
HAL Id: hal-01273192
https://hal.science/hal-01273192

Submitted on 25 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration of Polynomial Multiplication Algorithms for
Homomorphic Encryption Schemes

Vincent Migliore, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand,
Caroline Fontaine, Guy Gogniat

To cite this version:
Vincent Migliore, Maria Méndez Real, Vianney Lapotre, Arnaud Tisserand, Caroline Fontaine, et
al.. Exploration of Polynomial Multiplication Algorithms for Homomorphic Encryption Schemes.
International Conference on Reconfigurable Computing and FPGAs (ReConFig), Dec 2015, Cancun,
Mexico. �10.1109/ReConFig.2015.7393307�. �hal-01273192�

https://hal.science/hal-01273192
https://hal.archives-ouvertes.fr

978-1-4673-9406-2/15/$31.00 c©2015 European Union

Exploration of Polynomial Multiplication
Algorithms for Homomorphic Encryption Schemes

Vincent Migliore∗, Maria Méndez Real∗, Vianney Lapotre∗, Arnaud Tisserand‡, Caroline Fontaine†, Guy Gogniat∗
∗Univ. Bretagne-Sud, UMR CNRS 6285, Lab-STICC, F-56100 Lorient, France, firstname.lastname@univ-ubs.fr

† Institut Mines-Telecom Telecom Bretagne, UMR CNRS 6285, Lab-STICC, Brest, France
‡ CNRS - IRISA - Univ. Rennes 1, Campus ENSSAT, 6 rue Kerampont, 22305 Lannion, France

Abstract—Homomorphic encryption schemes allow performing
computations in the ciphertext domain, without the need of the
secret key. In most promising schemes based on the ring-learning
with errors (R-LWE) problem, polynomial multiplication opera-
tion is considered an important bottleneck. In this study, a com-
parison between the Karatsuba and the fast Fourier transform
(FFT) multiplication algorithms in the context of homomorphic
encryption is proposed in terms of complexity, flexibility and
possible optimizations. A complete hardware architecture to
speed up polynomial multiplication is provided and impacts of
such an architecture on the Karatsuba and the FFT algorithms
is thoroughly studied. The study demonstrates that in a realistic
architecture, Karatsuba can be a better alternative than the FFT
one.

I. INTRODUCTION

Homomorphic encryption schemes are considered as
promising in modern cryptography. The main benefit of such
encryption schemes is to process data in the cipher domain.
More precisely, one can subcontract a service to a third-party
server, possibly unreliable, without compromising privacy and
data confidentiality. While classical cryptographic schemes
have sometimes homomorphic properties, for addition [1]
or multiplication [2] operations, it has been necessary to
wait until 2009 and C. Gentry [3] breakthrough to discover
a scheme able to perform all types of operations with no
restriction. Since then, many schemes have been developed
in order to optimize practicability of these schemes, the first
one needed a public key of 2.25 GB for a ciphertext of 1.5 GB
just for one bit of plaintext [4]. Now and since adaptation of
homomorphic encryption schemes to the R-LWE problem [5],
one can expect optimized and practical parameters, with a
public key and a ciphertext close to 360 Kb [6]. However, even
if recent schemes may be considered as practical compared
to the state of the art, these encryption schemes have still
important issues. The main problem is the limitation on
consecutive multiplications achievable, due to the existence
of an inner noise which is growing until making a decryption
procedure impossible. This type of encryption schemes are
named somewhat-homomorphic encryption (SHE). In order to
break this limitation, a procedure named bootstrapping has
been prososed in [3]. It consists on processing inside the
cipher domain an operation of decryption and re-encryption,
re-initializing the inner noise, and so allowing to have a

fully homomorphic encryption (FHE) scheme. Nonetheless
this operation has a very important cost, increasing the size
of encryption keys and ciphertexts, and thus increasing calcu-
lation time, bandwidth usage and storage cost. Consequently,
choosing the best scheme for a given problem, the associated
protocol and the security level, must be considered as main
scientific and technical concerns.
Due to the fact that the bottleneck of R-LWE based encryption
schemes is the modular polynomial multiplication operation,
various hardware implementations on FPGA are based on
the FFT multiplication algorithm [7][8][9][10], which can be
used to speed up the key generation step, the homomorphic
multiplication step and the decryption step. However, in this
work we do not consider any restriction on the polynomial
multiplication algorithm, and we demonstrate that Karatsuba’s
algorithm [11] can be a better alternative compared to the FFT
one when dealing with a complete execution scenario.
The main contributions of this work are as follows:

• A thoroughly study of the Karatsuba and the FFT mul-
tiplication algorithms for a polynomial multiplication is
presented. A comparison in the case of SHE in terms of
complexity, flexibility and possible optimizations is also
provided.

