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SOME RECENT DEVELOPMENTS IN FUNCTIONAL INEQUALITIES

EMMANUEL BOISSARD, NATHAEL GOZLAN, JOSEPH LEHEC, CHRISTIAN LÉONARD,
GEORG MENZ, AND ANDRÉ SCHLICHTING

1. Introduction

This paper presents different recent directions in the study of some classical functional
inequalities: the Poincaré inequality, the logarithmic Sobolev inequality and Talagrand’s
quadratic transport-entropy inequality. The results presented in this text were the sub-
jects of a series of talks given by the authors in the session “Functional inequalities”
during the Journées MAS 2012 in Clermont-Ferrand.

Let us recall the definitions of the above mentioned inequalities and fix some notation.
In what follows, µ is a probability measure on some smooth Riemannian manifold (X , g)
equipped with its geodesic distance d. In all the paper, P(Y ) will always denote the space
of Borel probability measures on a measurable space Y.

The Poincaré inequality compares the variance of a function f to the L2 norm of its
derivative: µ verifies Poincaré inequality with constant C ≥ 0, in short PI(C), if

C Varµ(f) ≤
∫
|∇f |2 dµ, (1.1)

for all f smooth enough.
In the same spirit, the logarithmic Sobolev inequality gives a similar comparison in-

volving the entropy functional instead of the variance: µ verifies the logarithmic Sobolev
inequality LSI(C), C ≥ 0 if

Entµ(f 2) :=

∫
f 2 log

(
f 2∫
f 2 dµ

)
dµ ≤ C

∫
|∇f |2 dµ, (1.2)

for all smooth enough function f .
Finally, Talagrand’s inequality compares the quadratic transport cost between µ and

another probability measure ν to the relative entropy of ν with respect to µ: µ verifies
Talagrand’s inequality T2(C), C ≥ 0, if

W 2
2 (ν, µ) ≤ CH(ν|µ), ∀ν ∈ P(X ). (1.3)

In the equation above, W2 denotes the quadratic Wasserstein distance. Recall that for
p ≥ 1, Wp is defined, for all µ0, µ1 ∈ P(X ), by

W p
p (µ0, µ1) := inf

{∫
X 2

dp(x, y) π(dxdy); π ∈ P(X 2) : π0 = µ0, π1 = µ1

}
(1.4)
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where π0(dx) := π(dx × X ) and π1(dy) := π(X × dy) are the marginal measures on X
of π ∈ P(X 2). The relative entropy H(ν|m) of a probability measure ν with respect to a
general positive measure m is defined by

H(ν|m) =

∫
log

dν

dm
dν, (1.5)

if ν is absolutely continuous with respect to m and +∞ otherwise. When m is a proba-
bility measure, H(ν|m) ≥ 0.

We refer to [BE85], [ABC+00], [Led01], [Roy07], [GL10], [Vil03, Vil09], [BGL13] for
general introductions to these functional inequalities and their applications to the study
of Markov semigroups, concentration of measure, statistical mechanic, geometric inequal-
ities. . . Let us just mention the following well known results. First, the basic hierarchy
between these three inequalities, which was discovered by Otto and Villani in [OV00], is
the following

LSI(C)⇒ T2(C)⇒ PI(2/C).

Second, a well known sufficient condition for LSI is the Bakry-Emery condition CD(κ,∞)
[BE85]: if µ = e−V (x) dx, where dx is the Riemannian measure and V a function of class
C2 verifies

Ric + HessV ≥ κ, (1.6)

then µ verifies LSI(2/κ). Finally, let us mention that the works by Lott-Villani [LV09]
and Sturm [Stu06a, Stu06b] introduced a new definition of the condition CD(κ,∞) that
makes sense for general geodesic metric spaces. This new definition is formulated in
terms of convexity properties of the relative entropy functional along the geodesics for the
Wasserstein distance W2 (see Section 2 for more informations). When the metric space
is a Riemannian manifold, the CD(κ,∞) condition of Lott-Sturm-Villani coincides with
the Bakry-Emery condition (1.6).

The paper is organized as follows.
Section 2 contains the contribution by Christian Léonard based on his papers [Léoa,

Léob, Léoc]. The general question considered there is how to extend the CD(κ,∞) con-
dition to discrete spaces. Indeed, for such spaces, the Lott-Sturm-Villani CD(κ,∞) con-
dition can not be satisfied. Section 2 presents some new ideas related to discrete Markov
processes that could yield to an interesting discrete version of CD(κ,∞).

Section 3 contains the contribution of Emanuel Boissard based on his paper [BLG12]
(joint with Thomas Le Gouic) and deals with the question of finding a good approxima-
tion of a continuous distribution by a discrete one. The quality of the approximation is
measured with respect to the Wasserstein distances Wp. Transport inequalities play a role
to give some quantified version of Varadarajan theorem, namely to show that with high
probability the empirical distribution of an i.i.d sequence sequence is close in W2 distance
to the reference probability.

Section 4 contains Joseph Lehec’s contribution based on [Leh12]. A representation
formula due to Föllmer of the relative entropy with respect to the Wiener measure is used
to provide unified proofs of several classical functional inequalities for Gaussian measures.
In Section 4, the technique is illustrated by showing a short proof of the T2 inequality for
the Wiener process.

Section 5 contains the contribution by Georg Menz and André Schlichting based on
[MS12]. The question is to give a precise asymptotic for the Log-Sobolev or Poincaré
constants of a Gibbs measure µT (dx) = 1

ZT
e−H(x)/T dx when T → 0 (low temperature).
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Under different regularity assumptions, the Eyring-Kramer [GLE41] formula gives the
first order behavior of the Poincaré constant. In section 5, an alternative proof of this
formula is sketched using a variance decomposition formula and a transport argument.

Acknowledgements. Many thanks to the organizers of the Journées MAS 2012 at Clermont-
Ferrand, with a special mention for Arnaud Guillin.

