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Abstract17

A variety of geomaterials, such as cementitious or clay-based ma-18

terials, has on the nano-scale a layered microstructure which can con-19

tain fluid in its nano-porous space. The creep of such nano-scale basic20

units is what causes the macroscopic creep. Here, we study one nano-21

pore whose walls consist of two parallel infinite solid layers interacting22
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through Lennard-Jones potential. We evaluate numerically the energy23

barriers that such a system needs to overcome in order for the two solid24

layers to slide over each other, and show how this sliding depends on25

the longitudinal and transverse forces applied to the layers. The en-26

ergy barriers translate into a dependence of the apparent viscosity of27

the system on the disjoining pressure, in a manner consistent with the28

microprestress theory. This result makes it possible to explain why29

the long-time creep of cementitious materials is logarithmic. We then30

consider experimental data on how the long-term logarithmic creep of31

cementitious materials depends on the temperature and relative hu-32

midity. Our model can capture the observed dependencies if we take33

into account not only the energy barriers induced by the interactions34

between layers, but also the influence of the interlayer fluid, which is35

water in the case of cementitious materials. We model this fluid as a36

continuum with the same properties as the bulk fluid.37

Introduction38

All geomaterials, whether man-made, e.g., cementitious materials in general,39

or natural, clay-based materials, exhibit creep, i.e., slow deformation over40

time under the action of sustained mechanical stress. The creep occurs at41

a rate that can be detrimental to the lifespan of concrete structures and42

structures on clay foundations [Bažant et al. 2011; Puzrin et al. 2010]. Ce-43

mentitious and clay-based materials have in common a phase that confers to44
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them most of their viscous properties, is nano-porous and layered.45

Indeed, the matrix of regular Portland cement paste is made of calcium46

silicate hydrates (also called C-S-H) which, although spatially variable in47

both structure and composition [Richardson 1999], consist of more or less48

ordered stacks of calcium silicate layers, each of which is made of a Ca-O49

sheet covalently bonded with silicate chains [Richardson 2008; Pellenq et al.50

2009]. Between those solid calcium silicate layers, one finds a few molecular51

layers of water.52

By contrast, as their name suggests, the minerals in clay-based materials53

are phyllosilicates made of stacks of layers combining silicate tetahedra with54

aluminum octahedra [Meunier 2005]. Again, between those solid layers, one55

finds a few molecular layers of water. Thus the cement-based and clay-based56

materials share a layered nano-structure which contains interlayer water.57

Because the spacing of the adjacent solid layers is on the order of only a58

nanometer, the clay and C-S-H are subjected to strong disjoining pressures.59

At the scale of an individual slit nano-pore, the disjoining pressures can lead60

to swelling or shrinkage during sorption or desorption, and can be not only61

positive (compression) but also negative (tension). The sign of the disjoining62

pressure is affected by the ratio of nano-pore width to the number molecular63

layers of the interlayer fluid in the nano-pore [Ustinov & Do 2006; Bažant &64

Bazant 2012].65

However, when averaged over a distribution of pore sizes in a disordered66

nano-porous solid (e.g., even in ideal one-dimensional nano-porous solids67
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[Brochard et al. 2012]), one observes during sorption only swelling: In a68

disordered nano-porous solid, the representative disjoining pressure is posi-69

tive (i.e., compressive), inducing tensile stresses in the solid microstructure70

of material (this also means that during desorption one observes only shrink-71

age). At the macroscopic scale of material, those tensile stresses induced by72

disjoining pressure and adsorption can reach several dozens of MPa [Espinoza73

et al. 2014]. Locally, those tensile stresses can even be greater, exceeding a74

hundred of MPa [Bažant 1972].75

For both cementitious materials and clay-based materials, various kinetics76

of creep can be identified. In cementitious materials, a short-term creep77

kinetics, usually associated with local reorganization of water and lasting78

from a few weeks to a few years at the macroscopic scale, is followed by a79

long-term creep kinetics that is logarithmic with respect to time. In clay-80

based materials and soils in general, the application of load causes water to81

be expelled (which is the so-called consolidation process [Terzaghi 1996]) but,82

once the excess fluid pressure is dissipated, soils creep logarithmically with83

respect to time [Lambe & Whitman 1969].84

The origin of this logarithmic creep in both cementitious and clay-based85

materials has been much disputed. For cementitious materials, an explana-86

tion was provided by the so-called microprestress solidification theory [Bažant87

et al. 1997], which recognizes the importance of disjoining pressures and the88

effect they can have on viscosity. The principle of the theory is the following:89