• A complete and realistic hardware architecture for SHE
is introduced in order to evaluate the impact of such an
architecture on the Karatsuba and the FFT multiplication
algorithms.

• An optimization of the scheduling of input and output
coefficients for Karatsuba is proposed in order to reduce
the calculation time by proposing pipeline optimizations.

• Key elements for choosing the multiplication algorithm
are proposed with respect to hardware resources limita-
tion.

The paper is organized as follows. Section II recaps some
key information on SHE cryptosystems based on a R-LWE
problem. It presents and compares the Karatsuba and the FFT
multiplication algorithms. The proposed hardware architecture
and its impact on the two polynomial multiplication algorithms
are presented in Section III. Section IV draws some conclu-
sions on the study.

TABLE I: Practical parameters for SHE schemes [6] based
on a R-LWE problem for a security level of 80 bits, where L
is the multiplicative depth, and (q, n) are the R-LWE settings

L log2 q n

0 20 512
1 40 1024
3 80 2048
5 128 4096

10 392 8192
50 1225 32768

II. STUDY OF KARATSUBA AND THE FFT
MULTIPLICATION ALGORITHMS FOR SHE

A R-LWE problem is constructed in the ideal lattice
Zq[X]/〈f(X)〉, where Zq = Z/qZ and f(X) an irreducible
polynomial in Zq of degree n. The modulus q and the degree
of the irreducible polynomial n are chosen in order to satisfy a
given level of security and multiplicative depth. Table I recaps
some practical parameters for SHE schemes based on [6],
considering a security level of 80 bits.

In fast polynomial multiplication algorithms, three steps are
required: a pre-computation step, a multiplication step and fi-
nally a post-computation step. If one tries to reduce the number
of sub-products needed for the multiplication step by choosing
a specific algorithm, it will be required to adapt, and possibly
use larger pre and post computations. For example, for the
basic multiplication algorithm, no pre and post computations
are needed, but at a cost of O(n2) elementary operations. At
the opposite, the FFT multiplication algorithm which requires
the smallest number of sub-products, in fact O(n log2 n), has
very complex pre and post computations.
For the remainder of the study, we will note with an upper
case polynomials of any degree, and with a lower case its co-
efficients. For a polynomial A, ai will be the ith coefficient of
the associated polynomial. In each polynomial multiplication
algorithm, input polynomials will be named A and B, where
C will be the computation of A×B:

C(x) =

2n−2∑
i=0

cix
i;A(x) =

n−1∑
i=0

aix
i;B(x) =

n−1∑
i=0

bix
i

In what follows, a sub-product will refer to an integer multipli-
cation where a sub-multiplication will refers to a polynomial
multiplication (smaller than the operands).

A. Basic Multiplication Algorithm

The basic multiplication algorithm is computed by
developing the product of two polynomials. In that case, the
coefficients of the output polynomial can be calculated by

ck =

k∑
i=0

aibk−i

For degree n − 1 polynomials, the number of elementary
operations is O(n2). One can notice here that, as stated before,
no pre and post computations are needed.

(a) Karatsuba (b) FFT

Fig. 1: High level architectures for Karatsuba and the FFT

B. Karatsuba’s Algorithm

Karatsuba’s algorithm [11] is an improvement of the basic
polynomial multiplication algorithm in order to reduce the
number of sub-products in the multiplication step.
First, one needs to split input polynomials A and B of degree
n− 1 into two parts of equivalent size, i.e. n

2 coefficients. Let
AH and AL be two polynomials composed respectively by
the coefficients of highest degree of A and lowest degree of
A. By the same way, one constructs BH and BL. Thus, one
therefore obtains A = AL+AHxn/2 and B = BL+BHxn/2.
When multiplying classically A×B, one obtains :

A×B = (AL +AHxn/2)(BL +BHxn/2)

= ALBL + (ALBH +AHBL)x
n/2 +AHBHxn

Karatsuba optimization is to notice that the middle
factor (ALBH + AHBL) can be cleverly computed by
(AL+AH)(BL+BH)−ALBL−AHBH . As one can quote,
ALBL and AHBH are already computed and so does not
require additionnal operations.
At the end, Karatsuba requires 3 sub-multiplications instead of
4, at a cost of two pre-computations, namely (AH +AL) and
(BH +BL), and two post-computations for the reconstruction
of the middle factor. However, these pre and post computations
are made of additions and subtractions only. To further reduce
the number of sub-products, Karatsuba’s algorithm can be
recursively applied on the sub-polynomials. For degree n− 1
polynomials, Karatsuba’s complexity is O(n1.58), with a
number of sub-products of 3log2 n.

