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CENTRAL LIMIT THEOREM AND LAW OF THE ITERATED

LOGARITHM FOR THE LINEAR RANDOM WALK ON THE TORUS

JEAN-BAPTISTE BOYER

Abstract. Let ρ be a probability measure on SLd(Z) and consider the random walk
defined by ρ on the torus Td = Rd/Zd.

Bourgain, Furmann, Lindesntrauss and Mozes proved in [BFLM11] that under an
assumption on the group generated by the support of ρ the random walk starting at
any irrational point equidistributes in the torus.

In this article, we study the central limit theorem and the law of the iterated
logarithm for this walk starting at some point having good diophantine properties.
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1. Introduction

Let Γ be a subgroup of SLd(Z) and ρ a probablity measure on Γ. The action of Γ on
the torus X := Td = Rd/Zd allows one to define a random walk on the torus, setting,
for any x ∈ Td, {

X0 = x
Xn+1 = gn+1Xn

where (gn) ∈ ΓN is chosen with the law ρ⊗N. We note Px the measure on XN associated
to the random walk starting at x.

Date: February 11, 2016.
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The Markov operator associated to the walk is the one defined for any non-negative
borelian function f on X and any x ∈ X by

Pf(x) =

∫

G

f(gx)dρ(g)

We note ν the Lebesgue measure on Td. One can prove that for any p ∈ [1,+∞], P is a
continuous operator on Lp(Td, ν) and ‖P‖Lp = 1.

In the sequel, we will need an hypothesis telling that the support of ρ is big enough.
Let H be a closed subgroup of SLd(R). We say that the action of H on Rd is strongly

irreducible if H doesn’t fix any union of finite proper subspaces of Rd and we say that
the action is proximal if there is some h ∈ H for which there are an h−invariant line V +

h

in Rd and an h−invariant hyperplane V <
h such that Rd = V +

h ⊕ V <
h and the restriction

of h to V <
h has a spectral radius strictly smaller than the restriction of h to V +

h .
We say that a borelian measure ρ on G = SLd(R) has an exponential moment if for

some ε ∈ R∗
+ we have ∫

G

‖g‖εdρ(g) < +∞

Under these assumptions (exponential moment and strongly irreducible and proximal
action of the closed subgroup generated by the support of ρ), we know that P has a
spectral radius strictly smaller than 1 in the orthogonal of the constant functions in
L2(X, ν) (cf Furmann and Shalom in [FS99] and also Guivarc’h in [Gui06]). We will say
in that case that P has a spectral gap in L2(X, ν).

In particular under these assumptions, for any function f ∈ L2(X, ν), there is a
function g ∈ L2(X, ν) such that f = g − Pg +

∫
fdν and the law of large numbers and

the central limit theorem are already known for ν−a.e. starting point x ∈ Td (see for
instance [GL78], [BIS95] and [DL03]) the variance in the central limit theorem beeing

σ2(f) =

∫
g2 − (Pg)2dν

In this article, we are interested in the study of the walk starting at an arbitrary point
x ∈ Td.

It is easy to see that the rational points in Td have a finite Γ−orbit since any g ∈ Γ
increases the denominator of such a point. So to study the walk starting at a rational
point one can use the classical results for Markov chains with a finie number of states.

We define a measurable application ν : X → M1(X) (the set of probability measures
on X) by νx = ν (Lebesgue measure on X) if x 6∈ Qd/Zd and νx is the equidistributed
measure on Γρx if x ∈ Qd/Zd where Γρ is the subgroup of SLd(Z) generated by the
support of ρ.

The first result we have is the following

Theorem 1.1 ([BFLM11]). Let ρ be a probability measure on Γ = SLd(Z) having an
exponential moment and whose support generates a strongly irreducible and proximal
subgroup.

2



Then, for any x ∈ X, any continuous function f on X and ρ⊗N−a.e. (gn) ∈ ΓN,

1

n

n−1∑

k=0

f(gk . . . g1x) −→
∫
fdνx

In the sequel, we will study the sequence

1

n

n−1∑

k=0

f(gk . . . g1x)−
∫
fdνx

To do so, we will see in section 4 that the result of Bourgain, Furmann, Lindenstrauss
and Mozes in [BFLM11] allows one to have a speed of convergence depending on the
diophantine properties of x in the case where f is hölder-continuous (for the distance
induced by a norm on Rd). This will allow us to prove the next

Theorem (4.17). Let ρ be a probability measure on Γ = SLd(Z) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup.

Then, for any γ ∈]0, 1] there is β0 ∈ R∗
+ such that for any B ∈ R∗

+ and β ∈]0, β0[ we
have that for any x ∈ Td such that the inequality

‖x− p/q‖ 6 e−Bqβ

has a finite number of solutions p/q ∈ Qd/Zd, we have that for any γ−holder continuous
function f on the torus, noting σ2(f) =

∫
g2 − (Pg)2dν where g ∈ L2(X, ν) is such that

f = g−Pg+
∫
fdν in L2(X, ν) (such a function g exists has we already noted) we have

that

1√
n

n−1∑

k=0

f(Xk)
L−→ N

(∫
fdν, σ2(f)

)

(If σ2 = 0, the law N (µ, σ2) is a Dirac mass at µ).
Moreover, if σ2(f) 6= 0 (see section 3 for an assumption on ρ implying that this cannot

happen unless f is a constant function) then

lim inf

∑n−1
k=0 f(Xk)−

∫
fdm√

2nσ2(f) ln lnn
= −1 et lim sup

∑n−1
k=0 f(Xk)−

∫
fdm√

2nσ2(f) ln lnn
= 1

and if σ2(f) = 0, then for ν−a.e. x ∈ X, the sequence (
∑n−1

k=0 f(Xk) −
∫
fdm)n is

bounded in L2(Px).

A first step to prove this result is that if f is a continuous function on X that writes
f = g − Pg where g is also continuous on X then,

n−1∑

k=0

f(Xk) = g(X0)− g(Xn) +
n−1∑

k=0

g(Xk+1)− Pg(Xk)

and Mn =
∑n−1

k=0 g(Xk+1) − Pg(Xk) is a martingale with bounded increments and we
can use the classic results for the martingales to prove the theorem.

We call Poisson’s equation the equation f = g−Pg. The method consisting in solving
Poisson’s equation to study

∑n−1
k=0 f(Xk)) is called Gordin’s method.
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Here, in general, there cannot exist a continuous function g on the torus such that
f = g−Pg because this would imply that f has a zero integral against all the stationnary
measures (in particular, we would have that f(0) = 0). However, we will prove the
theorem by showing that for any holder continuous function f on the torus, we can
solve Poisson’s equation at points having good diophantine properties (cf. section 4).
Moreover, the solution we construct will not be bounded on X but will be dominated
by a function u : X → [1,+∞] that we call drift function and that satisfies

Pu 6 au+ b

for some a ∈]0, 1[ and b ∈ R.This equation means that if u(x) is big, then, for many
g ∈ suppρ, u(gx) is much smaller than u(x) or in other words, the function g that we
construct is not bounded but the walk doesn’t spend much time at points x where |g(x)|
is large.

The first section of this article consists in a study of drift functions and the proof
of the central limit theorem and the law of the iterated logarithm for martingales with
difference sequence bounded by drift functions.

In the second section, we study the variance appearing in the central limit theorem
and the case where it vanishes.

Finally, in the third chapter, we solve Poisson’s equation for points of the torus having
good diophantine properties and we prove theorem 4.17.

2. Drift functions

In this section, we introduce and study some kind of functions that
we call “drift functions” and that allow one to control the sequence
(f(Xn)) when f is dominated by one.
Moreover, we prove the law of large number, the central limit theorem
and the law of the iterated logarithm for martingales dominated by
drift functions.

2.1. Definition. Let (Xn) be a Markov chain on a standard borelian space X.

Definition 2.1 (Drift function). Let u : X → [1,+∞] be a borelian function and C a
borelian subset of X.

We say that (u,C) is a drift function if u is bounded on C and if there is some b ∈ R
such that

Pu 6 u+ b1C
In general, we will say that u is a drift function without indicating the set C.

Remark 2.2. These functions are studied by many authors and our main reference
is [MT93] (see also [GM96]).

Meyn and Tweedie don’t assume that u is bounded on C but that C is a so called
petite-set and this allows them to prove that what can find a borelian set C ′ such that
(u,C ′) is a drift function with our definition.

Remark 2.3. Many authors call Lyapunov function any non negative measurable function
v : X → [1,+∞[ such that Pv 6 v. So, our drift functions are very close to Lyapunov
functions.



As we assume that Pu 6 u+ b1C , we can study borelian functions f on X such that

(2.1) |f | 6 u− Pu+ b1C

We are going to see that we have a good control on the sequence (Pnf) (or, more
specifically, on the series whose general terms involves the Pnf).

Therefore, we set, for p ∈ R+,

Ep
u :=

{
f : X → R

∣∣∣f is borelian and ∃M∀x ∈ X, |f(x)| 6M(u− Pu+ b1C)
1/p
}

And, for any f ∈ Ep
u, we set

‖f‖Ep
u
= inf

{
M ∈ R

∣∣∣∀x ∈ X, |f(x)| 6M(u− Pu+ b1C)
1/p
}

Remark 2.4. The space (Ep
u , ‖ . ‖Ep

u
) is a Banach space.

In the same way, we set, for any p ∈ [1,+∞[,

Fp
u :=

{
f : X → R

∣∣∣f is borelian and ∃M,∀x ∈ X, |f(x)| 6Mu(x)1/p
}

and, for f ∈ Fp
u ,

‖f‖Fp
u
= sup

x∈X

|f(x)|
u(x)1/p

In next lemma, we use the control given by the drift function to prove that the space
E1
u is a subset of the space of integrable functions against the stationary measures for

the Markov chain.