The hydration processes in cementitious materials and the restraint induced90
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by the heterogeneous and disordered microstructure prevent an instanta-91

neous release of the high average tensile disjoining pressure prevailing in the92

C-S-H nano-pores. This disjoining pressure, acting perpendicularly to the C-93

S-H layers, will be denoted as S and called microprestress (“nanoprestress”94

though might be a more accurate term, but the “microprestress” is by now95

well established). The microprestress initially develops as a consequence of96

clinker hydration. Later it changes with moisture content and temperature97

and, in absence of mechanical load on concrete, dominates the stresses in98

solid microstructure [Bažant et al. 1997]. The microprestress theory recog-99

nizes that the apparent viscosity (denoted as η) associated with the sliding100

of two C-S-H layers over each other is sensitive to this microprestress, i.e.,101

η = η(S). The theory then recognizes that, because of the disordered and102

isotropic nature of C-S-H at the meso-scale, this microprestress in one layer103

must induce in layers of different orientation shear forces acting parallel to104

these layers (see Fig. 1). Based on those features, one can show that, for any105

power-law dependence of the viscosity on the microprestress (i.e., η ∝ 1/Sp−1
106

with p − 1 > 0), the viscosity evolves linearly with time t, i.e., η ∝ t (see107

section for a detailed derivation). For a constant stress, we thus obtain a108

creep rate that declines in proportion to the inverse of time, and thus a creep109

strain that increases with time logarithmically.110

Recognizing the potential role of the enormous tensile stresses induced111

by disjoining pressures, we aim in the present work at clarifying this role112

numerically, considering a simplified model system. The system consists113
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of two solid layers that are parallel to each other, with an interlayer pore114

space between them. The interlayer fluid is modeled as a continuum, and115

only an effective potential between atoms of the opposite adjacent layers is116

introduced. Given their high stiffness [Shahsavari et al. 2009; Carrier et al.117

2014], the solid layers are considered as rigid.118

Here we aim at identifying the energy landscape that the system of two119

layers will be exposed to while sliding over each other. The energy barriers120

and how they evolve with disjoining pressure effects (i.e., with the micropre-121

stress) will be translated into the dependence of the apparent viscosity on122

the microprestress. The relevance of the numerical results with respect to123

the microprestress theory will be discussed. A comparison with creep data124

obtained on cementitious materials at various temperatures and relative hu-125

midities will be performed.126

Shearing of infinite plates interacting through127

Lennard-Jones potential128

We consider two rigid and infinite plates that are parallel to each other.129

Each plate consists of atoms located on a square lattice (see Fig. 2). All130

lengths of the problem are made dimensionless by dividing them by the lattice131

parameter a: Thus, the dimensionless distance between two closest-neighbor132

atoms within a plate is equal to unity. The two plates are separated by a133

distance called the basal spacing: Its value, made dimensionless upon division134
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by the lattice parameter, is denoted as z. The in-plane principal directions135

of the two plates are considered aligned at all times and are denoted as ex136

and ey; x and y are the dimensionless relative displacements of the top plate137

with respect to the bottom one in the ex and ey directions, respectively. The138

origin of the relative displacements is chosen such that the two plates are in139

an eclipsed configuration when x = 0 and y = 0.140

The i-th atom of one plate interacts with the j-th atom of the other plate141

through a Lennard-Jones potential:142

Ψ(r) = Ψ0

[

2
(r0
r

)12

−
(r0
r

)6
]

, (1)

where r is the dimensionless distance between the two atoms, r0 is the di-143

mensionless equilibrium distance of the Lennard-Jones potential, and Ψ0 is144

the depth of the energy well. This interaction potential should be interpreted145

as an effective one, in the sense that it aims at capturing not only the direct146

wall-wall interaction, but also the electrostatic and entropic effects due to the147

presence of the interlayer water, as well as the water-wall interactions. All the148

energies in the system are made dimensionless by dividing them by the depth149

of the energy well of this Lennard-Jones potential. Thus, the dimensionless150

depth of the energy well of the Lennard-Jones potential is equal to unity.151

Note that, by introducing a characteristic energy (i.e., the depth Ψ0 of the152

energy well of the Lennard-Jones potential) and a characteristic length (i.e.,153

the lattice parameter a), we define a characteristic force Ψ0/a, with respect154
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to which all forces introduced in the problem will be made dimensionless.155