2. Two transforms of Markov processes related to curvature

Introduction. We sketch some ideas related to the problem of defining a type of Ricci
curvature for metric measure spaces. We especially have in mind the case of a discrete
space. Our guideline is standard: we rely on convexity properties of some relative entropy
along interpolations. Our thesis is that not only displacement interpolations (related to
optimal transport), but also entropic interpolations (related to the Schrödinger problem)
could be useful for the purpose of understanding curvature. To construct these entropic
interpolations, we introduce two transforms: (i) the (f, g)-transform of a Markov measure
and (ii) a slowing down procedure which allows to recover displacement interpolations as
limits of entropic ones.

At Section 2.1, basic facts about the Lott-Sturm-Villani theory are recalled. Then, we
give some informal arguments at Section 2.2 in favor of a specific construction of some
displacement interpolation on an abstract space which admits some reversible Markov
process. Two transforms of Markov measures appear naturally. The first one which we
call (f, g)-transform, is developed at Section 2.3 and the second one, which is a slowing
down procedure, is commented on at Section 2.4.

Most of the present material comes from the papers [Léo12, Léoa, Léob]. Very little
about literature is proposed; more is given in the previously cited papers.

2.1. Lower bounded curvature and its connections with some functional in-
equalities. We recall the basis of the Lott-Sturm-Villani theory of lower bounded cur-
vature on length spaces. The reference textbook on the subject is Villani’s textbook
[Vil09].

Basic facts about the Lott-Sturm-Villani theory. Let X be a Riemannian manifold with
Riemannian distance d. The Wasserstein pseudo-distance W2 of order 2 between two
probability measures µ0 and µ1 on P(X ) is defined by (1.4). In restriction to P2(X ) :={
p ∈ P(X );

∫
X d

2(xo, x) p(dx) <∞
}
, for some xo ∈ X , W2 is a distance. Suppose for

simplicity that µ0, µ1 ∈ P2(X ) are such that the infimum in the expression of W 2
2 (µ0, µ1) is

uniquely achieved (for instance when µ0 or µ1 is absolutely continuous). Denote π̂ ∈ P(X 2)
this optimal coupling and suppose in addition that π̂ doesn’t give any mass to the cut-
locus. Then, the W2-displacement interpolation [µ0, µ1] := (µt)t∈[0,1] ∈ P2(X )[0,1] between
µ0 and µ1 is unique and is given by

µt(dz) =

∫
X 2

δγxyt π̂(dxdy), 0 ≤ t ≤ 1 (2.1)

where for any x; y ∈ X , γxy is the constant speed geodesic path between x and y. It
follows from d(γxys , γ

xy
t ) = |t− s|d(γxys , γ

xy
t ), 0 ≤ s, t ≤ 1, that

W2(µs, µt) = |t− s|W2(µ0, µ1), 0 ≤ s, t ≤ 1,

meaning that [µ0, µ1] is a constant speed geodesic path on (P2(X ),W2). This interpolation
was introduced by McCann in [McC97].
Recall that the relative entropy functional H is defined by (1.5).
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Theorem 2.1 (Sturm-von Renesse, [Sv05]). The compact Riemannian manifold X has
a Ricci curvature bounded from below by κ ∈ R if and only if for any W2-displacement
interpolation [µ0, µ1], µ0, µ1 ∈ P2(X ), we have

H(µt|vol) ≤ (1− t)H(µ0|vol) + tH(µ1|vol)− κW 2
2 (µ0, µ1)t(1− t)/2, ∀0 ≤ t ≤ 1,

where vol is the normalized volume measure on X .

As t 7→ µt is not twice differentiable, this is a nonsmooth statement for the informal
convexity inequality d2

dt2
H(µt|vol) ≥ κW 2

2 (µ0, µ1). Some interesting consequences of this
powerful result are the following convergence to equilibrium and concentration of the
equilibrium measure properties.

(1) Exponential W2-contraction of the heat flow: Let νt = ν0e
t∆ denote the heat

flow starting at ν0 ∈ P2(X ); ∆ is the Laplace-Beltrami operator. Then, for all
α, β ∈ P2(X ),

W2(αet∆, βet∆) ≤ e−κtW2(α, β), t ≥ 0.

It follows immediately that when κ > 0, the heat flow performs an exponentially
fast convergence to equilibrium: W2(µet∆, vol) ≤ e−κtW2(µ, vol), t ≥ 0.

(2) Logarithmic Sobolev inequality: When κ > 0, then LSI(2/κ) is satisfied. This
can be restated as follows: for all µ ∈ P(X ),

H(µ|vol) ≤ κ−1I(µ|vol), (2.2)

where I(µ|vol) := d
dt |t=0

H(µet∆|vol) = 1
2

∫
X |∇ log dµ

dvol
|2 dµ is the Fisher informa-

tion of µ with respect to vol (entropy production). Again, we see that the heat
flow performs the following exponentially fast convergence to equilibrium:

H(µet∆|vol) ≤ e−κtH(µ|vol), t ≥ 0. (2.3)

(3) Talagrand’s transport inequality: When κ > 0, then T2(2/κ) is verified. As was
recalled in the introduction, LSI implies T2, but the entropy convexity allows for
a direct proof. Furthermore, for each n ≥ 1, T2 also holds for the volume measure
vol⊗n on the product space X n : For all µ ∈ P(X n),

κ

2
W 2

2 (µ, vol⊗n) ≤ H(µ|vol⊗n),

with the same constant κ. Marton’s argument leads us to a dimension-free Gauss-
ian concentration inequality for the equilibrium measure vol⊗n on X n : For any
n ≥ 1, vol⊗n concentrates as the Gaussian measure with variance κ−1. This means
that for any measurable subset A ⊂ X n such that vol⊗n(A) ≥ 1/2,

vol⊗n(Ar) ≥ 1− exp
(
−κ(r − ro)2/2

)
, r ≥ ro :=

√
log(2)

where Ar := {x ∈ X n, d2(x, y) ≤ r, for some y ∈ X n} is the r-blowup of A with
respect to the distance d2 on X n defined by d2

2(x, y) :=
∑

1≤i≤n d
2(xi, yi). Note that

it is shown in [Goz09] that dimension-free Gaussian concentration is equivalent to
T2. For more details about concentration of measure and transport inequalities,
including LSI =⇒ T2, Marton’s argument and Gozlan’s dimension-free concen-
tration result, see [GL10] for instance.