Lemma 2.5. Let u be a drift function and ν a borelian probability measure on X that
is P−stationnary and such that ν(u < +∞) = 1.

Then, the identity operator defined from Ep
u(X) to Lp(X, ν) is continuous.

Proof. (cf. lemma 3.8 in [BQ13])

Let f ∈ Ep
u be a non negative function, x ∈ X and n ∈ N∗, then, by definition of Ep

u,
|f |p(x) 6 ‖f‖pEp

u
(u− Pu+ b)(x), and so,

1

n

n−1∑

k=0

P k(|f |p)(x) 6
‖f‖pEp

u

n
(u− Pnu+ nb) 6 ‖f‖pEp

u
(
1

n
u(x) + b)

But, according to Chacon-Ornstein’s ergodic theorem (see for instance the theorem 3.4
of the third chapter of [Kre85]), there is a P−invariant function f∗ on X that is non
negative and such that

∫
|f |pdν =

∫
f∗dν and, for ν−a.e. x ∈ X,

1

n

n−1∑

k=0

P k|f |p(x) −→ f∗(x)

But, since u is finite ν−a.e., we get that f∗(x) 6 b‖f‖pEp
u
for ν−a.e. x ∈ X. And so,

f∗ ∈ L∞(X, ν) ⊂ L1(X, ν) since we assumed that ν is a probability measure. This proves

that, f ∈ Lp(X, ν) and that ‖f‖Lp(X,ν) 6 b1/p‖f‖Ep
u
. �
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2.2. The LLN, the CLT and the LIL for martingales.

In this section, we prove three of the classical results in probability
theory for martingales with increments dominated by a drift function.
In particular we will prove that the central limit theorem and the law
of the iterated logarithm for martingales can be deduced from a law of
large numbers and this will be our corollary 2.13.

Remark 2.6. In this section, we make an assumption such as “f ∈ Ep
u for some p > 1”

very often. The reader shall not be afraid of this assumption because in many examples
we can construct families of drift functions and if f is dominated by one, fp will be
dominated by an other one.

Before we state and prove corollary 2.13, we state a some lemmas that we will also
use in the study of the random walk on the torus.

First, we extend the law of large numbers for martingales (stated in [Bre60]) for
measurable functions f ∈ Ep

u for some p > 1: this will be our 2.10. To prove it, we will
use the following

Lemma 2.7. Let u be a drift function, x ∈ X, and α ∈ R+, then

sup
n∈N

n∑

k=0

P k(u− Pu)(x)

(k + 1)α
6 u(x)

Proof. We can compute :
n∑

k=0

P k(u− Pu)

(k + 1)α
=

n∑

k=0

1

(k + 1)α
P ku−

n∑

k=0

1

(k + 1)α
P k+1u

=
n∑

k=1

(
1

(k + 1)α
− 1

kα
)P ku+ u− 1

(n+ 1)α
Pn+1u

6 u(x) since u is non negative

�

Then, we prove that it is the same thing to study

1

n

n−1∑

k=0

f(Xn)− Pf(Xn) and
1

n

n−1∑

k=0

f(Xn+1)− Pf(Xn).

Thus, having the law of large numbers, the central limit theorem and the law of the
iterated logarithm for martingales, we will get these results for functions f that writes
f = g − Pg.

Lemma 2.8. Let u be a drift function and p > 1. Then, for any f ∈ Ep
u, any x ∈ X

such that u(x) is finite and any ε ∈]0, p[,
f(Xn)

n1/(p−ε)
−→ 0 Px − a.e. and in L1(Px)

Remark 2.9. We will use this lemma with p > 1 and p − ε = 1 and with p > 2 and
p− ε = 2.
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Proof. With the notations of the lemma, let’s compute, for any n ∈ N,

Ex|f(Xn)|p 6 ‖f‖Ep
u
Exu(Xn)− Pu(Xn) + b = ‖f‖Ep

u
Pn(u− Pu+ b)

And so, assuming without any loss of generality that ‖f‖Ep
u
= 1, we get

n∑

k=0

Ex|f(Xk)|p
(k + 1)p/(p−ε)

6

n∑

k=0

P k(u− Pu)

(k + 1)1+ε/(p−ε)
+ b

n∑

k=0

1

(k + 1)1+ε/(p−ε)

6 u(x) + b
∑

n∈N∗

1

n1+ε/(p−ε)

where we used lemma 2.7 to control the first sum.
Thus, for any x ∈ X such that u(x) is finie,

+∞∑

k=0

Ex

( |f(Xk)|
(k + 1)1/(p−ε)

)p

is finite and this finishes the proof. �

Proposition 2.10. Let u be a drift function and p ∈]1,+∞[. For any f ∈ Ep
u and

x ∈ X,

1

n

n−1∑

k=0

f(Xk+1)− Pf(Xk) −→ 0 Px − a.e. and in Lp(Px)

Proof. For any n ∈ N∗, let Mn =
∑n−1

k=0 f(Xk+1)− Pf(Xk).
Then, (Mn) is a martingale with EMn = 0 and

Ex|Mn+1 −Mn|p = Ex|f(Xn+1)− Pf(Xn)|p = Pn(Ex|f(X1)− Pf(x)|p)
6 2p−1Pn+1(|f |p)(x) 6 2p−1‖f‖Ep

u
Pn+1(u− Pu+ b)

Thus,

+∞∑

n=1

1

np
Ex|Mn+1 −Mn|p 6 2p−1‖f‖Ep

u

+∞∑

n=1

Pn+1(u− Pu+ b)

np

6 2p−1‖f‖Ep
u

(
u(x) + b

+∞∑

k=0

1

np

)

And so, according to the law of large numbers for martingales (see the theorem 2.18 in
[HH80]), we get that 1

nMn −→ 0 Px−a.e. and in Lp(Px). �

Lemma 2.11. Let u be a drift function such that Pu 6 au + b for some a ∈]0, 1[ and
b ∈ R and let p ∈]1,+∞[.

Let ψ : N → R+ be a decreasing function converging to 0 at +∞.
Then, for any f ∈ Ep

u,

1

n

n−1∑

k=0

ψ(k)f(Xk) −→ 0 Px − a.e. and in Lp(Px)
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Proof. We shall assume without any loss of generality that ‖f‖Ep
u
= 1.

To prove the convergence in Lp, we compute
(
Ex

∣∣∣∣∣
1

n

n−1∑

k=0

ψ(k)f(Xk)

∣∣∣∣∣

p)1/p

6
1

n

n−1∑

k=0

ψ(k) (Ex|f(Xk)|p)1/p

6
1

n

n−1∑

k=0

ϕk

(
P ku(x)

)1/p

6
1

n

n−1∑

k=0

ϕk(u(x) + b/(1− a))1/p

And we conclude with Cesaro’s lemma.

To study the a.e.-convergence, in a first time, we are going to prove the for any x such
that u(x) is finite,

(2.2) lim sup
n

1

n

n−1∑

k=0

|f(Xk)| 6
b(1 + b)1/p

1− a1/p
Px − p.s.

First, we remark that for any x ∈ X,

|f(x)|p 6 u(x)− Pu(x) + b 6 (1 + b)u(x)

Moreover, for any r ∈]0, 1], we note ur the function defined by ur(x) = u(x)r. And so,
using the concavity of the function (t 7→ tr), we get that

Pur 6 (Pu)r 6 (au+ b)r 6 arur + b

This means that ur 6
1

1−ar (ur − Pur + b). And so, setting r = 1/p, we obtain

1

n

n−1∑

k=0

|f(Xk)| 6
(1 + b)1/p

n

n−1∑

k=0

u1/p(Xk)

6
(1 + b)1/p

1− a1/p
1

n

n−1∑

k=0

u1/p(Xk)− Pu1/p(Xk) + b

6
(1 + b)1/p

1− a1/p

(
1

n
u(x) + b

)
+

(1 + b)1/p

1− a1/p
1

n

n−1∑

k=0

u1/p(Xk+1)− Pu1/p(Xk)

Moreover, by definition, up1/p = u ∈ E1
u and so, using proposition 2.10, we get

1

n

n−1∑

k=0

u1/p(Xk+1)− Pu1/p(Xk) −→ 0 Px − a.e.

this proves inequality 2.2.
Thus, a.e., there is some n0 ∈ N such that for n > n0,

1

n

n−1∑

k=0

|f(Xk)| 6 2
b(1 + b)1/p

1− a1/p
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And so, for n such that
√
n > n0, we get

1

n

n−1∑

k=0

ψ(k)|f(Xk)| 6
ψ(0)

n

⌊√n⌋−1∑

k=0

|f(Xk)|+
ψ(⌊√n⌋)

n

n−1∑

k=⌊√n⌋
|f(Xk)|

6 2
b(1 + b)1/p

1− a1/p

(
ψ(0)√
n

+ ψ(
√
n)

)

And, as ψ converges to 0, this finishes the proof of the lemma. �

Using the same ideas as in the proof of proposition 2.10, we can prove the

Lemma 2.12. Let u be a drift function and p > 2.
Let g ∈ Ep

u and x ∈ X such that u(x) is finite.
Then, for any ε ∈ R∗

+

1

n

n−1∑

k=0

Ex

(
(g(Xk+1)− Pg(Xk))

21|g(Xk+1)−Pg(Xk)|>ε
√
n

)
−−−−−→
n→+∞

0

and
+∞∑

n=1

1√
n
Ex

(
|g(Xn+1)− Pg(Xn)| 1|g(Xn+1)−Pg(Xn)|>ε

√
n

)
is finite

Finally, there is δ ∈ R∗
+ such that

+∞∑

n=1

1

n2
Ex

(
(g(Xn+1)− Pg(Xn))

41|g(Xn+1)−Pg(Xn)|6δ
√
n

)

is finite.