Given the periodicity of the system, all the atoms are equivalent one to156

the other. Therefore, from now on, we focus on the energy of only one atom157

of one plate interacting with all the atoms of the other plate. The energy of158

interaction of this atom is
∑

i Ψ(ri), where ri is the dimensionless distance159

that separates the atom of interest from the atom i in the other plate.160

We consider that the atom of interest is subjected to a (dimensionless)161

force F acting parallel to the layers in the ex direction, and to a (dimension-162

less) tensile force S normal to the layers, i.e., in the ez direction (this force163

is the microprestress). Under the action of those forces, the energy E of the164

atom of interest is:165

E =
∑

i

Ψ(ri)− Sz − Fx. (2)

For a given microprestress S and transversal load F , the energy landscape166

to which the system is exposed upon a displacement in the ex direction (i.e.,167

upon sliding of the two layers over each other) is obtained as follows. At a168

given relative displacement x, for a fixed relative displacement y = 0.5, the169

energy E is minimized with respect to the distance z between the two plates170

(indeed, we checked that, at given x, minimizing the energy with respect171

to y and z yields y = ±0.5): Thus, at the given relative displacement x,172

the equilibrium z-position of the layer is determined, and the energy E of173

this equilibrium state is stored. This calculation is repeated for a variety174
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of relative displacements x. Note that, in these calculations, the force S175

normal to the layers is kept constant: When the relative displacement x176

evolves, the z-position of the layer (i.e., the interlayer spacing) varies. Said177

otherwise, shear induces volume variations, as noted by Hoang & Galliero178

(2015). However, the C-S-H layers being surrounded by the solid C-S-H gel,179

this variation of the z-position would be partly prevented and thus translate180

into variations of the force S: Here, we neglect this effect.181

The results for a dimensionless equilibrium distance r0 = 1 are displayed182

in Fig. 3. Calculations for microprestress S > 6 were not possible, because183

such microprestress suffices to separate the two plates from each other. First,184

one observes that, in absence of any transversal load or microprestress, equi-185

librium positions are at x = ±0.5, i.e., when the two plates are in a stag-186

gered position with respect to each other. For the plate to be translated from187

x = −0.5 to x = 0.5, the system needs to overcome an energy barrier, which188

we denote as ∆E. In absence of a transversal load F , an increase of the189

microprestress S decreases this energy barrier. Furthermore, application of a190

transversal load F imposes on the energy landscape an asymmetric tilt. This191

induced tilt causes a decrease of the energy barrier that the plate needs to192

overcome in order to move in the specified direction of the transversal load,193

and to an increase of the energy barrier that the plate needs to overcome in194

order to move in the reverse direction. This favors the sliding in the direction195

of the transversal load.196

Based on energy landscapes such as the ones displayed in Fig. 3, one197
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can calculate how the energy barrier ∆E required for the plate to move198

by one lattice spacing in the direction of the transversal load evolves with199

the various loadings. The calculated energy barriers are displayed in Fig. 4.200

We may distinguish two regimes, at low and high microprestress. When201

the microprestress is low enough, then, for any transversal load, the energy202

barrier ∆E decreases linearly with the normal force S, i.e., ∆E = c1 − c2S,203

where c1 and c2 are functions of the transversal load. In contrast, when204

the microprestress S is high enough, then, for any transversal load F , the205

energy barrier ∆E decreases linearly with the logarithm of the normal force206

S, i.e., ∆E = c3 − c4 ln(S). Again, the coefficients c3 and c4 depend on the207

transversal load.208

In an isotropic solid such as C-S-H on the mesoscopic scale, the micro-209

prestress S must induce a transversal load F . Reasonably, one can assume210

that this transversal load will represent a fraction of the microprestress S.211

For various ratios F/S of the transversal load F to the microprestress S, we212

plot how the energy barrier for dimensionless equilibrium distance r0 = 1213

depends on the microprestress S; see Fig. 5a. For large enough micropre-214

stresses S, we observe a clear logarithmic dependence of the energy barrier215

on the microprestress S, i.e. ∆E = α1−α2 ln(S). Interestingly, to first order,216

the coefficient α2 does not depend on the ratio F/S. Therefore, independent217

of this ratio (which we do not know, as it is a consequence of the spatial218

orientation of the microstructure, of the elastic properties of the phases, and219

of the hydration process), the energy barrier ∆E decreases linearly with the220
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logarithm of the stresses.221