The Lott-Sturm-Villani theory [LV09, Stu06a, Stu06b] extends these results from the
Riemannian manifold setting to any length space X , i.e. a metric space which admits
constant speed geodesic paths for arbitrary endpoints. Typically, one can think of X
as the Gromov-Hausdorff limit of Riemannian manifolds. Unfortunately, this rules out
discrete spaces since they are not geodesic. This theory also extends the above results to
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weighted length spaces where the reference measure vol is replaced by m = e−V vol for
some nonnegative function V : X → [0,∞).

2.2. Constructing displacement interpolations. We wish to find a unifying approach,
embracing the settings of Riemannian manifolds and weighted valued graphs that leads
to curvature results as above.

Notation. Our basic ingredients are a Polish state space X with its Borel σ-field, the
path space Ω ⊂ X [0,1], the state P(Ω) of all probability measures on Ω. We denote by
X = (Xt)0≤t≤1 the canonical process that is defined by Xt(ω) = ωt for any t ∈ [0, 1]
and any ω = (ωs)0≤s≤1 ∈ Ω. The law of the random position at time 0 ≤ t ≤ 1 under
P ∈ P(Ω) is Pt = (Xt)#P ∈ P(X ).

An expected result. We also choose a reference measure m ∈ M+(X ), the space of non-
negative measures on X , which is going to play the same role as vol or e−V vol in previous
section. Our aim is to design some interpolation [µ0, µ1] = (µt)0≤t≤1 ∈ P(X )[0,1] and
consider the relative entropy as a function of time along the interpolation:

h(µ0,µ1)(t) := H(µt|m), t ∈ [0, 1].

In analogy with Theorem 2.1, the expected type of result is as follows.

Informal statement 2.2. If there exists κ ∈ R such that for any (µ0, µ1),

h(µ0,µ1)(t) ≤ (1− t)h(µ0,µ1)(0) + th(µ0,µ1)(1)− ΦL(t, µ0, µ1;κ), ∀t ∈ [0, 1]

where ΦL is some well-chosen function, then the “curvature” of the generator L is bounded
from below by κ.

When saying that a Markov generator L has a lower bounded curvature, we identify
the lower bound of the Ricci curvature of a Riemannian manifold with that of its Laplace-
Beltrami operator.

A specific question is: “What about a discrete state space X with a graph structure ?”

Two transforms. How to interpolate properly between two probability measures µ0 and
µ1 ∈ P(X )? To validate an interpolation, it is necessary that it shares some analogues of
the specific properties of the usual W2-displacement interpolation. The main idea is as
follows.

A thought experiment. Suppose you observe at time t = 0 a very large collection of
particles that are distributed with a profile close to the probability measure µ0 ∈ P(X )
on the state space X .

(1) As in the lazy gas experiment proposed by Schrödinger in 1931 [Sch31] and also
described in Villani’s textbook [Vil09, p. 445] in a different context, ask them to
rearrange into a new profile close to some µ1 ∈ P(X ) at some later time t = 1. Since
the particles are able to create mutual optimality (Gibbs conditioning principle),
they will find an optimal transference plan between µ0 and µ1. For details about
the Schrödinger problem, see [Léod].

(2) Now, we add something new with respect to Schrödinger’s original problem: we
suppose that the typical speed of these particles is close to zero (the particles are
lazy), then each particle will decide to travel at the lowest possible cost, meaning
that it chooses an almost geodesic path. Indeed, since it is very slow, it is typically
expected that its final position is close to its initial one. But it is required by the
optimal transference plan that it reaches a distant final position.
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Let us go back to (2.1). Informally, the Schrödinger problem described at (1) is respon-
sible for the transference plan π̂ while the slowing procedure at (2) enforces the appearance
of the geodesic paths in δγxy . Therefore, it is worth defining the displacement interpolation
to be the limit of the flow of t-marginal profiles on X of this lazy particle system, as the
number of particles tends to infinity and the slowing down tends to zero-speed.

Let us give a short analytic description of its construction. Let R ∈ M+(Ω) be a
reversible Markov process with generator L and reversing measure m ∈ M+(X ). For
instance, one can think of the reversible Brownian motion on X = Rn, i.e. the Wiener
measure with Lebesgue measure as its initial marginal or a random walk on a graph
X satisfying the detailed balance conditions. Introduce the following two elementary
transforms of R.

(1) (f, g)-transform:

P = f0(X0)g1(X1)R. (2.4)

This transform is attached to the Schrödinger problem in the following sense. If the
nonnegative measurable functions f0, g1 : X → [0,∞) are such that P0 = µ0 and
P1 = µ1, then P ∈ P(Ω) corresponds to the most likely random behaviour under
the constraints of Schrödinger’s thought experiment. It is the unique solution of
the so-called Schrödinger problem, see [Léod, Thm. 2.12]:

H(P |R)→ min; P ∈ P(Ω) : P0 = µ0, P1 = µ1. (2.5)

The (f, g)-transform P given at (2.4) is the response to the need of a collective
optimal rearrangement.

(2) Slowing down :

Lk := k−1L, k →∞.
To see that this corresponds to slowing down, write the Markov semi-group etL

k
=

e(t/k)L, t ≥ 0. We introduce the sequence (Rk)k≥1 in M+(Ω) of Markov measures
with initial measure Rk

0 = m and generator Lk for each k ≥ 1.

Mixing this two transforms leads us to

P k := fk0 (X0)gk1(X1)Rk

where fk0 and gk1 are chosen such that limk P
k
0 = µ0 and limk P

k
1 = µ1.

Definition 2.3. The displacement interpolation [µ0, µ1] = (µt)t∈[0,1] between µ0 and µ1 is
given by

µt := lim
k→∞

P k
t , t ∈ [0, 1]

if this limit exists.

It is shown in the author’s paper [Léo12] that when the particles perform Brownian mo-
tions on X = Rn, the resulting interpolation is the usual W2-displacement interpolation.
In [Léoa], this approach leads to displacement interpolations on a discrete metric graph
(X , d) which are constant speed geodesic paths on the Wasserstein space (P(X ),W1) of
order 1 with W1(µ0, µ1) := inf

{∫
X 2 d(x, y) π(dxdy); π ∈ P(X 2) : π0 = µ0, π1 = µ1

}
.

