ν and respectively ν n . The measure ν is infinite, while the measures ν n are finite and we think of them as normalized.

For any positive integer N , we define R N to be the closed rhombus {(x, y) : |x| + |y| N + 1 2 }. Suppose that N is an integer satisfying N 2. We will call a parameter f N -tactful if for each cell inside the rhombus R N , the corresponding tree is contained in the interior of its cell. We will call an N -tactful parameter f N -ringed, if the boundary of R N is completely covered by trees (see Figure 1). Let E N the set of pairs (i, j) so that the interior of the (i, j)-th cell is contained in R N .

For each tree t ∈ A let U (t, ε) be the the standard ε-neighborhood in R 2 intersected with the interior of A in R 2 . For any parameter g = (t i,j ) ∈ A Z 2 , consider the open cylinder set U N (g, ε) = (i,j)∈EN U (t i,j , ε).

Proofs

We start by reducing the question to the ergodicity of the flow to the ergodicity the first return maps T g n,θ . This is done in the following lemma. Lemma 3.1 Let g be a parameter that is N -tactful for all N 3. For θ irrational, the following conditions are equivalent:

(i) φ g θ t is ergodic (ii) T g θ is ergodic (iii) T g n,θ is ergodic for all n 1. Proof. (1 =⇒ 2) If B is a non trivial T g θ -invariant set, then t∈R φ g θ t (B) is a non trivial φ g θ t -invariant set.
(2 =⇒ 1) Consider a non trivial φ g θ t invariant set C. Consider C ′ := t∈R φ g θ t C, clearly µ(C ′ △C) = 0 and C ′ is a φ g θ t -invariant set. Since the flow is a flow built under a piece-wise continuous bounded function, C ′ ∩ D is a non trivial T g θ -invariant set.

(2 =⇒ 3) If A is a non trivial T g n,θ -invariant set, then k∈Z (T g n,θ ) k (A) is a non trivial T g θ -invariant set.

(3 =⇒ 2) Suppose B is a non trivial T g θ -invariant set. We claim that B n := B ∩ D n must be a non trivial T g n,θ -invariant set for some n. If not, then for each n, ν n (

B n ) = 0 or ν n (B c n ) = 0. Let I := {n ∈ N * : ν n (B c n ) = 0}. Clearly I is non empty since 0 < ν(B) = n∈N * ν n (B n ). Suppose n ∈ I, then since B n has full measure in D n × [θ],
and since a set of positive measure of

D n × [θ] is mapped to D n+1 × θ we must have n + 1 ∈ I. If n
2 then the same holds for n -1, thus thus I = N * . This implies ν(B c ) = 0, a contradiction. Thus B n is a non trivial T g n,θ -invariant set for some n, i.e. T g n,θ is not ergodic for some n.

2

Proof of Theorem 2.1. By Baire's theorem the set of configurations which are N -tactful for all N is dense since for each N the set of all N -tactful configurations is an open dense set. Thus we can consider a countable dense set of parameters which are Ntactful for all N . By modifying the parameters we can assume that each one is N -ringed for a certain N still maintaining the density. Call this countable dense set {f i }, with f i being N i -ringed. We also assume N i+1 > N i . Suppose δ i are strictly positive. Let

G := m 1 i m U Ni (f i , δ i ).
See Figure 2 for a configuration close to a 2-ringed configuration. Clearly G is a dense G δ . We will show that the δ i can be chosen in such a way that all the configurations in G are ergodic in almost every direction.

For each n 1 let

X n := D n × S 1 , X θ n := D n × [θ]
, νn := ν n × λ and νθ n := ν n . Let {h j } j 1 be a countable collection of continuous functions in L 1 (X 1 , ν1 ) for which the restriction to L 1 (X θ 1 , νθ 1 ) is dense for all θ. For each θ the measure space (X θ n , νn ) is the union of eight isometric copies of the interval [0, 2n(| sin(θ)| + | cos(θ)|)] (c.f figure 3).