A strategy to implement Karatsuba in hardware consists
in designing a small polynomial multiplier of degree p and
recursively reconstruct the output polynomial. Because pre and
post computations are only composed by additions and subtra-
tions, one can at a first approximation calculates the number
of operations required to perform a polynomial multiplication
by considering the number of sub-products only. In that case,
the number of operations required can be easily calculated by

3log2 n

3log2 p
=

3log2 n

3log2 t/2
,

where t is the number of coefficients processed at each oper-
ation. Fig. 1a shows an high level architecture for Karatsuba.

1,024

2,048

4,096

8,192

polynomial multiplications achievable

de
gr

ee

Karatsuba
FFT

Fig. 2: Polynomial multiplications achievable for Karatsuba
and the FFT multiplication algorithms. Karatsuba multiplier
has a root polynomial of degree less or equal to 12.

Depending on the degree of the deepest polynomial multi-
plication, Karatsuba can achieve a polynomial multiplication
with various degrees. For example, if the deepest polynomial
multiplication is of degree 0 (i.e. integers), Karatsuba can
perform a polynomial multiplication of degree 2i−1, where
i is the number of times Karatsuba was applied. In gen-
eral, if the deepest polynomial multiplication is of degree p,
Karatsuba can perform a polynomial multiplication of degree
p × 2i(p > 0). Fig. 2 shows different polynomial multiplica-
tions achievable for p ∈ [1, 12] and n ∈ [1024, 8192].

C. The FFT Multiplication Algorithm

The FFT multiplication [12] is the algorithm which requires
the smallest number of sub-products, but at a cost of complex
pre and post computations. The FFT multiplication in the
context of R-LWE has been partially studied, we will recall
here the main advances so far.
The FFT multiplication algorithm performs a convolution
operation between 2 vectors. Applied to 2 polynomials, it
performs a polynomial multiplication as it can be seen in
Section II-A. Because applying directly a FFT multiplication
on two polynomials will led to a wrong convolution, it is
necessary to resize the input polynomials. Let n − 1 be the
degree of the input polynomials and k be the smallest integer
which satisfy 2k > 2n − 2. The input polynomials must be
filled with 0 in order to be degree 2k.
To perform the polynomial multiplication, one must first apply
a 2n-FFT operation on each polynomial. Then, a point-wise
multiplication is performed on the resulting vectors. The
output polynomial is finally reconstructed by applying the
inverted FFT algorithm, which is quite similar to the FFT but
scaled by n−1. In short, the complete equation is given by:

A×B = IFFT(FFT(A)� FFT(B)),

Algorithm 1 FFT algorithm
Let ω be a primitive n-th root of unity in Zq . Let
A and A′ be a polynomial of a degree less than n,
A(x) = a0 + · · · + an−1x

n−1 and A′(x) = a′0 + · · · +
a′n−1x

n−1.
A = reverse order(A)
for i = 0 to log2(n)− 1 do

for j = 0 to n/2− 1 do
Pi,j = b j

2log2(n−1−i) c.2log2(n−1−i)

a′j = a2j + a2j+1ω
Pi,j mod q

a′j+n
2
= a2j − a2j+1ω

Pi,j mod q
end for
if i 6= log2(n)− 1 then
A = A′

end if
end for
return A′

where � denotes a point-wise multiplication. The FFT al-
gorithm is shown in Algorithm 1. It consists of two nested
loop, an inner loop where coefficients of a polynomial A
are recombined to produce a polynomial A′, and an outer
loop which role is to iterate the inner loop log2 d times,
where d is the size of the FFT. Fig. 1b shows an high level
architecture for the FFT polynomial multiplication algorithm.
In the followings, the Butterfly unit will refer to the inner loop.
As one can see, pre and post computations are quite complex

and require a sub-product in each operation. For a polynomial
multiplication of degree n−1, the number of sub-products for
the FFT is given by

2n log2 2n︸ ︷︷ ︸
FFT

+ 2n︸︷︷︸
point-wise mult

+nlog22n︸ ︷︷ ︸
IFFT

.