2.3. (f, g)-transform. We provide some details about the first transform related to the
Schrödinger problem. Let us introduce a time-symmetric version of Doob’s h-transform.

Definition 2.4. In view of (2.4), we call P := f0(X0)g1(X1)R ∈ P(Ω) an (f, g)-
transform of the Markov path measure R ∈ M+(Ω).
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Let f0, g1 as above be given. We introduce for each t ∈ [0, 1], the functions ft, gt : X →
[0,∞) defined by{

ft(z) := ER(f0(X0) | Xt = z)
gt(z) := ER(g1(X1) | Xt = z)

, for Pt-a.e. z ∈ X . (2.6)

The Markov property of the reference path measure R implies the following result.

Theorem 2.5. The path measure P = f0(X0)g1(X1)R is Markov and for each 0 ≤ t ≤ 1,
its time marginal Pt ∈ P(X ) is given by Pt = ftgtm.

Proof. See [Léod, Thm. 3.4]. �

Definition 2.6. We call [µ0, µ1]R = (µt)t∈[0,1] with µt = ftgtm the R-entropic interpola-
tion between µ0 and µ1.

As P is Markov, it admits forward and backward generators
−→
A and

←−
A. To express

them, we need to introduce the carré du champ1 of R. It is defined for any functions u, v
on X such that u, v and uv are in domL, by

Γ̃(u, v) := L(uv)− uLv − vLu.

In general, the forward and backward generators (∂t +
−→
A t)0≤t≤1 and (−∂t +

←−
A t)0≤t≤1 of

P depend explicitly on t. The following informal statement is known for long in specific
situations. Rigorous statement and proof are given in [Léoc] for instance.

Informal statement 2.7. Under some hypotheses on R, the forward and backward gen-
erators of the (f, g)-transform P are given for any function u : [0, 1]×X → R belonging
to some class of regular functions, by

−→
A tu(x) = Lu(x) +

Γ̃(gt, u)(x)

gt(x)
, (t, x) ∈ [0, 1)×X

←−
A tu(x) = Lu(x) +

Γ̃(ft, u)(x)

ft(x)
, (t, x) ∈ (0, 1]×X

where ft, gt are defined at (2.6). Because of Theorem 2.5, for any t no division by zero
occurs Pt-a.e.

It is worthwhile describing these dynamics in terms of

{
ϕ := log f,
ψ := log g

. It gives us{ ←−
A t = Aϕt := L+ e−ϕtΓ̃(eϕt , ·)
−→
A t = Aψt := L+ e−ψtΓ̃(eψt , ·)

(2.7)

where ϕ and ψ are solutions of the Hamilton-Jacobi equations{
(−∂t +B)ϕ(t, x) = 0, 0 < t ≤ 1,
ϕ0 = log f0, t = 0,

{
(∂t +B)ψ(t, x) = 0, 0 ≤ t < 1,
ψ1 = log g1, t = 1,

(2.8)

where the non-linear operator B is defined by Bu := e−uLeu for any function u such that
eu ∈ domL.

1Its standard definition among the “functional inequalities” community is Γ = Γ̃/2.
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The Brownian case. In the special case where R = Ro is the reversible Brownian motion

on X = Rn, we have Lu = Lou := ∆u/2, Bu = ∆u/2 + |∇u|2/2, Γ̃(u, v) = ∇u · ∇v for
any u, v ∈ C2(X ). The expressions (2.7) are{ −→

A t = ∆/2 +∇ψt · ∇←−
A t = ∆/2 +∇ϕt · ∇

where ψ solves (2.8):{
(∂t + ∆/2)ψt(x) + |∇ψt(x)|2/2 = 0, (t, x) ∈ [0, 1)×X
ψ1 = log g1, t = 1,

and ϕ solves {
(−∂t + ∆/2)ϕt(x) + |∇ϕt(x)|2/2 = 0, (t, x) ∈ (0, 1]×X
ϕ0 = log f0, t = 0.

Let us go back to the general case and define the operators
C := B − L (nonlinear part of the HJ operator B),

Θ(u) := e−uΓ̃(eu, u)− Cu,
Θ2(u) := LΘu+ e−uΓ̃(eu,Θu) +Bu e−uΓ̃(eu, u)− e−uΓ̃(euBu, u).

Theorem 2.8 (Second derivative of the entropy along the entropic interpolations). Fix
the R-entropic interpolation [µ0, µ1]R = (µt)t∈[0,1] and consider the function

h(µ0,µ1)(t) := H(µt|m), t ∈ [0, 1].

Then, h(µ0,µ1) is twice differentiable on (0, 1) and

h′(µ0,µ1)(t) = 〈−Θ(ϕt) + Θ(ψt), µt〉,
h′′(µ0,µ1)(t) = 〈Θ2(ϕt) + Θ2(ψt), µt〉.

Proof. See [Léob]. �

In the Brownian case with some potential V , i.e. L = 1
2
(∆−∇V · ∇), we have

Θ(u) = Γ(u)/2 := |∇u|2/2
Θ2(u) = LΓ(u)− 2Γ(Lu, u) =: Γ2(u)/2

=
(
‖∇2u‖2

HS + [∇2V + Ric](∇u)
)
/2

where Ricx(v) is the Ricci curvature at x ∈ X in direction v ∈ TxX and Γ,Γ2 refer to the
standard definitions of the carré du champ and its iteration associated with the generator
2L that were introduced by Bakry and Emery in [BE85]. We note that Θ and Θ2 are half
the Bakry-Emery operators Γ and Γ2. Last equality is a consequence of Bochner formula.

We see immediately that the curvature-dimension bound CD(κ,∞)
def⇐⇒ Γ2 ≥ κΓ writes

as

Θ2 ≥ κΘ.