Proof. Using Markov’s inequality, we can compute

Ex

(
h(Xk+1,Xk)

21|h(Xk+1,Xk)|>ε
√
n

)
6
P k (E (g(X1)− Pg(X0))

p)

εp−2n(p−2)/2

where we noted h(x, y) = g(x) − Pg(y).
But, Ex [((g(X1)− Pg(X0))

p] ∈ E1
u, since we took g in Ep

u.
So,

1

n

n∑

k=1

Ex

(
h(Xk+1,Xk)

21|h(Xk+1,Xk)|>ε
√
n

)
6

C

n1+(p−2)/2εp−2

n−1∑

k=0

P k(u− Pu+ b)

6
C

n1+(p−2)/2εp−2
u(x) +

bC

n(p−2)/2εp−2

And the right hand side converges to 0 since u(x) is finite.

The two sums that we have to dominated are bounded by constants times
+∞∑

n=1

1

n1+(p−2)/2
Ex (|g(Xn+1)− Pg(Xn)|p)

and, once again, using that g ∈ Ep
u, we get that

Ex (|g(Xn+1)− Pg(Xn)|p) 6 ‖g‖Ep
u
Pn(u− Pu+ b)
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And we shall conclude with lemma 2.7. �

Lemma 2.12 is important since it is a first step in the proof of the central limit theorem
and the law of large numbers as we will see in next

Corollary 2.13. Let u be a drift function and p > 2.
Let g ∈ Ep

u and x ∈ X such that u(x) is finite.
If

1

n

n−1∑

k=0

P (g2)(Xk)− (Pg(Xk))
2

converges in L1(Px) and a.e. to some constant σ2(g, x), then,

1√
n

n−1∑

k=0

g(Xk+1)− Pg(Xk)
L−−−→

n→∞
N (0, σ2(g, x))

Where we noted N (0, 0) the Dirac mass at 0.
Moreover, if σ2(g, x) 6= 0 then,

lim sup

∑n−1
k=0 g(Xk+1)− Pg(Xk)√
2nσ2(g, x) ln ln(n)

= 1 p.s.

and

lim inf

∑n−1
k=0 g(Xk+1)− Pg(Xk)√
2nσ2(g, x) ln ln(n)

= −1 p.s.

Proof. The central limit theorem comes from Brown’s one (cf [Bro71]) since the “ Lin-
deberg condition” is satified when g is dominated by a drift function as we saw in
lemma 2.12.

The law of the iterated logarithm is given by corollary 4.2 and theorem 4.8 in [HH80]
since the assumption is satisfied according to lemma 2.12. �

3. About the nullity of the variance

In this section, we study conditions under which the variance appearing
in the central limit theorem and in the law of the iterated logarithm
can not vanish.

Let G be a locally compact group acting continuously on a topological space X pre-
serving the probability measure ν.

We will always assume that the action of G on X is ν−ergodic : this means that every
measurable G−invariant function is constant ν−a.e.

Let ρ be a probability measure on G and P the associated Markov operator on X.
For any f ∈ L2(X, ν), we have, using Jensen’s inequality, that

‖Pf‖22 =
∫

X

∣∣∣∣
∫

G

f(gx)dρ(g)

∣∣∣∣
2

dν(x) 6

∫

G

∫

X

|f(gx)|2dν(x)dρ(g)

6

∫

X

|f(x)|2dν(x) = ‖f‖22
10



And so, the operator P is continuous on L2(X, ν) and ‖P‖ 6 1. It is clear that ‖P‖ = 1
since P1 = 1.

In our study of the central limit theorem for some function f on X, the variance will
always be given

σ2(f) = ‖g‖22 − ‖Pg‖22
where g ∈ L2(X, ν) is a function that we will have constructed such that f −

∫
fdν =

g−Pg (in L2(X, ν)). It is therefore important to know if there can be some non-constant
function g ∈ L2(X, ν) such that ‖Pg‖2 = ‖g‖2.

This question has been studied by Furman and Shalom in [FS99] where they prove
that if the measure ρ is aperiodic (that is to say that it’s support is not included in a
class of a subgroup of G) then there is no non-constant function f ∈ L2(X, ν) such that
‖Pf‖2 = ‖f‖2.

We prove in this section that the existence of such functions is equivalent to the
existence of a subgroup H of G that does not act ν−ergodically on X and of some
g ∈ G such that suppρ ⊂ Hg. This will be our proposition 3.4.

If ρ is a borelian probability measure on G, we note ρ̃ the symmetrized measure. It
is the probability measure defined for any borelian subset A of G by

ρ̃(A) =

∫

G

1A(g
−1)dρ(g)

Remark 3.1. Remark that since the measure ν is G−invariant, we can compute, for any
f1, f2 ∈ L2(X, ν),

∫

X

f2Pρf1dν =

∫

G

∫

X

f1(gx)f2(x)dν(x)dρ(g) =

∫

G

∫

X

f1(x)f2(g
−1x)dν(x)

=

∫

X

f1Pρ̃f2dν

So, the operator Pρ̃ is the adjoint operator of Pρ in L2(X, ν).

Remark 3.2. In our definition of Pρ, we make the element g act on the left. Thus, if
ρ1, ρ2 are borelian probability measures on G, for any f ∈ L2(X, ν) and any x ∈ X, we
get

Pρ1Pρ2f(x) =

∫

G

Pρ2f(gx)dρ1(g) =

∫

G

∫

G

f(g2g1x)dρ1(g1)dρ2(g2) = Pρ2∗ρ1f(x)

Thus, Pρ1Pρ2 is the operator associated to the measure ρ2 ∗ ρ1. This inversion doesn’t
have any consequence in this article (since we always convol a measure with it’s powers)
but in this section we have to remember that the measure associated to P ∗P is ρ ∗ ρ̃.

First, we remark that for any f ∈ L2(X, ν),

‖f‖22 − ‖Pf‖22 =
∫

X

f2(y)− (Pf)2(y)dν(y) =

∫

X

f(y)(Id − P ∗P )f(y)dν(y)

where P ∗ is the adjoint operator of P in L2(X, ν).
Moreover, we saw that ‖f‖2 − ‖Pf‖2 > 0.

11



Lemma 3.3. Let G be a group, S ⊂ G and S−1 = {g−1|g ∈ S}.
Then, the subgroup of G generated by SS−1 is the smallest subgroup H of G such that

there is g ∈ G with S ⊂ Hg.

Proof. First, let H be a subgroup of G and g ∈ G. If S ⊂ Hg then SS−1 ⊂ Hgg−1H =
H.

On the other hand, let H be a subgroup of G containing SS−1 and let g ∈ S.
Then, for any h ∈ S, we have that h = hg−1g. But, hg−1 ∈ H and so h ∈ Hg. This

proves that S ⊂ Hg.
What we proved is that for any subgroup H of G, we have the equivalence between

“SS−1 ⊂ H” and “there is g ∈ G such that S ⊂ Hg”. This proves the lemma since the
subgroup of G generated by SS−1 is by definition the smallest subgroup of G containing
SS−1. �

Proposition 3.4. Let G be a locally compact group acting continuously and ergodically
on a topological space X endowed with a G−invariant probability measure ν.

Then, for any f ∈ L2(X, ν), the three following assertions are equivalent

• ‖Pf‖2 = ‖f‖2
• For ν−a.e. x ∈ X and ρ ∗ ρ̃−a.e. g ∈ G, f(gx) = f(x).
• There is some subgroup H of G and some g ∈ G such that f is H−invariant
and supp ρ ⊂ Hg.

Remark 3.5. There can exist a non constant function f ∈ L2(X, ν) such that ‖Pf‖2 =
‖f‖2 only if supp ρ is included in a right-class of a subgroup of G whose action on X is
not ν−ergodic.

Proof. First, we remark that
∫

X

∫

G

|f(gx)− f(x)|2d(ρ ∗ ρ̃)(g)dν(x) =
∫

X

2|f(x)|2 − 2ℜ(f(x)P ∗Pf(x))dν(x)

= 2‖f‖22 − 2ℜ
(∫

fP ∗Pfdν

)

= 2‖f‖22 − 2‖Pf‖22
So the first point implies the second one.

The second point implies that the function f is invariant by the subgroup generated
by (supp ρ)(supp ρ)−1. But, according to the previous lemma, this subgroup is precisely
the smallest subgroup H of G such that there is g ∈ G with supp ρ ⊂ Hg. And so, the
second point implies the third.

Finally, if there is some g in G and a subgroup H such that f is H−invariant and
suppρ ⊂ Hg, then, for ν−a.e. x ∈ X and any γ ∈ supp ρ, f(γx) = f(gx) and so,

Pf(x) =

∫

G

f(γx)dρ(γ) = f(gx)

Thus, ∫

X

|Pf(x)|2dν(x) =
∫

X

|f(gx)|2dν(x) =
∫

X

|f(x)|2dν(x)

And the third point implies the first one. �
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Corollary 3.6. Let G be a locally compact group acting continuously and ν−ergodically
on a topological space X endowed with a G−invariant probability measure ν.

Let ρ be a borelian probability measure on G.
Let g ∈ L2(X, ν) such that ν

({
x ∈ X

∣∣supn Png2(x) < +∞
})

= 1 and note f = g−Pg.
Suppose that ‖g‖2 = ‖Pg‖2 then, for ν−a.e. x ∈ X, the sequence (

∑n
k=0 f(gk . . . g1x))

is bounded in L2(Px).
Moreover if g belongs to L∞(X) then, for ν−a.e. x ∈ X, we have that the sequence

(
∑n

k=0 f(gk . . . g1x)) is bounded in L∞(Px).