By following the same reasoning than for Karatsuba, one can
calculate the number of operations required by neglecting the
additions and subtractions. Because the FFT algorithm is a
simple nested loop, the number of operations can easily be
calculated by 2n

t log2(2n), where t is the number coefficients
processed in parallel. The total number of operations required
can now be calculated by

4n

t
log2 2n︸ ︷︷ ︸
FFT

+
4n

t︸︷︷︸
point-wise mult

+
2n

t
log2 2n︸ ︷︷ ︸
IFFT

.

Table II compares Karatsuba to the FFT in terms of oper-
ations count regarding the number of coefficients processed
in parallel. The negative wrapped convolution (NWC) is also
compared and will be presented in the next section.

D. Application in the Context of Homomorphic Encryption

As stated before, the R-LWE problem requires a reduction
by an irreducble polynomial of degree n. As it can be noticed
in Table I, if the irreducible polynomial degree n is a power of
two, some specific multiplicative depths L are not reachable
and thus can lead to unoptimized parameters for a specific

TABLE II: Comparison of the number of operations required
for Karatsuba and the two FFTs multipliers, for polynomials
of degree 1023

Coefficients Number of operations
per operation

Karatsuba FFT NWC

4 19683 17920 8192
8 6561 8960 4096
16 2187 4480 2048
32 729 2240 1024
64 243 1120 512

128 81 560 256
256 27 280 128
512 9 140 64
1024 3 70 32

TABLE III: Summary of pros and cons on Karatsuba and the
NWC

Karatsuba NWC

multiplications O(n1.58) O(n log2 n)

constraint on n ∅ power of 2

constraint on q ∅ q ≡ 1 (mod 2n)
and prime

batching technique yes no

application. Because Karatsuba can achieve multiplications
with degrees of non power of two, parameters of the R-LWE
problem can be optimized. At the oposite, FFT polynomial
multiplication algorithm which requires such a n may lead to
oversize the solution, and so on as n increases. However, at
the same time, asymptotic complexity of the FFT compaired
to Karatsuba counterbalance this phenomenon.
Karatsuba can also be adapted in order to reduce the com-
plexity of the reduction step required by the R-LWE problem.
Nevertheless, in the special case when n is a power of
two, the irreducible polynomial can be fixed to xn + 1, and
optimizations can be made. First, computation of the reduction
is very simple, composed by a simple polynomial addition.
Second, one can perform a special form of the FFT, the NWC
which requires a n-FFT instead of 2n. The NWC requires
specific parameters to be functional, and in particular n and q
must satisfy 4 conditions:
• The polynomial modular must be fixed to xn + 1
• q must be prime
• n must be a power of 2
• q ≡ 1 (mod 2n)

These parameters bring important issues, especially parameter
q. Because the integer modular reduction complexity is in-
versely proportional to the hamming weight of the modulus,
finding a modulus close to the modulus required for security
purposes, respecting q ≡ 1 (mod 2n) and with a small
hamming weight is a very hard work. Moreover, due to the fact
that the modular reduction by q is performed in each pre and
post computations, this operation is an important bottleneck.

Fig. 3: Proposed architecture for SHE schemes hardware
acceleration

In addition, the choice of xn + 1 for the irreducible polyno-
mial can be considered under-optimized. Indeed, because the
polynomial xn+1 is also irreducible in Z2, the batching tech-
nique [13] cannot be used. This technique is very promising
for SHE schemes because it ”packs” several ciphertexts into
a bigger one, where the resulting ciphertext is much smaller
than the sum the separated ones. A summary of pros and cons
on Karatsuba and the NWC algorithm is shown in Table III.

III. COMPARISON OF THE MULTIPLICATION ALGORITHMS
IN A COMPLETE ARCHITECTURE

A. Proposed Architecture

The proposed architecture is shown in Fig. 3. Due to
the complexity of SHE schemes, implementing a complete
crypto-processor is a hard work. To accelerate specific
steps of homomorphic cryptosystems, an hybrid and flexible
structure is needed. This is why the proposed architecture is
composed by an ARM which task is to run a SHE software
library on a Linux OS, and a FPGA which runs hardware
accelerators like a polynomial multiplier. The communication
between the ARM and the FPGA is performed through an
AXI bus with a 128-bit width.
However, the flexibility of the architecture brings some
technological issues. The hardware is penalized by the
bandwidth between the ARM and the FPGA. For a
polynomial multiplication of degree n − 1, the transfer cost
can be estimated by 4n log2 q/axi bus width.