An immediate consequence of Theorem 2.8 is the following

Corollary 2.9. Let Ro be the reversible Brownian motion on the Riemannian manifold X .
Then, X has nonnegative Ricci curvature if and only if for any Ro-entropic interpolation
(µt)t∈[0,1] = [µ0, µ1]R

o
, the function t ∈ [0, 1] 7→ H(µt|m) is convex.

Let us define the Fisher information by I(ρm|m) :=
∫
X Θ(log ρ) ρ dm, ρm ∈ P(X )
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Corollary 2.10 (Logarithmic Sobolev inequality, general case). Let X be any state space
admitting an m-reversible Markov measure with generator L. Denote νt := ν0e

tL, t ≥ 0
the corresponding heat flow. Assume that Θ2 ≥ κΘ. Then,

(1) κ ∈ R: I(νt|m) ≤ I(ν0|m)e−κt, t ≥ 0.
(2) κ > 0: H(νt|m) ≤ H(ν0|m)e−κt, t ≥ 0
(3) κ > 0: H(α|m) ≤ κ−1I(α|m), ∀α ∈ P(X ).

Last inequality is the already encountered logarithmic Sobolev inequality (2.2).

Sketch of proof. Instead of the time interval [0, 1], we consider [0, T ] and let T → ∞.

We see that νt = Pt with P = ρ0(X0)R. This corresponds to

{
f0 = ρ0

gT ≡ 1
, that is{

ϕt = log ρt,
ψt ≡ 0.

for all t ≥ 0. Denoting h(t) = H(νt|m), it follows with Theorems 2.5

and 2.8 that I(t) := −h′(t) = 〈Θ(ϕt), νt〉 = I(νt|m). Our assumption Θ2 ≥ κΘ implies
I ′(t) ≤ −κI(t). Hence, we obtain I(t) ≤ I(0)e−κt which is inequality (1). On the other
hand, we have H(ν0|m) = h(0)− h(∞) =

∫∞
0
I(t) dt ≤ I(0)

∫∞
0
e−κt dt = I(0)/κ which is

inequality (3) with ν0 = α. Now, plugging α = νt into (3) gives us: h(t) ≤ −h′(t)/κ. This
implies h(t) ≤ h(0)e−κt which is inequality (2). �

2.4. Slowing an (f, g)-transform down. Let R be Markov with generator L. The
slowed down process is represented by the sequence (Rk)k≥1 in M+(Ω) of Markov measures
associated with the generators Lk := L/k, k ≥ 1. Remark that slowing the process down
doesn’t modify its reversible measure m; one converges more slowly towards the same
equilibrium. Suppose also that the sequence (Rk)k≥1 in M+(Ω) obeys the large deviation
principle in Ω with speed αk and rate function C, meaning approximately that for a “large
class” of measurable subsets A of Ω, we have

Rk(A) �
k→∞

exp

[
−αk inf

ω∈A
C(ω)

]
. (2.9)

Recall that the (f, g)-transform of R given at (2.4) is the unique minimizer, if it exists,
of the Schrödinger problem (2.5). Therefore, the convergence of a sequence of (f, g)-
transforms may result from the variational convergence of the corresponding Schrödinger
problems. It happens that (2.5) must be normalized as follows

H(P |Rk)/αk → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1 (Skdyn)

to Γ-converge as k tends to infinity to the dynamical Monge-Kantorovich optimal trans-
port problem ∫

Ω

C dP → min; P ∈ P(Ω) : P0 = µ0, P1 = µ1. (MKdyn)

It is easily seen that any minimizer of (MKdyn) concentrates on minimizing geodesic paths.
Similarly, the static analogue of (Skdyn) which is

H(π|Rk
01)/αk → min; π ∈ P(X 2) : π0 = µ0, π1 = µ1 (Sk)

where Rk
01 ∈ P(X 2) is the joint law of the endpoint (X0, X1) under Rk, Γ-converges to the

Monge-Kantorovich optimal transport problem∫
X 2

c dπ → min; π ∈ P(X 2) : π0 = µ0, π1 = µ1 (MK)

with c defined by c(x, y) := inf {C(ω);ω ∈ Ω : ω0 = x, ω1 = y} .
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Informal statement 2.11 (See [Léo12, Léoa]). Suppose that the slowed down Markov
measure Rk ∈ M+(Ω) associated with the generator Lk := L/k satisfies the large deviation
principle (2.9) with speed αk and rate function C in Ω. Then,

Γ- lim
k→∞

(Skdyn) = (MKdyn) and Γ- lim
k→∞

(Sk) = (MK).

In particular:

(1) In the reversible Brownian motion case in X = Rn, we have:
αk = k, C(ω) =

∫
[0,1]
|ω̇t|2/2 dt, c(x, y) = |y − x|2/2.

(2) In the case of a random walk on a graph X , we have:
αk = log k, C(ω) =

∑
0≤t≤1 1{ωt 6=ωt−} and c = d the standard graph distance.

An important consequence of this convergence result is that the limit µt := limk→∞ P
k
t

in the Definition 2.3 of the displacement interpolation is effective under mild hypotheses,
see [Léo12, Léoa].

The role of slowing down. We have just seen that slowing down is necessary for con-
structing displacement interpolations as limits of entropic interpolations. But it is not
mandatory in every problem about curvature. Indeed, denoting Θk and Θk

2 the operators
Θ and Θ2 associated with the slowed down generator Lk = k−1L, we immediately remark
that {

Θk = k−1Θ,
Θk

2 = k−2Θ,

so that the CD(κ,∞) bound at level k: Θk
2 ≥ κΘk, boils down to Θ2 ≥ κkΘ. We see that

the role of k is irrelevant since it only changes the time scale: think of the rate e−κkt of
convergence to equilibrium in (2.3).

Both entropic and displacement interpolations admit conserved quantities, but they
are much simpler for the displacement interpolations than for the entropic interpolations.
In particular, the displacement interpolations have a constant speed so that computing
with them is easier. In relation with these conserved quantities, remark that unlike the
displacement interpolation [µ0, µ0] with µ1 = µ0, the entropic interpolation [µ0, µ0]R is
not constantly equal to µ0. It seems that there is no way of deriving transport-entropy
inequalities with optimal constants such as (1.3) from entropic interpolations. The in-
herent fluctuation of these interpolations weakens the constants which are optimal at the
“no-motion limit”: k → ∞, i.e. when working with displacement, rather than entropic,
interpolations.