For any n we define

h n j ∈ L 1 (X n , νn ) by h n j (s, θ) := h j (s/n, θ) for s ∈ [0, 2n(| sin(θ)| + | cos(θ)|)].
For sake of simplicity we will drop the dependency on n and note h j = h n j . Now fix g ∈ A Z 2 and let

S g n,ℓ h j (s, θ) = 1 ℓ ℓ-1 k=0 h j T g n,θ
k (s, θ) . By the Birkhoff ergodic theorem, the maps T g n,θ are ergodic for all n and for almost every θ if and only if for all n and for almost all θ we have

S g n,ℓ h j (s, θ) → X θ n h j (t) dν n (t)
as ℓ goes to infinity for all j 1. Here the integral is over the set X θ n , thus we drop the θ dependence of the functions h j from the notation. Now fix i. Recall f i is an N i -ringed parameter. Let n i = Ni-1 2 . For any 1 n n i , D n is included inside the ring and since f i is N i tactful D n does not intersect the boundary of any tree. Because of the Kerckhoff-Masur-Smillie theorem [KeMaSm], the billiard inside the ring is ergodic for almost every direction, thus T fi n,θ is ergodic for almost every θ. Thus we can find a positive integer ℓ i , an open set H i ⊂ S 1 and sets B θ n,i ⊂ X θ n so that νθ

n (B θ n,i ) > 1 -1 i , λ(H i ) > 1 -1 i and S fi n,ℓi h j (s, θ) - X θ n h j (t) dν n (t) < 1 i
for all s ∈ B θ n,i , θ ∈ H i , n n i , 1 j i. Now we would like to extend these estimates to the neighborhood U Ni (f i , δ i ) for a sufficiently small strictly positive δ i . By the triangular inequality we have:

S g n,ℓi h j (s, θ) - X θ n h j (t) dν n (t) S g n,ℓi h j (s, θ) -S fi n,ℓi h j (s, θ) + S fi n,ℓi h j (s, θ) - X θ n h j (t) dν n (t) .
For any point (s, θ) of continuity of T as i → ∞. Since the h θ j are dense in L 1 (X θ n , νθ n ), Equation (1) together with the Birkhoff ergodic theorem imply that for each n 1, T g n,θ is ergodic for all θ ∈ H. The ergodicity of the billiard flow in every direction in H follows immediately from Lemma 3.1.
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Figure 1 .

 1 Figure 1. A 2-ringed configuration.

Figure 2 .

 2 Figure 2. A small perturbation.

Figure 3 .

 3 Figure 3. X θ n decomposes into eight "intervals".

  (s, θ) varies continuously with g in a small neighborhood of f i ; thus we can find δ i > 0, an open set Ĥi ⊂ H i and a set Bθn,i ⊂ B θ n,i so that that if g ∈ U Ni (f i , δ i ), then S g n,ℓi h j (s, θ) -Bθ n,i , θ ∈ Ĥi , n n i , 1 j i; and Bθ n,iand Ĥi are both of measure larger than 1-2 i . Suppose g ∈ G := ∩ ∞ m=1 ∪ ∞ i=m U Ni (f i , δ i ). Since λ( Ĥi ) > 1 -2/i, the G δ set H = ∩ ∞ M=1 ∪ ∞ i=M Ĥi has measure 1. Fix θ ∈ H, then there is an infinite sequence k i such that θ ∈ Ĥki . Consider B θ (B θ ) = 1.We can thus conclude that for λ-a.e. θ, for νna.e. s, for each j 1, for each n 1

					h j (t) dν n (t) <	2 i
				X θ n	
		for all s ∈ n = ∩ ∞ M=1 ∪ ∞ i=M Bθ n,ki . Since νθ n ( Bθ n,ki ) > 1 -1 ki , it fol-
		lows that νθ	
		lim k→∞	S g n,ℓ k i	(h j (s, θ)) →	h j (t) dν n (t)	(1)
				X θ n	
	fi n,θ	ℓi , the			
	point T g n,θ				

ℓi n

K. Frączek explained to us that this follows from arguments close to those in the article[Be].
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