Over this latter range of large enough microprestress, when introducing222

an Arrhenius-type dependence of viscosity on the energy barrier [Debenedetti223

& Stillinger 2001; Nabarro 2001], i.e.,224

η ∝ exp(∆E/kBT )), (3)

we find, for the apparent viscosity η associated to the sliding of the two layers225

over each other, the following relation:226

η ∝ exp

(

α1 − α2 ln(S)

kBT

)

= exp

(

α1

kBT

)(

1

S

)α2/kBT

. (4)

Since η ∝ 1/Sp−1 with p−1 > 0, we thus observe, for large microprestress, a227

dependence of viscosity on microprestress that can justify the microprestress228

theory (see section ).229

In terms of orders of magnitude, we find out that the dimensionless en-230

ergy barriers ∆E are on the order of unity (see Fig. 4). It follows that the231

energy barriers are on the order of Ψ0 and thus, classically for Lennard-Jones232

potentials, on the order of 10−21 J. Those energy barriers are therefore of the233

same order of magnitude as kBT ≈ 10−21 J at T = 300 K. Therefore, the234

proposed mechanism of a viscosity affected by the energy barriers due to the235

effective wall-wall interaction is plausible. In terms of stresses at stake, the236

dimensionless normal forces considered in the study are on the order of unity237

as well (see Fig. 4), i.e., the normal forces are on the order of Ψ0/a. Those238
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normal forces translate into normal stresses on the order of Ψ0/a
3, i.e., into239

normal forces on the order of 1 eV / (1 nm)3 ≈ 108 Pa = 100 MPa. There-240

fore, the characteristic stresses considered in this study are on the order of241

the stresses induced by disjoining pressures in real systems.242

The fact that the model nano-scale system we here propose (see Fig. 2)243

makes it possible to retrieve the micoprestress theory, and hence a long-term244

creep of cementitious materials that evolves with time as a logarithmic func-245

tion, may look surprising at first glance. Indeed, C-S-H layers are made of246

several chemical elements and are complex chemically. Therefore, with re-247

spect to natural C-S-H, or even to already existing C-S-H molecular models248

(see, e.g., Taylor (1986); Richardson (2008); Pellenq et al. (2009)), our model249

is crude, in the sense that it fully neglects the chemistry of C-S-H. The fact250

that, in spite of this crudeness, our system makes it possible to retrieve the251

microprestress theory, shows that the logarithmic feature of long-term creep252

of cementitious materials does not originate from any chemical specificity253

of C-S-H. Such a conclusion is consistent with the experimental observation254

that clays also creep logarithmically with respect to time in the long term,255

although the chemical composition of the clay layers differs from the chem-256

ical composition of C-S-H. In contrast, the feature that our system keeps257

in common with C-S-H is that it is a nano-porous layered material. This258

observation hints towards a logarithmic creep of cementitious materials that259

would originate from the fact that C-S-H is a nano-porous layered material.260
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Dependence of viscosity on microprestress, tem-261

perature and water content262

The model we have formulated allows us to deduce a dependence of viscosity263

on microprestress that is consistent with the microprestress theory. We now264

aim at determining whether this model makes it possible to retrieve the ob-265

served dependence of creep of cementitious materials on water content and266

temperature. Since this model makes it also possible to retrieve a creep that267

evolves logarithmically with respect to time, the comparison with experi-268

mental data for cementitious materials is restricted to the long-term creep,269

which does evolve logarithmically with respect to time. To compare our270

model with the existing data, we first review the main steps of the derivation271

of the microprestress theory, as presented next.272

Dependence on temperature273

Let us now focus on the effect of temperature on the viscosity predicted by274

our model, and on the consistency of this prediction with the phenomenology275

of long-term creep of cementitious materials. The derivation of the micro-276

prestress theory proceeds as follows [Bažant et al. 1997]:277

The shear stress, τ , applied to the C-S-H layers may be expressed as278

τ = ηǫ̇ where η is the viscosity, ǫ is the shear strain, and ǫ̇ is the shear strain279

rate, which characterizes the sliding of the two parallel layers over each other.280