A more sophisticated slowing down than L/k is performed in [Léoa] which allows for
recovering any distance d on a graph. It is shown that L/k leads to the standard graph
distance, while one needs to slow down at rate k−d(x,y) along the edge (x, y) in the general
case. Therefore, slowing down allows for recovering a given distance on a graph.

Conclusion. There is still work to be done.
In particular, it is necessary to make precise the function ΦL that appears at Statement

2.2 in the case where X is a discrete space. This will require to transfer the computation
rules of the dynamics of the entropic interpolations [µ0, µ1]R

k
which are given at (2.7) and

(2.8), to the displacement interpolations by letting k tend to infinity.
Another challenge is to interpret when X is a discrete space, the Θ2-inequality: Θ2 ≥

κΘ, in terms of some discrete curvature to be defined. Part of the difficulty comes from
the complexity of the expression of Θ2 which is more involved than its analogue Γ2/2. In
particular, it would be interesting to isolate a pertinant analogue of the Ricci curvature
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by means of a Bochner-like formula. The comparison with Ollivier’ s coarse curvature
[Oll09] should also be investigated.

3. FIX ME

3.1. Introduction. We recall the so-called empirical law of large numbers : let (E, d, µ)
denote a measured Polish space, and let Ln = 1

n

∑n
i=1 δXi denote the empirical measure

associated with the i.i.d. sample (Xi)1≤i≤n of law µ. With probability 1, Ln → µ as
n→ +∞ (convergence is understood in the sense of the weak topology of measures). This
theorem is known as Glivenko-Cantelli theorem and is due in this form to Varadarajan
[Var58].

Our purpose here is to give bounds on the speed of convergence in Wp distance (de-
fined by (1.4)) for the Glivenko-Cantelli theorem, i.e. bounds for the a.s. convergence
Wp(Ln, µ)→ 0, following [BLG12].

Such results are desirable notably in view of numerical and statistical applications.
There are many works in statistics devoted to convergence rates in some metric associated
with the weak convergence of measures, see e.g. [Dud68], [vdVW96]. For Wasserstein
metrics, such bounds can be deduced from [AKT84], [Tal92], [HK94], [DY95], [?], [BB11].
Additionally, the approximation of a given probability measure by a measure with finite
support in Wasserstein distance is a topic that appears in various guises in the literature,
see for example [GL00]. The first motivation for this work was to extend the results
obtained by F. Bolley, A. Guillin and C. Villani [BGV07] in the case of variables with
support in Rd.

The problem of convergence of Wp(Ln, µ) to 0 can be divided in two separate questions
:

• the first one is to estimate the mean rate of convergence, that is the convergence
rate of E[Wp(Ln, µ)],
• while the second one is to study the concentration properties of Wp(Ln, µ) around

its mean, that is to find bounds on the quantities

P(Wp(Ln, µ)− E[Wp(Ln, µ)] ≥ t).

3.2. Convergence in mean in Polish spaces and applications. We recall that for
S ⊂ E, the covering number of order δ for S, denoted by N(S, δ), is defined as the minimal
n ∈ N such that there exist x1, . . . , xn in S with

S ⊂ ∪ni=1B(xi, δ).

Our main statement is summed up in the following result.

Theorem 3.1. Choose t > 0. Let µ be a probability measure on E with support included
in S ⊂ E with finite diameter δS such that N(S, t) < +∞. We have the bound :

E[Wp(Ln, µ)] ≤ c

(
t+ n−1/2p

∫ ∆S/4

t

N(S, δ)1/2p dδ

)
.

with c ≤ 22.

This result can then be applied by fine-tuning the choice of the scale t when additional
information on the covering numbers is available.

We now quote one important application from [BLG12]. We tackle the case where E
is a separable Banach space with norm ‖ · ‖, and µ a centered Gaussian random variable
with values in E. The couple (E, µ) is called a (separable) Gaussian Banach space.
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Let X be an E-valued r.v. with law µ, and define the weak variance of µ as σ =
supf∈E∗,|f |≤1 E[f 2(X)]1/2. The small ball function of a Gaussian Banach space (E, µ) is
defined as

ψ(t) = − log µ(B(0, t)).

We assume that

(1) there exists κ > 1 such that ψ(t) ≤ κψ(2t), for 0 < t ≤ t0,
(2) for all ε > 0, n−ε = o(ψ−1(log n)).

Theorem 3.2. Let (E, µ) be a Gaussian Banach space with weak variance σ and small
ball function ψ. Assume that Assumptions (1) and (2) hold. Then there is a C = C(µ)
(depending explicitly on the quantities above) such that

E[W2(Ln, µ)] ≤ Cψ−1(log n). (3.1)

In order to underline the interest of the result above, we introduce some definitions from
the field of optimal quantization, see [GL00]. For n ≥ 1 and 1 ≤ r < +∞, define the
optimal quantization error at rate n as

δn,r(µ) = inf
ν∈Θn

Wr(µ, ν)

where the infimum runs over the set Θn of probability measures with finite support of
cardinal bounded by n. Roughly speaking, Theorem 4.1 in [DFMS03] and Theorem 2 in
[GLP03] imply that there exist c, c′ > 0 such that

cψ−1(log n) ≤ δn,r ≤ c′ψ−1(log n).

We can restate Theorem 3.2 by saying that (under some assumptions on the small ball
function and when the distortion index is r = 2) the empirical measure is a rate-optimal
quantizer in average - and in fact with high probability, see below. Using empirical
measures as candidates for quantization is also envisioned in the recent work [DSS11]. As
an illustration, we consider the classical case where E = (L2([0, 1]), ‖ · ‖2) and µ is the
Wiener measure. In this case, we quote [DFMS03] to get ψ(t) ∼t→0

1
8t2

. Thus,

1√
8 log n

≤ δn,r ≤
1√

log n

Actually, a sharper result is δn,r ∼
√

2/π
√

log n, c.f. [LP04]. In our case, we get the

bound E[W2(Ln, µ)] = O
(

1√
logn

)
.