B. Impact of the Architecture on the FFT Algorithm

The FFT algorithm is much impacted by the transfer.
Indeed, in each step of the FFT, the entire polynomial is
needed in order to complete a Butterfly stage. Thus, the
coefficients of the output polynomial cannot be calculated

TABLE IV: Comparaison of Karatsuba, FFT and NWC in
terms of operations required, for polynomials of degree n−1,
in the proposed architecture scenario

n
Karatsuba

(basic scheduling)
Karatsuba (opti-

mized scheduling) FFT NWC

256 895 767 1074 812
512 1791 1535 2104 1586
1024 3583 3071 4158 3128

during the downloading process. The updated version of the
number of operations required is described by

2n︸︷︷︸
transfer in

+

first butterfly

+3 (log2(2n)− 1)

⌈
2n

m

⌉
︸ ︷︷ ︸

FFT, IFFT

+

⌈
2n

m

⌉
︸ ︷︷ ︸

point-wise
mult

+ 2n︸︷︷︸
transfer out

+

last butterfly

where m is the number of parallel multipliers.
In the case of the NWC, the equation can be reduced to

2n︸︷︷︸
transfer in

+

first butterfly

+3 (log2(n)− 1)
⌈ n
m

⌉
︸ ︷︷ ︸

FFT, IFFT

+
⌈ n
m

⌉
︸ ︷︷ ︸

point-wise
mult

+ n︸︷︷︸
transfer out

+

last butterfly

C. Impact of the Architecture on Karatsuba’s Algorithm

Due to lower data dependencies compared to the FFT,
Karatsuba algorithm is able to produce output coefficients
even if the pre-computations are not already done. Thus,
Karatsuba can pipeline the calculation processes more
efficiently than the FFT. Moreover, the scheduling of
input and output coefficients can be optimized to further
reduce the total calculation time. We investigate different
scheduling strategies in order to measure the possibility of
speedup. If one carefully examines Karatsuba’s algorithm,
coefficients with the most important data dependencies are the
coefficients closed to the middle, because pre-computations
and post-computations are performed in the middle factor.
That is why one can optimize the pipelining by sending
first the coefficients of low degree and high degree, and
finishing by the coefficients in the middle. Due to the penalty
of the transfer, we implemented a scheduling algorithm
to minimize at the same time the number of operations
needed before producing the first output coefficient, and the
pre-computations needed between each output coefficient.

Fig. 4 compares the naive sequence with the optimized one.
The columns correspond to input coefficients (left) and output
coefficients (right). For a given line which corresponds to a
sub-product, a red square refers to an addition of the related
coefficient, where a green one refers to a subtration. In the
optimized strategy, one can observe that output coefficients are
gradually ready compared to the naive strategy, and the number
of sub-products required between each output coefficients
has been reduced. As an optimization, one can exploit the

(a) Naive solution (b) Optimized solution

Fig. 4: Comparison between two scheduling strategies for the
input and output coefficients in Karatsuba’s algorithm, for a
multiplication of polynomials of degree 63

symmetries in pre and post computations to drastically reduce
the number of recombinations needed.
Now that one knows how the input and output coefficients
are sent, the number of operations can be calculated by an
iterative algorithm. Table IV recaps the number of operations
needed for Karatsuba and the two FFTs for few values of n,
with no hardware restrictions.

D. Key Elements for the Choice of the Multiplication Algo-
rithm

Because low and middle range FPGAs have very limited
number of embedded integer multipliers, it is necessary to
compare multiplication algorithms with this constraint. Fig. 5
presents the expected speed up of Karatsuba compared to the
two FFTs with different number of embedded multipliers. As

20 30 40 50 60
0

2

4

6

8

10
sp

ee
du

p
(%

)

NWC

20 30 40 50 60
50

52

54

56

58

60

Number of embedded multipliers

FFT

Fig. 5: speedup of Karatsuba’s algorithm compared to the
FFT and the NWC with respect to the number of embedded
multipliers, for n=1024 and 1 coefficient per AXI burst