The relaxation of the microprestress S is imagined to be the result of a creep281
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(or flow) of similar origin, resisted by a spring of stiffness KS coupled in282

series, as sketched in Fig. 1. Thus, the equation governing the relaxation283

process is:284

Ṡ

KS
+

S

η(S)
= 0. (5)

The viscosity must depend on the microprestress S, and since no character-285

istic value of this dependence is known, the dependence must be self-similar,286

i.e., a power law:287

η =
1

α

1

Sp−1
(with p > 1), (6)

where p and α are constants. Differential equation (5) may then be solved288

and one gets S1−p = αKS(p − 1)t. The evolution of the viscosity with time289

then follows:290

η = KS(p− 1)t. (7)

By comparing Eq. (6) with Eq. (4), we find that p− 1 = −α2/(kBT ).291

At the scale of a macroscopic concrete specimen, a constant uniaxial stress292

σu is thus expected to cause the axial strain rate ǫ̇u ∝ σu/η. Therefore, the293

material compliance J̇u = ǫ̇u/σu defining the creep is expected to evolve as:294

J̇u ∝
1

η
=

kBT

KSα2

1

t
. (8)

This equation shows that, as anticipated, the power-law dependence (4) of295

the viscosity on the microprestress translates into a creep rate that decreases296

as 1/t. Therefore, after integration, one finds that the long-term creep evolves297
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logarithmically with respect to time.298

From Eq. (8), one may expect that the rate of this long-term logarith-299

mic creep should scale linearly with the temperature T . Said otherwise, the300

parameter cu = tJ̇u, which is independent of time when the creep is loga-301

rithmic, should be proportional to the temperature T . For a few concrete302

specimens, for which the basic creep (i.e., the creep at no moisture exchange)303

has been measured at various temperatures (see the data in Nasser & Neville304

(1965); York et al. (1970); Kommendant et al. (1976), gathered in Bažant305

et al. (2004)), we display in Fig. 6a the parameter cu = tJ̇u as obtained by306

the optimal fitting of creep data in the range within which the creep was ac-307

tually logarithmic in time. From the experiments, we find that the parameter308

cu = tJ̇u is not proportional to the temperature T .309

A reason for this more complex scaling can be found in the behavior of the310

interlayer water, the effect of which we have for now discarded. Indeed, for311

the two C-S-H layers to slide over each other, we need not only to displace the312

two layers respectively to each other, but we also need to shear the interlayer313

water. In the numerical study performed in Sec. , the calculated energy314

barriers are those corresponding only to the relative displacement of the two315

C-S-H layers. Those energy barriers can be modified by the presence of water316

(as will be seen in Sec. ), as interlayer water screens the interactions between317

the C-S-H layers, but this screening is only a consequence of the presence318

of the interlayer water, not of its shearing, the contribution of which does319

therefore not appear explicitly in Eq. (8). However, on top of the contribution320
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of the energy barriers, the strain rate at which the C-S-H layers slide on each321

other must also depend on the viscosity ηw of the interlayer water. In fact,322

the strain rate and the viscosity of the interlayer water should be inversely323

proportional to each other. An analogy to justify why it should be so is that of324

a horse that runs erratically and encounters fences on his way, over which he325

has a given probability of succeeding in jumping; The average speed at which326

the horse will move away from his starting point will depend on both his true327

speed (which is the analogous of the inverse of the interlayer water viscosity)328

and this probability: If the probability for him to succeed in jumping over329

the fences does not change, if he runs twice as fast, on average he will reach a330

given distance twice as fast. This observation makes it possible to formulate331

the unknown proportionality factor in the scaling relation (8), which can be332

rewritten as:333

J̇u ∝
1

ηw

kBT

KSα2

1

t
, (9)

where ηw is the viscosity of the interlayer water. To check the validity of334

this modified scaling relation, we use the experimental data displayed in335

Fig. 6a to plot the parameter tJ̇uηw/T . The viscosity ηw(T ) of the inter-336

layer water is approximated by the viscosity of bulk water: Its values at337

various temperatures are obtained from the NIST standard reference data338

(http://webbook.nist.gov/chemistry/fluid/). Interestingly, one observes in339

this figure no specific trend of the parameter tJ̇uηw/T with respect to tem-340
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perature: For a given concrete, this parameter remains roughly constant.341