3.3. Concentration around the mean via transportation inequalities. So- called
transportation inequalities (as defined e.g. in [GL10]) provide a powerful tool to tackle
concentration of Wp(Ln, µ) around its mean. The next result states that a T2 inequality
on µ implies a Gaussian concentration inequality for W2(Ln, µ). We reproduce a particular
case of more general results of N. Gozlan and C. Léonard ([GL07, GL10]).

Theorem 3.3. ([GL07], Theorem 12). Let a probability measure µ on E satisfy the
inequality T2(C) inequality. The following holds :

P(W2(Ln, µ) ≥ E[W2(Ln, µ)] + t) ≤ exp

(
−nt

2

C

)
. (3.2)

Proposition 3.4. Let (E, µ) be a Gaussian Banach space and let σ2 denote the weak
variance of µ. Then µ satisfies the inequality T2(2σ2). Hence,

P (W2(Ln, µ) ≥ E[W2(Ln, µ)] + t) ≤ exp

(
−n t2

2σ2

)
.
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4. Representation formula for the entropy and functional inequalities

4.1. Introduction. These lecture notes are mainly based on the article [Leh12]. FIX
ME.

4.2. FIX ME. Let W be the Wiener space of continuous paths taking values in Rd, let
γ be the Wiener measure and X be the coordinate process. Let H = H1

0(R+;Rd) be the
associated Cameron-Martin space: a path u belongs to H if its energy

‖u‖2 =

∫ +∞

0

|u̇t|2 dt

is finite. Given a probability space (Ω,P) equipped with a filtration (Ft)t≥0 we call drift
any adapted process U which belongs to H almost surely. The following proposition is a
straightforward consequence of Girsanov’s formula.

Proposition 4.1. Let B be a Brownian motion defined on some filtered probability space
and let U be a drift. Letting µ be the law of B + U , we have

H(µ|γ) ≤ 1

2
E‖U‖2.

A natural question then arises: given a probability measure µ on W , can equality
be achieved in the previous inequality? The following result of Föllmer [Fol85] answers
positively, up to a change of probability space.

Proposition 4.2. Let µ be a measure on W absolutely continuous with respect to γ. There
is a drift U such that under µ the process Y = X − U is a Brownian motion and

H(µ|γ) =
1

2

∫
W
‖U‖2 dµ. (4.1)

Thus Y is Brownian motion on (W, µ) and the drift U is such that Y + U has law µ
and H(µ|γ) = 1

2
E‖U‖2.

Given two probability measures µ, ν on the Wiener space W, we consider the quadratic
transportat cost with respect to the pseudo distance d(w,w′) = ‖w − w′‖ on W:

W 2
2 (µ, ν) = inf

{∫
W×W
‖w − w′‖2 π(dw, dw′)

}
where the infimum is taken on all couplings π of µ and ν.

According to Proposition 4.2, if µ is absolutely continuous with respect to γ there exists
a Brownian motion B and a drift U such that B + U has law µ and

H(µ|γ) =
1

2
E‖U‖2.

Then (B,B + U) is a coupling of (γ, µ) and by definition of T2

W 2
2 (µ, γ) ≤ E‖U‖2 = 2H(µ|γ).

We thus have proved the Wiener space version of Talagrand’s transportation inequal-
ity [Tal96]. Also, if the density F of µ belongs to the domain of the Malliavin operator D
then the Föllmer drift can be explicitely written in terms of DF and it is easy to derive
from (4.1) the Wiener space version of the classical log-Sobolev inequality [Gro75]

H(µ|γ) ≤ 1

2

∫
W
‖D log(F )‖2 dµ.

Under some technical assumptions on the measure µ, Föllmer’s result can be strengthen
as follows.
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Theorem 4.3. Given a Brownian motion B

H(µ|γ) = min
U

(1

2
E‖U‖2

)
where the minimum is on all drifts U such that B + U has law µ.

Together with the following Legendre duality

log
(∫

W
ef dγ

)
= sup

µ

[∫
W
f dµ−H(µ|γ)

]
.

we get the Boué and Dupuis formula [BD98]:

Theorem 4.4. Given a Brownian motion B we have for every function f : W → R
measurable and bounded from below

log
(∫

W
ef dγ

)
= sup

U

[
E
(
f(B + U)− 1

2
‖U‖2

)]
,

where the supremum is taken over all drifts U .

A weaker version of this formula was put forward by Borell [Bor00] in the context of
functional inequalities. Following his approach it is easy to derive from Theorem 4.4 the
following Wiener space version of the Brunn-Minkowski inequality.

Theorem 4.5. For every subsets K,L of W and s ∈ [0, 1]

γ(K)1−sγ(L)s ≤ γ
(
(1− s)K + sL

)
e−s(1−s)d(K,L)2/2, (4.2)

where d(K,L) = inf(‖w − w̃‖, w ∈ K, w̃ ∈ L).

As an application, let us derive from this inequality the Brunn-Minkowski inequality
for the principal frequency (due to Brascamp and Lieb [BL76]): for every compact (say)
A,B ⊂ Rd

λ(A)−1/2 + λ(B)−1/2 ≤ λ(A+B)−1/2, (4.3)

where λ(A) is the first eigenvalue of the operator −∆ on A with Dirichlet boundary
condition. Let x ∈ A, y ∈ B and s ∈ [0, 1], inequality (4.2) yields easily

Px(TA > t)1−sPy(TB > t)s ≤ P(1−s)x+sy(T(1−s)A+sB > t) (4.4)

where Px(TA > t) is the probability that a Brownian motion starting from x has stayed
in A up to time t. On the other hand, as t tends to +∞

Px(TA > t) = e−
λ(A)t

2
+o(t)

Therefore letting t→ +∞ in (4.4) and optimizing in s yields (4.3).