one can see, Karatsuba can speedup the FFT algorithm by
58% and the NWC by 10% for limited embedded multipliers.
When the number of multipliers tends towards zeros, the two
FFT algorithms outperform Karatsuba due to the fact that
Karatsuba has much more sub-products to achieve. When the
number of multipliers tends towards the infinity, the two FFT
algorithms improve their calculation time because Butterfly
units can be performed fastly and balance the penalty of pre
and post computations.
The speedup of Karatsuba compared to the NWC one when
one has limited embedded multipliers must also be put into
perspective because the polynomial modular reduction remains
in the case of Karatsuba, and the optimized scheduling is not
fitted to perform the polynomial reduction by xn + 1.
At the end, Karatsuba remains competitive in the case of lim-
ited hardware resources, but not in ultra-compact architectures,
and when the reduction polynomial is not fixed to xn + 1
because one wants to perform the batching technique.
A deeper study on the complexity of calculating the NWC
parameters may be interesting, because as stated before, the
bottleneck of the NWC is the integer modular reduction. In
that case, Karatsuba may renewed interest compared to the
NWC especially because in the NWC implementation in [10],
the modulus chosen is under estimated in the case of SHE and
the complexity to find such a modulus of higher length has
not been presented.

IV. CONCLUSIONS AND FUTURE WORK

A comparison between Karatsuba and the FFT polynomial
multiplication was proposed in the context of SHE schemes
based on the R-LWE problem, in terms of complexity, flexi-
bility and possible optimizations. A practical architecture for
a complete hardware acceleration of SHE schemes has been
proposed and impacts on polynomial multiplication algorithms

when dealing with this architecture has been studied.
The speedup of Karatsuba compared to the FFT one has been
studied for polynomials of few thousands coefficients and for
different hardware resources limitations.
Future work will focus on implementing different solutions
of the polynomial multiplication in order to have a deeper
analysis between each polynomial multiplication algorithm. A
study of Karatsuba’s algorithm for higher n will also be led,
especially in the case of memory limited hardware. Investiga-
tions on the way how one can optimize Karatsuba’s algorithm
in the case of consecutive homomorphic operations will also
be led. Toom-Cook algorithm will also be considered for
the polynomial multiplication, in particular when algorithms
require a division by 3 like an average operation.
A second step of the future work will investigate the acceler-
ation of other primitives of SHE schemes, for example the
generation of secret keys which needs the generation of a
discrete Gaussian.

ACKNOWLEDGMENT

This study has been financially supported by the french
Direction General de l’Armement (DGA).

REFERENCES

[1] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes,” in Proc. of Advances in Cryptology — EURO-
CRYPT, ser. NCS, 1999, no. 1592, pp. 223–238.

[2] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978.

[3] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Ph.D. disser-
tation, Stanford University, 2009.

[4] N. P. Smart and F. Vercauteren, “Fully Homomorphic Encryption with
Relatively Small Key and Ciphertext Sizes,” in Proc of Public Key
Cryptography – PKC, ser. LNCS, 2010, no. 6056, pp. 420–443.

[5] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” J. ACM, vol. 56, no. 6, 2009.

[6] T. Lepoint and M. Naehrig, “A Comparison of the Homomorphic
Encryption Schemes FV and YASHE,” in Proc. of AFRICACRYPT, ser.
LNCS, vol. 8469, 2014, pp. 318–335.

[7] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On
the Design of Hardware Building Blocks for Modern Lattice-Based En-
cryption Schemes,” in Proc. of Cryptographic Hardware and Embedded
Systems – CHES, ser. LNCS, 2012, no. 7428, pp. 512–529.

[8] T. Pöppelmann and T. Güneysu, “Towards Practical Lattice-Based
Public-Key Encryption on Reconfigurable Hardware,” in Proc. of Se-
lected Areas in Cryptography – SAC, ser. LNCS, 2014, no. 8282, pp.
68–85.

[9] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and area-efficient
FPGA implementations of lattice-based cryptography,” in Proc. of IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST), Jun. 2013, pp. 81–86.

[10] D. D. Chen, N. Mentens, F. Vercauteren, S. R. Roy, R. C. Cheung,
D. Pao, and I. Verbauwhede, “High-Speed Polynomial Multiplication
Architecture for Ring-LWE and SHE Cryptosystems,” IEEE Transac-
tions on Circuits and Systems I, vol. 62, no. 1, pp. 157–166, Jan. 2015.

[11] A. Karatsuba and Y. Ofman, “Multiplication of multi-digit numbers on
automata (in russian),” Doklady Akad. Nauk SSSR, vol. 145, no. 2, p.
293–294, 1962, translation in Soviet Physics-Doklady, 44(7), 1963, pp.
595-596.

[12] J. Pollard, “The Fast Fourrier Transform in a Finite Field,” in Mathe-
matics of Computation, 1971, vol. 25, no. 90, pp. 365–374.

[13] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” in Proc. of the 3rd
Innovations in Theoretical Computer Science Conference, ser. ITCS,
2012, pp. 309–325.