Proof. According to the previous proposition, if ‖g‖ = ‖Pg‖, there is some γ ∈ G and
a subgroup H ofG such that suppρ ⊂ Hγ and g is H−invariant.

So, for ν−a.e. x ∈ X and ρ−a.e. g1 ∈ G, g(g1x) = g(γx). In particular, Pg(x) =
g(γx) and so, f(x) = g(x)− g(γx).

Thus, for ν−a.e. x ∈ X and ρ⊗n−a.e. (gi) ∈ Gn,

n−1∑

k=0

f(gk . . . g1x) =
n−1∑

k=0

g(gk . . . g1x)− g(γgk . . . g1x)

= g(x)− g(gn . . . g1x) +
n−1∑

k=0

g(gk+1 . . . g1x)− g(γgk . . . g1x)

= g(x)− g(gn . . . g1x)

This computation proves the corollary when the function g is bounded.
Moreover, we have that

∫

GN

∣∣∣∣∣
n−1∑

k=0

f(gk . . . g1x)

∣∣∣∣∣

2

dρ⊗N((gi)) = g(x)2 + Pn(g2)(x)− 2g(x)Png(x)

6 g(x)2 + Pn(g2)(x) + 2|g(x)|
√
Pn(g2)(x)

6 4 sup
n
Pn(g2)(x)

Where we used Jensen’s inequality to say that |Png(x)| 6
√
Png2(x).

This finishes the proof of the corollary. �

The following example is an illustration of the previous corollary in an explicit context.

Example 3.7. Let

A =

(
2 1
1 1

)
et B =

(
0 1
−1 0

)

Then, the subgroup of SL2(R) generated by A and B is Zariski-dense and the Lebesgue
measure ν on the torus T2 = R2/Z2 is ergodic.

Let ρ = 1
2δA + 1

2δBA.
Guivarc’h proved in [Gui06] that the operator P associated to ρ has a spectral gap in

L2(T2, ν).
Let ‖ . ‖ be the distance induced on T2 = R2/Z2 by the euclidean norm on R2. And

let g be the function defined for any x ∈ T2 by g(x) = ‖x‖.
13



Then, for any x ∈ T2,

Pg(x) =
1

2
‖Ax‖+ 1

2
‖BAx‖ = ‖Ax‖ = g(Ax)

and ∫

X

|Pg(x)|2dν(x) =
∫

X

|g(Ax)|2dν(x) =
∫

X

|g(x)|2dν(x)

Moreover, if we note f = g − Pg, then, for any x ∈ X, n ∈ N and any (g1, . . . gn) ∈
{A,BA}n, we have that

g(gn+1 . . . g1x) = g(Agn . . . g1x)

and so,

n−1∑

k=0

f(gk . . . g1x) = g(x) − g(gn . . . g1x) +

n−1∑

k=0

g(gk+1 . . . g1x)− g(Agk . . . g1x)

= g(x) − g(gn . . . g1x)

This proves that for any x ∈ X, the sequence (
∑n−1

k=0 f(gk . . . g1x)) is bounded in L∞(Px).

4. Application to the random walk on the torus

In this section, we go back to the random walk on the torus. The law of
large numbers is known as a corollary of a theorem in [BFLM11] which
allow one to have a speed of convergence depending on the diophantine
properties of the starting point. We use this to prove the central limit
theorem and the law of the iterated logarithm.

Let H be a subgroup of SLd(R). We say that the action of H on Rd is strongly
irreducible if H doesn’t fixe any finite union of proper subspaces of Rd and that it is
proximal if for some h ∈ H we have a decomposition Rd = V +

h ⊕ V <
h of Rd into an

h−invariant line V +
h and an h−invariant hyperplane V <

h such that the spectral radius

of h restricted to V <
h is strictly smaller than the one of h restricted to V +

h .
We say that the group H is strongly irreducible and proximal if it’s action is.

If we also assume that H is a subgroup of SLd(Z), then it’s action pass to the quotient
Td = Rd/Zd that we endow with a metric defined by a norm on Rd. Moreover, H is
strongly irreducible and proximal then any a ∈ Zd \ {0} has an infinite H−orbit and so,
according to the proposition 1.5 in [BM00] the action of H on Td is ν−ergodic (every
H−invariant function is constant ν−a.e.).

Let ρ be a probability measure on SLd(Z). We define a random walk on X = Td

noting, for x ∈ X, {
X0 = x
Xn+1 = gn+1Xn

where (gn) ∈ SLd(Z)
N is an iid sequence of random variables of common law ρ.

In this constext, Bourgain, Furmann, Lindenstrauss and Mozes proves the following
14



Theorem ([BFLM11]). Let ρ be a borelian probability measure on SLd(Z) whose sup-
port generates a strongly irreducible and proximal group and which has an exponential
moment1.

Note

λ1 =

∫

SLd(Z)

∫

P(Rd)
ln ‖gx‖dν(x)dρ(g) > 0

where ν is the unique2 probability measure ρ−stationary on P(Rd).
Then, for any ε ∈ R∗

+, there is a constant C such that for any x ∈ Td, any a ∈ Zd\{0},
any t ∈]0, 1/2] and any n ∈ N with n > −C ln t, if

| ̂ρ∗n ∗ δx(a)| > 2t‖a‖
then, x admits a rational approximation p/q ∈ Qd/Zd satisfying

d

(
x,
p

q

)
6 e−(λ1−ε)n et |q| 6 t−C

In particular, this proves that if x is irrational, then, for any a ∈ Zd \ {0} and any

t ∈]0, 1/2], there are only finitely many n ∈ N such that | ̂ρ∗n ∗ δx(a)| > 2t‖a‖. This
proves that for any irrational point x in Td and any a ∈ Zd \ {0},

lim
n→+∞

̂ρ∗n ∗ δx(a) = 0

And so, using Weyl’s equidistribution criterion we have that for any continuous function
f on Td and any irrational point x ∈ Td,

(4.1) lim
n→+∞

Pnf(x) =

∫
fdν

where ν is the Lebesgue measure on Td. Moreover, the speed of convergence depend on
the diophantine properties of x (see corollary C in [BFLM11]).

In this section, we first want to obtain a more explicit speed of convergence in equa-
tion 4.1 in terms of diophantine properties of x. Then, we want to use this speed of
convergence to prove the central limit theorem and the law of the iterated logarithm for
starting points having good diophantine properties.

In the first sub-section, we state a corollary of the theorem 4 that is easier to deal
with. The price we have to pay is that we will only be able to study hölder continuous
functions. This will be proposition

Proposition (4.6). Let ρ be a borelian probability measure on SLd(Z) whose support
generates a strongly irreducible and proximal group and which has an exponential mo-
ment.

1There is ε ∈ R∗
+ such that ∫

SLd(Z)

‖g‖εdρ(g) is finite

2The fact that λ1 exists and is strictly non negarive comes from a result of Furstenberg and Kesten
(see for instance [GM89]). The prove of the fact that the measure ν exists and is unique ccan be found
in [BL85].
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Then for any γ, δ ∈]0, 1] and any strictly non-decreasing function ϕ : R+ → R∗
+ with

lim inf
lnϕ(s)

ln s
> 0

there are constants C,C0, C1 ∈ R∗
+such that for any x ∈ Td and any n ∈ N,

Wγ(ρ
∗n ∗ δx, ν) 6 Cψ(n)hϕ(x)

δ

where hϕ is the function defined for any x ∈ Td by

hϕ(x) = sup
p/q∈Qd/Zd

1

ϕ(q)d(x, p/q)

the function ψ is defined by

ψ(t) =
(
ϕ−1(eC1t)

)−C0

and Wγ is the Wasserstein distance defined for any probability measure ϑ1, ϑ2 on the
torus by

Wγ(ϑ1, ϑ2) = sup
f∈C0,γ (Td)
‖f‖γ61

∣∣∣∣
∫

X

fdϑ1 −
∫

X

fdϑ2

∣∣∣∣

Then, we will prove that there is a function uϕ that dominates the function hϕ and
such that Puϕ 6 auϕ + b for some a ∈]0, 1[ and b ∈ R. This means that in average,
uϕ(gx) is much smaller than uϕ(x) and this will allow us to prove, using the results of
section 2.2, the

Theorem (4.17). Let ρ be a borelian probability measure on SLd(Z) whose support gen-
erated a strongly irreducible and proximal group and which has an exponential moment.

Then, for any γ ∈]0, 1] there is β0 ∈ R∗
+ such that for any B ∈ R∗

+ and any β ∈]0, β0[
we have that for any x ∈ Rd such that the inequality

‖x− p/q‖ 6 e−Bqβ

has only finitely many solutions (p, q) ∈ Zd ×N∗, we have that for any γ−holder contin-
uous function f on the torus, noting σ2(f) the quantity defined in lemma 4.16 we have
that

1√
n

n−1∑

k=0

f(Xk)
L−→ N

(∫
fdm,σ2(f)

)

(If σ2 = 0, the law N (µ, σ2) is a Dirac mass at µ).
Moreover, if σ2(f) 6= 0 then

lim inf

∑n−1
k=0 f(Xk)−

∫
fdm√

2nσ2(f) ln lnn
= −1 et lim sup

∑n−1
k=0 f(Xk)−

∫
fdm√

2nσ2(f) ln lnn
= 1

and if σ2(f) = 0, then for ν−a.e. x ∈ X, the sequence (
∑n−1

k=0 f(Xk) −
∫
fdm)n is

bounded in L2(Px).

4.1. BFLM’s result for holder-continuous functions.
We start with a few remind on Wasserstein’s distance and then we
state BFLM’s result using this distance.