5. A two-scale proof of the Eyring-Kramers formula.

5.1. Introduction. We consider a diffusion on a potential landscape which is given by
a smooth Hamiltonian in the regime of small noise. We sketch a new approach to derive
the Eyring-Kramers formula for the spectral gap of the associated generator of the diffu-
sion. The new approach is based on a refinement of the two-scale approach introduced
by Grunewald, Otto, Villani, and Westdickenberg and of the mean-difference estimate
introduced by Chafäı and Malrieu. The Eyring-Kramers formula follows as a simple
corollary from two main ingredients: The first one shows that the Gibbs measures re-
stricted to a domain of attraction has a “good” Poincaré constant mimicking the fast
convergence of the diffusion to metastable states. The second ingredient is the estimation
of the mean-difference by a new weighted transportation distance. It contains the main



SOME RECENT DEVELOPMENTS IN FUNCTIONAL INEQUALITIES 15

contribution of the spectral gap, resulting from exponential long waiting times of jumps
between metastable states of the diffusion. This new approach also allows to derive sharp
estimates on the log-Sobolev constant. For details we refer the reader to the preprint
[MS12] of both authors.

5.2. Results and sketch of proof. In what follows, we sketch the strategy to apply
a combination of the two-scale approach (cf. [GOVW09]) and a transportation tech-
nique (cf. [CM10]) to give an alternative proof of the Eyring-Kramers formula. The
first rigorous proof in full generality was given by Bovier, Gayrard, and Klein [BGK05]
using potential-theoretic ideas. Slightly later, a different proof was given by Helffer,
Klein, and Nier [HKN04] via the Witten complex approach. The Eyring-Kramers for-
mula asymptotically determines the Poincaré constant of an arbitrary Gibbs measure
µ(dx) = exp(−H(x)/T ) dx in the low temperature limit i.e. sending T → 0. The Poincaré
constant % of the Gibbs measure µ is the largest constant C > 0 such that µ verifies the
Poincaré inequality PI(C) defined in (1.1). Let us only consider an one-dimensional
Hamiltonian H, even if the results holds in any dimension. Additionally for this short
note, we will not discuss some standard growth conditions and nondegeneracy conditions
on the Hamiltonian H. For precise statements, we refer the reader to the preprint [MS12]
of both authors. With these simplifications, the Eyring-Kramers formula becomes:

Proposition 5.1 (Eyring-Kramers formula [GLE41]). Assume that the Hamiltonian H
has two local minima at m0 and m1 such that H(m0) < H(m1). Then the Poincaré
constant % of the Gibbs measure µ is given by

% =

√
|H ′′(z)| H ′′(m1)

2π T
exp

(
−H(z)−H(m1)

T

) (
1 +O(

√
T | lnT |)

)
,

where z is the saddle between both minima.

The last theorem states that at low temperature T � 1 the SG constant % is essentially
determined by the saddle height (H(z) − H(m1)) (cf. Figure ??). The Eyring-Kramers
formula also holds in the case of finitely many local minima. However, to understand the
idea of the new approach, the best is to consider only two local minima.

Let us sketch the main idea of the new approach: Let µ0 and µ1 denote the restriction
of the Gibbs measure µ to the domain of attraction of the local minima m0 and m1

respectively i.e.

µ0(dx) =
1

Z0

1{x<z} exp

(
−H(x)

T

)
dx, with Z0 =

∫ z

−∞
exp

(
−H(x)

T

)
dx

and

µ1(dx) =
1

Z1

1{x>z} exp

(
−H(x)

T

)
dx with Z1 =

∫ z

−∞
exp

(
−H(x)

T

)
dx.

As in the two scale-approach [GOVW09], the starting point for our proof is the decom-
position of Varµ(f) into local variances with respect to µ0 and µ1 and into the variance
of a Bernoulli variable i.e.

Varµ(f) = Z0 Varµ0(f) + Z1 Varµ1(f) + Z0Z1

(∫
fdµ0 −

∫
fdµ1

)2

. (5.1)

The first two terms on the right hand side of (5.1) are estimated by an application of
the Poincaré constants for the restricted measures µ0 and µ1. It turns out that these
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constants scale like T−1. Heuristically, this fact seems to be plausible because there
are no metastabilities on the sets {x < z} and {x > z}. However, the rigorous proof of
this fact in higher dimensions is technically challenging because of the lack of convexity
of H. The main contribution to the Poincaré constant comes from the third term on
the right hand side of (5.1). Motivated by the transportation technique of Chafäı and
Malrieu [CM10], the third term is represented by using a transport Φt between µ0 and µ1

as∫
fdµ0−

∫
fdµ1 = −

∫ 1

0

∫
d

dt
f(Φt(x)) µ0(dx) dt = −

∫ 1

0

∫
∇f(x)·Φ̇t(Φ

−1(x)) µt(dx) dt,

where µt denotes the push forward (Φt)#µ0. Using the last identity and Cauchy-Schwarz
inequality we get the estimate(∫

fdµ0 −
∫
fdµ1

)2

=

(∫
∇f(x) ·

∫ 1

0

Φ̇t(Φ
−1(x))

µt(x)

µ(x)
dt µ(x)dx

)2

≤
∫ (∫ 1

0

|Φ̇t(Φ
−1(x))| µt(x)

µ(x)
dt

)2

µ(dx)

∫
|∇f |2 dµ.

Recalling the definition of the Poincaré constant %, it is only left to estimate the weighted
transportation cost on the right hand side of the last inequality. For low temperatures
(i.e. T � 1) it suffices to consider truncated Gaussian measures around the local minima
m0 and m1 instead of the restricted measures µ0 and µ1. This simplifies the estimate of the
weighted transportation cost yielding the Eyring-Kramers formula after an optimization
procedure.

A nice feature of this proof is that it replicates the behavior of the corresponding
stochastic process: The fast convergence to local minima is expressed by the good local
Poincaré estimate of the restricted measures µ0 and µ1, whereas the main contribution to
the overall Poincaré constant comes from a Markov chain jumping from one local minima
to another.

Most important, this approach is also applicable to the logarithmic Sobolev inequality
LSI i.e. one can derive estimates on the LSI constant in the low temperature regime.
Surprisingly, it turns out that these estimates on the LSI constant do not coincide with
the Eyring-Cramer formula. Additionally, we expect that the estimates on LSI constant
obtained by this approach are sharp (for details see [MS12]).
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