The foregoing observation validates a model for the creep of layered C-342

S-H which in essence consists of two mechanisms: 1) interactions between343

adjacent C-S-H solid layers, which induce energy barriers that need to be344

overcome, and 2) viscosity of the interlayer fluid itself, which we model as345

a continuum with properties identical to those of the bulk fluid. The fact346

that such a model enables us to capture reasonably well the dependence of347

long-term creep on temperature can seem surprising, since in this model the348

interlayer water is considered as bulk water, while the physical properties of349

confined and bulk water are known to differ significantly from each other:350

For instance, some find out that, for hydrophilic surfaces, the viscosity of351

confined or interfacial water differs from the viscosity of bulk water by a352

factor of about 3 [Raviv et al. 2001; Sendner et al. 2009]. However, note353

that the relative dependence of the viscosity of confined and bulk water on354

temperature might be quite similar, in which case the parameter tJ̇uηw/T355

(see Fig. 6b) would still remain constant with temperature if ηw was the356

actual viscosity of the confined interlayer water.357

Dependence on relative humidity or water content358

We now proceed to investigate the effect of relative humidity or water con-359

tent on the viscosity, as predicted by our model, and the compatibility of360

this prediction with the phenomenology of long-term creep of cementitious361

materials. In our model, we will consider that the depth of the energy well362
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does not vary upon when the water content increases, and that the only as-363

pect that varies is the equilibrium spacing between the two solid plates. In364

other words, to model an intake of water in the interlayer space, only the365

equilibrium distance r0 in the interaction potential (1) is modified, but not366

the depth Ψ0 of the energy well.367

The energy barriers calculated for various equilibrium distances and under368

various loadings are depicted in Fig. 5. As already observed in section369

where calculations are performed for an equilibrium distance r0 = 1, the370

energy barriers for all equilibrium distances considered decrease, at large371

microprestress, linearly with the logarithm of the microprestress. They do372

so at a rate that is independent of the ratio F/S. However, this rate of373

decrease depends on the equilibrium distance, as can be observed in Fig. 7,374

which shows the coefficient −dE/d(lnS) = α2 calculated for the range of375

high microprestress.376

The goal now is to compare our calculations with the experimental data377

on how creep at moisture equilibrium varies with the relative humidity. To378

do so, we use data by Zhang (2014), who performed microindentations on379

compacted specimens of C-S-H powders equilibrated at various relative hu-380

midities. Using micromechanics, they back-calculated the creep properties381

of the C-S-H particles. The creep properties he measured by indentation are382

condensed into the so-called contact creep modulus C [Vandamme & Ulm383

2009]. Zhang et al. showed that this creep modulus is inversely proportional384

to the parameter cu = tJ̇u [Zhang et al. 2014], which is constant during385
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the logarithmic long-term creep of cementitious materials. Their results are386

presented in Fig. 8a.387

At the various constant relative humidities considered, the water con-388

tent is found from the data obtained by Feldman (1973) and reanalyzed by389

Jennings in the form of adsorption isotherms of C-S-H [Jennings 2008] (see390

Fig. 8b). To prepare their specimens, Zhang et al. dried the C-S-H powder391

that they manufactured, rewetted the powder to compact the specimens, and392

then equilibrated the compacted specimens at the desired relative humidity.393

Here we consider the second drying isotherm among the isotherms collected394

by Jennings.395

In the driest state possible (i.e., when all evaporable water has left C-S-396

H), the stoichiometric formula for C-S-H is considered to be C1.7-S-H1.3 (in397

cement chemistry notation). Thus its molar mass is equal to 178.84 g.mol−1.398

In this driest state possible, the structure of C-S-H is considered to be close399

to that of tobermorite 9 Å, as provided by Bonaccorsi & Merlino (2005)400

and recalled by Richardson (2008), i.e., orthorombic space group Fd2d with401

a = 11.16 Å, b = 7.32 Å, c = 37.40 Å, α = 90◦, β = 90◦, and γ = 90◦.402

To approximate this structure with our simple model, we consider that the403

characteristic spacing between the closest inhomogeneities within each C-S-H404

layer is
√
11.16 ∗ 7.32 = 9.03 Å, and that the basal spacing is 37.40/4 = 9.35405