16



4.1.1. Wasserstein’s distance on the torus. Note X the torus Td = Rd/Zd endowed with
the metric induced by a norm on Rd.

If ϑ1 and ϑ2 are borelian probability measures on X, a way to measure their distance
is to compute the total variation

dvar(ϑ1, ϑ2) = sup
f∈C0(X)
‖f‖∞61

∣∣∣∣
∫
fdϑ1 −

∫
fdϑ2

∣∣∣∣

This distance is not adapted to our study since, for instance, when ρ has a finite support,
so does the measure ρ∗n ∗ δx and so, for any x ∈ X and any n ∈ N,

dvar(ρ
∗n ∗ δx, ν) = 2

However, we can compute the distance between ϑ1 and ϑ2 seen has linear forms on the
space C0,γ(X) of γ−holder continuous functions on X. Therefore, we make the following

Definition 4.1 (Wasserstein’s distance).
Let ϑ1, ϑ2 be two borelian probability measures on a compact metric space (X, d).
For any γ ∈]0, 1], we define the γ−distance of Wasserstein between ϑ1 and ϑ2 by

Wγ(ϑ1, ϑ2) = sup
f∈C0,γ (X) ‖f‖γ61

∣∣∣∣
∫
fdϑ1 −

∫
fdϑ2

∣∣∣∣

Remark 4.2. Sometimes, this distance is also named after Kantorovich and Rubinstein
and we refer to [Vil09] for an overview of it’s first properties.

On the torus, Wasserstein’s distance between a given measure ϑ and the Lebesgue’s
measure is linked to the decreasing of the Fourier coefficients of ϑ. We make this precise
in next

Lemma 4.3. For any γ ∈]0, 1], there is a constant C depending only on d and γ such that
for any borelian probability measure ϑ on the torus Td and any t ∈ R∗

+, if Wγ(ϑ, ν) > t

then there is a ∈ Zd \ {0} such that |ϑ̂(a)| > CtC‖a‖ where we noted ν the Lebesgue
measure on Td.

To prove this lemma, we will need a result of Jackson and Bernstein about the rate at
which one can approximate in the uniform norm an holder continuous function by more
regular ones.

For r ∈ N∗, we define the Sobolev space

Hr :=



f ∈ L2(Td)

∣∣∣∣∣∣
∑

a∈Zd

|f̂(a)|2(1 + ‖a‖)2r < +∞





Lemma 4.4 (Jackson, Bernstein). Let γ ∈]0, 1] et r ∈ [1,+∞[.
Then, there is some C ∈ R such that for any function f ∈ C0,γ(Td), there is a sequence

(fn) ∈ Hr(Td)N such that for any n ∈ N∗,
∫
fdν =

∫
fndν, ‖f − fn‖∞ 6

C

nγ
‖f‖γ and ‖fn‖Hr 6 C‖f‖∞nC
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Proof. For y ∈ R/Z, we note km(y) =
(
sin(2πmy)
sin(πy)

)4
and for a point y = (y1, . . . , yd) ∈ Td,

we note Km(y) =
∏d

i=1 km(yi). Finally, we note Im =
(∫ 1/4

−1/4 km(y)dy
)−1

.

Define, for x ∈ Td,

fm(x) =

∫

[−1/4,1/4]d
Idmf(x+ 2y)Km(y)dy =

Idm
2

∫

[−1/2,1/2]d
f(y)Km(

y − x

2
)dy

Then, we can compute

|f(x)−fm(x)| =
∣∣∣∣∣

∫

[−1/4,1/4]d
Idm(f(x)− f(x+ 2y))Km(y)dy

∣∣∣∣∣

6 Idm2γ‖f‖γ
∫

[−1/4,1/4]d
‖y‖γKm(y)dy 6 Idm21+γ‖f‖γ

∫

[0,1/4]d
‖y‖γKm(y)dy

6 Idm21+γ‖f‖γ
∫

[0,1/4]d
(yγ1 + · · ·+ yγd )Km(y)dy

6 dIm21+γ‖f‖γ
∫

[0,1/4]
yγkm(y)dy

Where we used in last inequality the fact that

Idm

∫

[0,1/4]d
yγ1Km(y)dy = Im

∫

[0,1/4]
yγkm(y)dy

Note now,

Jm,γ := 2

∫ 1/4

0
yγkm(y)dy = 2

∫ 1/4

0
yγ
(
sin(2πmy)

sin(πy)

)4

dy

Then, using that for any t ∈ [0, π/2], 2t
π 6 sin(t) 6 t, we get that

1

π4

∫ π/4

0
yγ−4 (sin(2πmy))4 dy 6 Jm,γ 6

1

24

∫ π/4

0
yγ−4 (sin(2πmy))4 dy :=

1

24
Lm,γ

Moreover,

Lm,γ =

∫ mπ/2

0

( y

2πm

)γ−4
(sin y)4

dy

2πm
= (2πm)3−γ

∫ mπ/2

0
yγ−4 (sin y)4 dy

And so,

Lm,γ ≍ m3−γ

Thus,

Jm,γ ≍ m3−γ

and finally,

Im

∫ 1/4

0
yγkm(y)dy =

Jm,γ

Jm,0
≍ m−γ

And so, what we proved is that there is some constant C such that for any function
f ∈ C0,γ(Td), we have that

‖f − fm‖∞ 6
C

mγ
‖f‖γ
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So, what is left is to prove that (for some maybe bigger constant C)

‖fm‖Hr 6 C‖f‖∞mrd

But, it is clear that for any a ∈ Zd,

|f̂m(a)| 6 ‖f‖∞
And, using that fm = f ∗Km and that Km is a trigonometric polynomial of degree at
most Cm4 for some C as we may see by developping

km(y) =

(
sin(2πmy)

sin(πy)

)4

=

(
e−2iπmy − e2iπmy

e−iπy − eiπy

)4

= e4iπy
(
e−2iπmy − e2iπmy

1− e2iπy

)4

= e4iπy

(
m−1∑

k=−m

e2iπky

)4

So, we have that for ‖a‖ > Cm4, K̂m(a) = 0.
And this proves that

‖fm‖Hr =


∑

a∈Zd

(1 + ‖a‖)2r |f̂m(a)|2



1/2

6


 ∑

‖a‖6Cm4

(1 + ‖a‖)2r



1/2

‖f‖∞

6 (1 + Cm4)r(Cm4)d/2‖f‖∞
Which finishes the proof of the lemma. �

Proof of lemma 4.3. By definition of Wγ(ϑ, ν), there is a function f ∈ C0,γ(Td) such that
‖f‖γ 6 1 and |

∫
fdϑ−

∫
fdν| > t

2 .

Let r ∈ N∗ such that
∑

a∈Zd\{0}
‖a‖

(1+‖a‖2)r/2 =: Cr is finite.

According to lemma 4.4, there is a sequence of functions (fn) ∈ Hr(Td)N such that
‖f − fn‖∞ 6 C

nγ and ‖fn‖Hr 6 CnC .
Then,
∣∣∣∣
∫
fndϑ−

∫
fndm

∣∣∣∣ >
∣∣∣∣
∫
fdϑ−

∫
fdm

∣∣∣∣−
∣∣∣∣
∫
(f − fn)dϑ−

∫
(f − fn)dm

∣∣∣∣

>
t

2
− 2‖f − fn‖∞ > t− 2C

nγ

But,

∣∣∣∣
∫
fndϑ−

∫
fndm

∣∣∣∣ =

∣∣∣∣∣∣
∑

a∈Zd\{0}
f̂n(a)ϑ̂(a)

∣∣∣∣∣∣
6

∑

a∈Zd\{0}

∣∣∣f̂n(a)ϑ̂(a)
∣∣∣

6
∑

a∈Zd\{0}

‖fn‖Hr

(1 + ‖a‖2)r/2 |ϑ̂(a)| 6 ‖fn‖HrCr sup
a∈Zd\{0}

|ϑ̂(a)|
‖a‖

6 CnCCr sup
a∈Zd\{0}

|ϑ̂(a)|
‖a‖
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and so,

sup
a∈Zd\{0}

|ϑ̂(a)|
‖a‖ >

t
2 − 2C

nγ

CCrnC

So, taking n = ⌊
(
8C
t

)1/γ⌋+ 1 we have that t
2 − 2C1

nγ > t/4 and there is some constant
C ′ such that

sup
a∈Zd\{0}

|ϑ̂(a)|
‖a‖ > C ′t1+C/γ

and this finishes the proof. �

With lemma 4.3, we get a straightforward corollary of theorem 4.

Proposition 4.5 ([BFLM11] with Wasserstein’s distance). Let ρ be a borelian probability
measure on SLd(Z) whose support generated a strongly irreducible and proximal group
and which has an exponential moment.

Then, for any ε ∈ R∗
+ and any γ ∈]0, 1], there is a constant C ∈ R+ and t0 ∈]0, 1/2]

such that for any n ∈ N, any t ∈]0, t0] with n > −C ln t and any x ∈ Td, if

Wγ(ρ
∗n ∗ δx, ν) > t

then there is p/q ∈ Qd/Zd with |q| 6 Ct−C and

d(x, p/q) 6 e−(λ1−ε)n

The previous proposition proves that if the distance between ρ∗n ∗ δx and ν is large
and if t is a function of n, then x is well approximated by rational points : for instance, if
t = e−αn for some α ∈ R∗

+ then the p/q produced by the proposition satisfies q 6 CeαCn

and so,

d(x, p/q) 6 e−(λ1−ε)n
6

(
C

q

)(λ1−ε)/αC

We are going to reverse this to, given a diophantine condition, find a rate of convergence.

From now on, we fix a strictly non-decreasing function ϕ : R+ → R∗
+.

For x ∈ X, we note

(4.2) hϕ(x) = sup
p/q∈Qd/Zd

1

ϕ(q)d(x, p/q)

Thus, a point is M−diophantine if hϕ(x) is finite with ϕ(t) = tM . We also remark
that if ϕ grows faster than any polynomial, then ν(hϕ < +∞) = 1.

Proposition 4.6. Let ρ be a borelian probability measure on SLd(Z) whose support gen-
erated a strongly irreducible and proximal group and which has an exponential moment.

Then, for any γ, δ ∈]0, 1] and any strictly non-decreasing function ϕ : R+ → R∗
+ with

lim inf
lnϕ(s)

ln s
> 0

there are constants C,C0, C1 ∈ R∗
+ such that for any x ∈ Td and any n ∈ N,

Wγ(ρ
∗n ∗ δx, ν) 6 Cψ(n)hϕ(x)

δ
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where hϕ is the function defined in equation 4.2 and ψ is the function defined by

ψ(t) =
(
ϕ−1(eC1t)

)−C0

Remark 4.7. The assumption on ϕ implies that for some c ∈ R⋆
+ we have that for any

t ∈ R, ϕ(t) > ctc. It is not restrictive at all since according to Dirichlet’s theorem on

diophantine approximation, if ϕ(t) = o(t1+1/d), then the function hϕ only takes infinite
values.

Remark 4.8. If we take ϕ(n) = nD, then we get ψ(n) = e−κn for some κ ∈ R∗
+ and this

proves that for a generic diophantine point, the convergence is at exponential speed.

In the sequel, we will have to be sure that the sum of the ψ(n) converges and so, we
will take ψ(n) = n−1−α for some α ∈ R∗

+. This will allow us to study points x ∈ Td such
that the inequality

‖x− p/q‖ 6 e−Bqβ

has only finitely many solutions p ∈ Zd et q ∈ N∗ where β,B will be constants depending
on ρ.

Proof. Let C0, C1, C ∈ [5,+∞[ whose values will be determined later.
We note C2 the constant given by proposition 4.5.
Let x ∈ X et n ∈ N.
If Cψ(n)hϕ(x)

δ > 2, then the inequality is satisfied since ‖Pnf −
∫
fdm‖∞ 6 2‖f‖∞.

Thus, we shall assume that Cψ(n)hϕ(x)
δ 6 2.

Let t = C
5 ψ(n)hϕ(x)

δ . Then, t < 1
2 and

−C2 ln t = −C2 ln

(
C

5
ψ(n)hϕ(x)

δ

)
6 −C2 ln (ψ(n)) = C2C0 lnϕ

−1(eC1n)

since Chϕ(x)/5 > 1 because C > 5 and hϕ(x) > 1.
But, there is a constant C3 such that for any s ∈ R+, ϕ(s) > C3s

C3 and so,

ϕ−1(s) 6

(
s

C3

)1/C3

Therefore, lnϕ−1(eC1n) 6 1
C3

(C1n − lnC3) and −C ln t 6 n if C0 is small enough (de-

pending on C1).
Thus, we can apply proposition 4.5 to find that if

Wγ(ρ
∗n ∗ δx, ν) > t

then there is p/q ∈ Qd/Zd with q 6 C2t
−C2 such that

d

(
x,
p

q

)
6 e−λn

Thus, as we shall assume without any loss of generality that C2

(
5
C

)C2
6 1 and C0C2 6 1,

we get that

q 6 C2

(
5

Cψ(n)hϕ(x)δ

)C2

6 C2

(
5

Cψ(n)

)C2

= C2

(
5

C

)C2 (
ϕ−1(eC1n)

)C2C0

6 ϕ−1(eC1n)
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and

eλn 6 ‖x− p/q‖−1
6 ϕ(q)hϕ(x) 6 ϕ(q)

(
2

Cψ(n)

)1/δ

6 eC1n

(
2

Cψ(n)

)1/δ

Thus,

ψ(n) 6
2

C
e−δ(λ−C1)n

but,

ψ(n) >

(
eC1n

C3

)−C0

Which leads to a contradiction if C1 < λ, C0 is small enough and C is large enough.
Thus, there is no n ∈ N and x ∈ X such that Cψ(n)hϕ(x)

δ 6 2 and

Wγ(ρ
∗n ∗ δx, ν) >

1

5
Cψ(n)hϕ(x)

δ

So, for any n ∈ N and any x ∈ Td,

Wγ(ρ
∗n ∗ δx, ν) 6 Cψ(n)hϕ(x)

δ

which is what we intended to prove. �

4.2. Diophantine control along the walk.

In this section, we are going to prove that if x ∈ Td satisfies a diophan-
tine condition, then so does the gx with g ∈ SLd(Z). We will deduce
from this a control of the speed of convergence in proposition 4.5 along
the walk.

We saw in proposition 4.6 that for any irrational point x of Td, ρ∗n ∗ δx converges for
Wasserstein’s distance to Lebesgue’s measure on the torus. Moreover, the rate depend
on the way x can be approximated by rational points of the torus.

To prove the central limit theorem starting at some point x, we will have to control
the rate of convergence of ρ∗n ∗ δy for any y of Gx ; the problem being the the function
hϕ that we defined may take arbitrarily big values on Gx.

However, the set of points where hϕ is finite is invariant under the action of Γ = SLd(Z)

as one may see noting that for x ∈ Td, p ∈ Qd/Zd and g ∈ Γ we have

‖g‖d(x, g−1p) > d(gx, p) = d(gx, gg−1p) >
1

‖g−1‖d(x, g
−1p)

and g−1p is a rational point with the same denominator than p (since g−1 has integer
coefficients) and this estimation proves that for any g ∈ SLd(Z) and any x ∈ Td,

hϕ(gx) 6 ‖g‖hϕ(x)
In this section, we are going to prove that we can obtain a control that is far better
than this trivial one. We will indeed prove that for any irrational point x of the torus,
in average, gx is less well approximated by rationals than x.

To do so, we begin by showing that, in average, gx is further than 0 than x. We will
prove this in proposition 4.10 but at first, we will need the next
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Lemma 4.9. Let ρ be a borelian probability measure on SLd(Z) whose support generated
a strongly irreducible and proximal group and which has an exponential moment.

For any δ ∈ R∗
+ and x ∈ Td \ {0}, we note

uδ(x) =
1

d(x, 0)δ

Then, there are n0 ∈ N, δ ∈ R∗
+, a ∈ [0, 1[ and b ∈ R such that for any x ∈ Td \ {0},

Pn0uδ(x) 6 auδ(x) + b

Proof. The proof is by going back to Rd since we assumed our assumptions imply that
the first Lyapunov exponent is strictly non negative.

Let ε ∈ R∗
+ and x ∈ B(0, ε) ⊂ Td. Choose a point x in B(0, ε) ⊂ Rd whose projection

on the torus is x. Then, for any n ∈ N,

Pnuδ(x) =

∫

G

d(gx, 0)−δdρ∗n(g)

=

∫

G

1‖g‖6 1
ε
d(gx, 0)−δdρ∗n(g) +

∫

G

1‖g‖> 1
ε
d(gx, 0)−δdρ∗n(g)

=

∫

G

1‖g‖6 1
ε
‖gx‖−δdρ∗n(g) +

∫

G

1‖g‖> 1
ε
d(gx, 0)−δdρ∗n(g)

6

∫

G

‖gx‖−δdρ∗n(g) +
∫

G

1‖g‖>1/ε‖g−1‖δ‖x‖−δdρ∗n(g)

6 ‖x‖−δ

(∫

G

e
−δ ln

‖gx‖
‖x‖ dρ∗n(g) +

∫

G

1‖g‖>1/ε‖g−1‖δdρ∗n(g)
)

Moreover, there is δ0 ∈ R∗
+ such that for any δ ∈]0, δ0] there are C, t ∈ R∗

+ such that for
any n ∈ N,

sup
x∈Rd\{0}

∫

G

e
−δ ln ‖gx‖

‖x‖ dρ∗n(g) 6 Ce−tn

(we refer to [BL85] theorem 6.1, for a proof of this result).
And so, we get that for any x ∈ B(0, ε) \ {0},

Pnuδ(x) 6 uδ(x)

(
Ce−tn +

∫

G

1‖g‖>1/ε‖g−1‖δdρ∗n(g)
)

Let n0 be such that Ce−tn0 6 1/4 and ε such that
∫

G

1‖g‖>1/ε‖g−1‖δdρ∗n0(g) 6 1/4

(such an ε exists since ρ has an exponential moment).
What we get is that for this choice of n0 and ε, for any x ∈ B(0, ε) \ {0},

Pn0uδ(x) 6
1

2
uδ(x)
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Moreover, if x is on the complement set of the ball,

Pnuδ(x) =

∫

G

d(gx, 0)−δdρ∗n(g) 6 d(x, 0)−δ

∫

G

‖g−1‖δdρ∗n(g)

6 ε−δ

∫

G

‖g−1‖δdρ∗n(g)

and this finishes the proof of the lemma. �

From now on, we fix δ ∈ R∗
+ such that the function uδ satisfies Pn0uδ 6 auδ + b for

some n0 ∈ N∗, a ∈ [0, 1[ and b ∈ R. Let a1 ∈]a, 1[ be such that a−n0
1 a 6 1.

Note

u0 =

n0−1∑

k=0

a−k
1 P kuδ

Then,

Pu0 =

n0−1∑

k=0

a−k
1 P k+1uδ = a1

n0−1∑

k=1

a−k
1 P kuδ + a−(n0−1)Pn0uδ

6 a1

n0−1∑

k=1

a−k
1 P kuδ + a

−(n0−1)
1 (auδ + b)

6 a1u0(x) + ba
−(n0−1)
1

Moreover, as

uδ(x)

∫

G

‖g‖−δdρ∗k(g) 6 P kuδ(x) =

∫

G

‖gx‖−δdρ∗k(g) 6 uδ(x)

∫

G

‖g−1‖δdρ∗k(g),

the function u0 that we constructed is also equivalent to d(x, 0)−δ or more specifically,

0 < inf
x∈Td\0

u0(x)

‖x‖−δ
< sup

x∈Td\{0}

u0(x)

‖x‖−δ
< +∞

So what we just proved is the following

Proposition 4.10. Let ρ be a borelian probability measure on SLd(Z) whose support
generated a strongly irreducible and proximal group and which has an exponential mo-
ment.