Å. In this driest state, the thickness of the interlayer water is considered to be406

null. At larger water contents, we consider that the interlayer space is filled407

with bulk water, the molar volume of which is 18.048 cm3.mol−1 at 20◦C and408
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0.1 MPa (these data are taken from the NIST standard reference available409

at http://webbook.nist.gov/chemistry/fluid/). By a simple geometric calcu-410

lation, we can thus determine how the mass density of C-S-H (or its basal411

spacing) should be related to its water content.412

The result of this calculation is shown in Fig. 8c, along with the states413

of Jenning’s CM-II model for C-S-H [Jennings 2008]. The good agreement414

observed indicates that the simple way we used to relate the basal spacing415

(or density) of C-S-H to its water content provides reasonable results. In416

conjunction with the adsorption isotherm shown in Fig. 8b, these results417

make it possible to calculate how the basal spacing of C-S-H must have418

depended on the relative humidity in the experiments of Zhang et al. Since419

we work with dimensionless data, comparison with our model requires that420

the basal spacing be made dimensionless by dividing it by the characteristic421

length 9.03 Å calculated above for tobermorite 9 Å.422

As shown by Eq. (8), the presence of the energy barriers that limit, during423

the logarithmic creep, the sliding of the C-S-H layers over each other causes424

that function cu = tJ̇u should scale as:425

cu = tJ̇u ∝
1

α2

∝ −
1

dE/d(lnS)
(10)

Again, as written in section , this contribution of the energy barriers must be426

augmented by the contribution of the interlayer water. Note that we consider427

the viscosity of the interlayer water not to depend on the layer thickness428
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(i.e., the interlayer water to behave like bulk water). Thus, in absence of429

any energy barrier induced by the interactions between the adjacent C-S-H430

layers, the apparent viscosity η associated with the sliding of the C-S-H layers431

over each other must scale linearly with the inverse 1/dw of the thickness dw432

of the interlayer water. Here, as calculated in the previous paragraph, dw is433

equal to the basal spacing from which 9.35 Å must be subtracted. Therefore,434

the foregoing equation must be modified as:435

tJ̇u ∝ −
dw

dE/d(lnS)
(11)

The experimental data of Zhang, together with the prediction by the436

above equation, are displayed in Fig. 8d, in which the two sets of values are437

made dimensionless by dividing them by their value at the relative humidity438

of 11%. Below the relative humidity of 60%, the model is in very good agree-439

ment with the set of experimental data, which is very satisfactory given the440

simplicity of the model. As was the case for the dependence on temperature441

(see Sec. ), such good agreement of the model with experimental data can be442

surprising, since the actual viscosity of the confined interlayer water differs443

from that of bulk water, as it depends on confinement, i.e., on the water con-444

tent. However, the crudeness of this approximation is somewhat comparable445

to the crudeness of the assumption that the depth of the energy well does446

not vary upon an increase of water content. Indeed, for hydrophilic surfaces,447

according to Raviv et al. (2001) and Sendner et al. (2009), the viscosity of448
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confined or interfacial water does not differ from the viscosity of bulk water449

by orders of magnitude but by a factor of about 3.450

Above a relative humidity of 60%, our model overestimates the exper-451

imental data, and this overestimation increases with the relative humidity.452

This discrepancy can probably be explained, at least partly, by the fact that453

the adsorption isotherm used here (see Fig. 8b) takes into account not only454

the water in the C-S-H interlayers, but also the water adsorbed at the surface455

of the C-S-H globules [Jennings 2008]: Therefore, the adsorption isotherm456

considered here overestimates the amount of water contained solely in the457

C-S-H interlayers. Other candidates to explain the discrepancy are the as-458

sumptions of the independence of the viscosity of interlayer water and of the459

depth of the energy well on confinement.460

In any case, in spite of the discrepancy observed at large relative humidity,461

our model makes it possible to capture remarkably well how the long-term462

logarithmic creep of C-S-H depends on relative humidity below 60%. We463

recall that our model takes into account both the influence of the interactions464

between adjacent C-S-H layers and of the viscosity of the interlayer fluid465

(considered as a bulk fluid).466

Conclusions467

1. A model nano-scale system, made of two parallel solid layers separated468

by interlayer fluid, is a useful representative of the creep-generating mi-469
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croscopic building blocks in clay-based materials and in calcium silicate470