Then, there is δ ∈ R∗
+, a ∈ [0, 1[, b ∈ R and a function u0 on Td, such that

0 < inf
x∈Td\0

u0(x)

d(x, 0)−δ
< sup

x∈Td\{0}

u0(x)

d(x, 0)−δ
< +∞

and
Pu0 6 au0 + b

Now, we are going to use this function u0 to construct some other that will allow us
to prove that if x is not well approximable by rational points, then, in ρ−average, so are
the gx.

What we will do is, for a fixed diophantine condition ϕ, constructing uϕ such that
Puϕ 6 auϕ + b and uϕ is finite on points satisfying the condition ϕ.
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For Q ∈ N∗, we note XQ the set of primitives elements in 1
QZd/Zd that is to say, the

set of elements of 1
QZ

d/Zd that doesn’t belong to 1
qZ

d/Zd for q < Q.

Then, XQ is SLd(Z)−invariant : indeed, if p ∈ XQ then gp ∈ 1
QZ

d/Zd since g has

integer coefficients and gp can not belong to 1
qZ

d/Zd with q < Q because if it was so, so

would p = g−1gp.

Let ϕ : N → R∗
+ be a strictly non decreasing function. For x ∈ Td \ {0}, we note

uϕ(x) =
∑

Q∈N∗

1

ϕ(Q)δ

∑

p∈XQ

u0(x− p)

This function uϕ is proper (it is non negative and lower semi-continuous)
Moreover, it carries the diophantine properties of x.
Indeed, by definition of hϕ(x) (see the previous section), we have that

hϕ(x)
δ 6 uϕ(x)

and reciprocally, if ϕ′ : R → R∗
+ is an other strictly non decreasing function such that

ϕ′(Q) ∈ O(ϕ(Q)Q−(d+2)/δ)) then,

uϕ(x) 6 hϕ′(x)δ
∑

Q∈N∗

Qd

(
ϕ′(Q)

ϕ(Q)

)δ

and so, if hϕ′(x) is finite, so is uϕ(x).

Thus, controlling uϕ(x) is controlling the diophantine properties of x and reciprocally.
The aime of this construction is the following

Lemma 4.11. Let u0 be the function constructed in the previous lemma.
Let ϕ : N → R∗

+ be a strictly non decreasing function such that

∑

n

nd

ϕ(n)δ
< +∞

For x ∈ Td, note

uϕ(x) = 1 +
∑

Q∈N∗

1

ϕ(Q)δ

∑

p∈XQ

u0(x− p)

Then, there are a ∈]0, 1[ and b ∈ R such that

Puϕ 6 auϕ + b

Remark 4.12. One has to think of ϕ has growing very fast (we will take ϕ(n) = eBnβ
) so

the summability assumption will always be satisfied and multiplying ϕ by a polynomial
function doesn’t really change the points where uϕ takes finite values. Therefore, it is
almost the same thing to say that uϕ(x) is finite or that hϕ(x) is.

Proof. Let’s remind that Pu0 6 au0 + b for some a ∈]0, 1] and b ∈ R.
And so, if we note, for Q ∈ N∗ and x ∈ Td \Qd/Zd,

uQ(x) =
∑

p∈XQ

u0(x− p)
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we have, using that SLd(Z) permutes XQ, that

PuQ(x) =

∫

G

∑

p∈XQ

u0(gx − p)dρ(g) =

∫

G

∑

p∈XQ

u0(g(x − p))dρ(g)

=
∑

p∈XQ

Pu0(x− p) 6 a
∑

p∈XQ

u0(x− p) + b|XQ|

6 auQ(x) + bQd

where we used that |XQ| 6 Qd.
And so,

P (uϕ)(x) 6 1 +
∑

Q∈N∗

1

ϕ(Q)δ
PuQ(x) 6 auϕ(x) + 1− a+ b

∑

Q∈N∗

Qd

ϕ(Q)δ

�

We are finally able to solve Poisson’s equation for hölder-continuous functions in next

Corollary 4.13. Under the hypothesis of proposition 4.6, for any γ ∈]0, 1] and any
M ∈ R∗

+, there is β0 ∈ R∗
+ such that for any B ∈ R∗

+ and any β ∈]0, β0[, there is a

constant C such that, noting ϕ(n) = eBnβ
, we have that for any x such that

uϕ(x) < +∞
we have that

Wγ(ρ
∗n ∗ δx, ν) 6

C

n1+M
uϕ(x)

In particular, for any γ−hölder continuous function f on the torus, there is g ∈ F3
uϕ

(cf

section 2.1) such that,

f = g − Pg +

∫
fdν on {uϕ < +∞} and ‖g‖F3

u
6 C‖f‖γ

Proof. We apply proposition 4.6 noting that in this case, there is a consant C such that
for any n ∈ N∗,

Wγ(ρ
∗n ∗ δx, ν) 6

C

n1+M
hϕ(x)

δ/3
6

C

n1+M
uϕ(x)

and so, (∑

n

Wγ(ρ
∗n ∗ δx, ν)

)3

6 C3uϕ(x)

(
1 +

∑

n∈N∗

1

n1+M

)3

So, we can set

g =
∑

n∈N
Pn

(
f −

∫
fdν

)

noting that, by definition of Wasserstein’s distance, for any n ∈ N and any x ∈ X,
∣∣∣∣Pnf(x)−

∫
fdν

∣∣∣∣ 6 ‖f‖γWγ(ρ
∗n ∗ δx, ν)

�
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4.3. Central limit theorem and law of the iterated logarithm.

In this section, we use the result of the previous ones to finally prove
the central limit theorem and the law of the iterated logarithm for the
random walk on the torus.

As we now know with corollary 4.6, holder continuous functions f on the torus writes
f = g − Pg +

∫
fdν where g is dominated by a drift function finite on points badly

approximalble by rationals. We are going to prove the the validity of “law of large
numbers”-type hypotheses in corollary 2.13 and this will allow us to prove the central
limit theorem and the law of the iterated logarithm. We don’t know how to prove the law
of large numbers for functions of Ep

u and this is why we will go back to the function f to
use the speed of convergence given by our corollary or Bourgain-Furmann-Lindenstrauss-
Mozes’s theorem.

We will need the following

Lemma 4.14. Let ρ be a borelian probability measure on SLd(Z) whose support generated
a strongly irreducible and proximal group and which has an exponential moment.

For any γ ∈]0, 1], there is α0 ∈ R such that for any α ∈]α0,+∞[ there is β0 ∈ R∗
+

such that for any β ∈]0, β0[ and any B ∈ R, noting ϕ(q) = eBqβ , we have that for any
sequence (fn) of γ−hölder-continuous functions on the torus and such that

∫
fndν = 0,

Ex

∣∣∣∣∣
n−1∑

k=0

fk(Xk)

∣∣∣∣∣

4

= O
(

n3

(lnn)α−1
uϕ(x) max

k∈[0,n]
‖fk‖4γ

)

Where the involved constant doesn’t depend on n, x nor the sequence (fn).

Remark 4.15. What is hidden behind this lemma is a kind of Burckholder inequality that
says that if (Yi) is a sequence of iid bounded random variables on R of null expectation,
then for any r ∈ N,

E

∣∣∣∣∣
n−1∑

k=0

Yk

∣∣∣∣∣

r

∈ O
(
nr/2

)

Proof. First, we choose α ∈ R∗
+ and we will see a lower bound on α later. We note

ψ(n) = n−α and according to proposition 4.6, there is a constant C such that for any
n ∈ N and any x ∈ X,

Wγ(ρ
∗n ∗ δx, ν) 6

C

nα
uϕ(x)

where ϕ(q) = eBqβ . Moreover, for n ∈ N, we note

Sn =

n−1∑

k=0

fk(Xk)
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We can compute

Ex|Sn+1|4 =
4∑

k=0

(
4

k

)
Exfn(Xn)

kS4−k
n

= Ex|Sn|4 + 4Exfn(Xn)S
3
n +

4∑

k=2

(
4

k

)
Ex(fn(Xn))

kS4−k
n

So, we note

An := Exfn(Xn)S
3
n et Bn :=

4∑

k=2

(
4

k

)
Ex(fn(Xn))

kS4−k
n

and so, we have, noting p(n) (and even only p to simplify notations) a sequence that we
will determine later and such that 0 6 p(n) 6 n, that

An =

3∑

k=0

(
3

k

)
Exfn(Xn)(Sn − Sp)

kS3−k
p

= Exfn(Xn)S
3
p + 3Exfn(Xn)(Sn − Sp)S

2
p

+
3∑

k=2

(
3

k

)
Exfn(Xn)(Sn − Sp)

kS3−k
p

We note each of this terms A1
n, A

2
n et A3

n.
Then, using the fact that

∫
fndν = 0, and that, according to proposition 4.6,

|Pn−p+2fn(Xp−1)| 6
C

(n − p+ 2)α
‖fn‖γu(Xp−1)

and that

P lu(x) 6 alu(x) +
b

1− a

we get that

|A1
n| =

∣∣ExP
n−p+2fn(Xp−1)S

3
p

∣∣

6
C

(n− p+ 2)α
‖fn‖γExu(Xp−1)|Sp|3

6
C

(n− p+ 2)α
‖fn‖γ‖Sp‖3∞P p−1u(x)