hydrates (i.e., C-S-H —the main hydration product in regular Portland471

cement).472

2. The creep may be modeled by atomic interactions between two solid473

layers subjected to shearing that causes the energy barriers to be over-474

come and thus the two layers to slide over each other. The evolution475

of these energy barriers in presence of disjoining pressures and shear476

stresses can be studied numerically.477

3. When the disjoining pressures and shear forces are considered propor-478

tional to each other, the energy barriers decrease linearly with the log-479

arithm of the disjoining pressure, and they do so at a rate that is480

independent of the ratio between disjoining pressures and shear forces481

(see Fig. 5).482

4. This behavior is consistent with the microprestress theory, which makes483

it possible to explain why, in cementitious materials, the long-term484

creep evolves in time as a logarithmic function. The logarithmic feature485

of long-term creep of cementitious materials does not originate from a486

chemical specificity of C-S-H, but could originate from the fact that,487

at the nanometric scale, C-S-H is a nano-porous layered material.488

5. The analysis of experimental data on the long-term logarithmic creep489

of cementitious materials, with a focus on the creep kinetics, shows490
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that the present model system is able to predict the observed effects of491

temperature (Sec. ) and relative humidity (Sec. ), provided that one492

takes into account: 1) the energy barriers that need to be overcome493

in order for the two solid layers to slide over each other, and 2) the494

viscosity of the interlayer fluid. In particular, it is possible to fit the495

test data while considering the interlayer fluid (i.e., water in this study)496

to behave like a bulk fluid.497

6. Although this study is focused on the cementitious materials (i.e., con-498

crete), it can likely be extended to geomaterials such as clays and clay-499

based materials, in which the basic microscopic building units are also500

made of solid layers (i.e., phyllosilicates in the case of clay) with in-501

terlayer fluid. Indeed, clay-based materials are also known to creep502

logarithmically in the long term [Lambe & Whitman 1969].503
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List of figure captions 

 

Figure 1: Principle of the microprestress theory. Adapted from Bažant et al. (1997). 

 

Figure 2: System considered: infinite parallel plates with a square lattice: a) perspective view and b) 

view in the $\underline{e}_z$ direction. In-between the plates, one finds out the interlayer fluid, 

modeled as a continuum and not represented on this figure. 

 

Figure 3: Energy landscape explored by the system upon sliding of the two plates over each other, 

under the action of a microprestress $S$ and of a transversal load $F$. 

 

Figure 4: Energy barriers to the sliding over each other of infinite rigid plates interacting through 

Lennard-Jones potential, plotted on a) a linear scale and b) a logarithmic scale. 

 

Figure 5: Energy barriers for the transversal motion of infinite rigid plates interacting through 

Lennard-Jones potential, when the transversal force $F$ is considered to be a fraction of the 

microprestress $S$. Calculations were performed for equilibrium spacing equal to: a) $r_0=1$, b) 

$r_0=2$, and c) $r_0=3$. 

 

Figure 6: Effect of temperature $T$ on a) parameter $c_u = t \dot{J_u}$ and b) parameter $t 

\dot{J_u} \eta_w / T$. The parameters $c_u = t \dot{J_u}$ are obtained by fitting experimental creep 
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data on concrete specimens, which can be found in Bažant et al. (2004) and were obtained by Nasser 

and Neville (1965), York et al. (1970), and Kommendant et al. (1976). The data by Kommendant et al. 

were obtained by loading the specimens after 28 days of hydration (upward triangles) and after 90 

days of hydration (downward triangles). 

 

Figure 7: Effect of basal spacing on how the energy barrier depends linearly on the logarithm of the 

microprestress $S$. 

 

Figure 8: Effect of relative humidity on properties of C-S-H. a) Effect of relative humidity on contact 

creep modulus of C-S-H, measured by microindentation by Zhang (2014). b) Adsorption isotherm of 

C-S-H upon rewetting and second drying (adapted from Jennings (2008). c) Effect of water content on 

basal spacing, according to Jenning's CM-II model (Jennings, 2008), and as predicted by our 

geometrical calculation. d) Effect of humidity on parameter $c_u = t \dot{J_u}$ made dimensionless, 

as back-calculated from the results of Zhang (2014) and as predicted by our model. 

 

 

 

 

 

 