6
C

(n− p+ 2)α
‖fn‖γ‖Sp‖3∞

(
ap−1 +

b

1− a

)
u(x)

= O
(
u(x) max

k∈[0,n]
‖fk‖4γ

n3

(n− p+ 2)α

)
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Moreover,

A2
n =

n−1∑

k=p

Exfn(Xn)fk(Xk)S
2
p

=

q−1∑

k=p

ExP
n−kfn(Xk)fk(Xk)S

2
p +

n−1∑

k=q

ExP
k−p(fkP

n−kfn)(Xp)S
2
p

and so, for some sequence q(n) that we will determine later and with p(n) < q(n) < n,
we have that

|A2
n| 6

q−1∑

k=p

C

(n − k)α
‖fk‖∞‖fn‖γExu(Xk)S

2
p

+

n−1∑

k=q

C

(k − p)α
‖fkPn−kfn‖γExu(Xp)S

2
p +

∣∣∣∣
∫
fkP

n−kfndν

∣∣∣∣ExS
2
p

6 n2 max
k∈[0,n]

‖fk‖4γ




q−1∑

k=p

CP ku(x)

(n− k)α
+

n−1∑

k=q

C‖P‖n−k
γ P pu(x)

(k − p)α
+ ‖P‖q

L2
0(X,ν)




= O


n2 max

k∈[0,n]
‖fk‖4γu(x)




n−p∑

k=n−q+1

1

kα
+

‖P‖n−q
γ

(q − p)α
+ ‖P‖q

L2
0(X,ν)






So, with q = n−lnn and p = n−nδ with δ < 1/2, and taking α0 such that δα0 > ln ‖P‖γ ,
we find that

A2
n = O

(
n2 max

k∈[0,n]
‖fk‖4γu(x)

(
+∞∑

k=lnn+1

1

kα
+

nln ‖P‖γ

(nδ − lnn)α
+ ‖P‖n−lnn

L2
0(X,ν)

))

= O
(

n2

(lnn)α−1
max
k∈[0,n]

‖fk‖4γu(x)
)

and finally,

|A3
n| 6

3∑

k=2

(
3

k

)
‖fn‖∞‖Sn − Sp‖k∞Ex|Sp|3−k

But,

‖Sn − Sp‖∞ 6

n−1∑

k=p

‖fp‖∞ 6 (n− p) sup
k∈[0,n−1]

‖fk‖∞

so

A3
n = O

(
n1+2δ max

k∈[0,n]
‖fk‖4γ

)

and we recall that we choose δ < 1/2. So we can take δ = 1/4 and we can assume that
δα0 > 1 to get that

|A1
n| = O

(
u(x) max

k∈[0,n]
‖fk‖4γn3−δα

)
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thus we proved that

An = O
(

n2

(lnn)α−1
u(x) max

k∈[0,n]
‖fk‖4

)

To study Bn, remark in a first time that

ExS
2
n =

n−1∑

k=0

P k(fk)
2(x) + 2

n−1∑

k=0

k−1∑

l=0

P l(flP
k−lfk)(x)

The first term of this sum is dominated by nmaxk∈[0,n] ‖fk‖γ and a computation similar
to the previous one proves that

n2

(lnn)α−1
u(x) max

k∈[0,n]
‖fk‖2.

Therefore,

Ex(fn(Xn))
2S2

n ∈ O
(

n2

(lnn)α−1
u(x) max

k∈[0,n]
‖fk‖4

)

And this proves that

Bn = O
(

n2

(ln n)α−1
u(x) max

k∈[0,n]
‖fk‖4

)

So,

Ex|Sn+1|4 = Ex|Sn|4 +O
(

n2

(lnn)α−1
u(x) max

k∈[0,n]
‖fk‖4

)

and iterating this relation, we get that

Ex|Sn+1|4 = O
(

n3

(lnn)α−1
u(x) max

k∈[0,n]
‖fk‖4

)

which is what we intended to prove. �

We are now ready to prove the convergence of the variance in next

Lemma 4.16. Let ρ be a borelian probability measure on SLd(Z) whose support generated
a strongly irreducible and proximal group and which has an exponential moment.

Then, for any γ ∈]0, 1] there is β0 ∈ R∗
+ such that for any β ∈]0, β0[ and any B ∈ R,

noting ϕ(q) = eBqβ , we have that for any γ−hölder-continuous function f on the torus,
noting g the solution to Poisson’s equation defined in F3

uϕ
and given by corollary 4.13

we have that for any x ∈ X such that uϕ(x) is finite,

1

n

n−1∑

k=0

P (g2)(Xk)− (Pg(Xk))
2 −→

∫
g2 − (Pg)2dν Px − a.e. and in L1(Px)

Proof. We take at first α0 equal to the one of the previous lemma and take α > α0. It
comes with it a constant β0 such that for any B ∈ R and any β ∈]0, β0[, the function
ψ(t) given by 4.6 satisfies that supn n

αψ(n) is finite.
Remark that for any γ−hölder-continuous function f on the torus, the function g

given by proposition 4.6 is square-integrable agains Lebesgue’s measure. We can see this
as a consequence of 2.5 or, more simply, use that under our assumptions, the operator P
has a spectral gap L2(X, ν) as we already saw in the introduction and so, the function
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g is a.e.−equal to a square-integrable function. We will actually use this spectral gap in
the proof of this lemma.

We assume without any loss of generality that
∫
fdν = 0. To prove the lemme, we

use that f = g − Pg to write

In(x) : =
1

n

n−1∑

k=0

P (g2)(Xk)− (Pg(Xk))
2 =

1

n

n−1∑

k=0

P (g2)(Xk)− (g(Xk)− f(Xk))
2

=
1

n

n−1∑

k=0

P (g2)(Xk)− g2(Xk)−
1

n

n−1∑

k=0

(f(Xk))
2 +

2

n

n−1∑

k=0

f(Xk)g(Xk)

According to proposition 2.10, and using that u is a drift function and that g ∈ F3
u , we

get that for any x such that u(x) is finite,

1

n

n−1∑

k=0

P (g2)(Xk)− g2(Xk) −→ 0 in L1(Px) and Px − a.e.

Moreover, the law of large numbers proves that for any irrational point x of the torus
(and so in particular, for any x such that u(x) is finite),

1

n

n−1∑

k=0

(f(Xk))
2 −→

∫

X

f2dν in L1(Px) and Px − a.e.

Moreover, if p : N → N is a non decreasing function converging to infinity that we will
determine later, we have that

g(x) =

p(k)−1∑

l=0

P lf(x) +
+∞∑

l=p(k)

P lf(x)

and so

1

n

n−1∑

k=0

f(Xk)g(Xk) =
1

n

n−1∑

k=0

p(k)−1∑

l=0

f(Xk)P
lf(Xk) +

1

n

n−1∑

k=0

+∞∑

l=p(k)

f(Xk)P
lf(Xk)

But, according to lemma 4.14 applied to the sequence of functions

fn =

p(n)−1∑

k=0

fP lf −
∫
fP lfdν

we have that

Ex

∣∣∣∣∣∣

n−1∑

k=0

p(k)−1∑

l=0

(
f(Xk)P

lf(Xk)−
∫
fP lfdν

)∣∣∣∣∣∣

4

= O
(

n3u(x)

(ln(n))α−1
max
k∈[0,n]

‖fk‖4γ
)

and so, for any k ∈ [0, n],
∥∥∥∥∥∥
f

p(k)−1∑

l=0

P lf

∥∥∥∥∥∥
γ

6 ‖f‖2γ
p(k)−1∑

l=0

‖P‖lγ 6 ‖f‖2γ‖P‖p(k)γ
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Thus,

Ex

∣∣∣∣∣∣

n−1∑

k=0

p(k)−1∑

l=0

(
f(Xk)P

lf(Xk)−
∫
fP lfdν

)∣∣∣∣∣∣

4

= O
(

n3

(ln(n))α0
u(x)‖f‖8γ‖P‖p(n)γ

)

so, if p(n) ≍ δ1 ln(lnn) with δ1 such that δ1 ln ‖P‖γ < α0, we have that for n large
enough,

‖P‖p(n)γ 6 eδ1 ln(lnn)‖P‖γ = (ln n)δ1 ln ‖P‖γ

and so,

∑

n

1

n4
Ex

∣∣∣∣∣∣

n−1∑

k=0

p(k)−1∑

l=0

(
f(Xk)P

lf(Xk)−
∫
fP lfdν

)∣∣∣∣∣∣

4

< +∞

This proves that

1

n

n−1∑

k=0

p(k)−1∑

l=0

f(Xk)P
lf(Xk)−

∫
fP lfdν −→ 0 Px-a.e. and in L1(Px)

Moreover, using the spectral gap in L2(X, ν) and Cesaro’s lemma, we get that

1

n

n−1∑

k=0

p(k)−1∑

l=0

∫
fP lfdν −→

+∞∑

l=0

∫
fP lfdν

We are going to prove that 1
n

∑n−1
k=0

∑+∞
l=p(k) f(Xk)P

lf(Xk) converges to 0. But, using

proposition 4.6, we have that

1

n

∣∣∣∣∣∣

n−1∑

k=0

+∞∑

l=p(k)

f(Xk)P
lf(Xk)

∣∣∣∣∣∣
6

1

n

n−1∑

k=0

+∞∑

l=p(k)

|f(Xk)||P lf(Xk)|

6
1

n

n−1∑

k=0

+∞∑

l=p(k)

‖f‖∞
C

l1+α
hϕ(Xk)

δ/3‖f‖γ

6
1

n

n−1∑

k=0

C ′

p(k)α
hϕ(Xk)

δ/3‖f‖2γ

for some constant C ′.
But, by definition of uϕ, h

δ/3
ϕ ∈ F3

u and so, according to lemma 2.11, we have that

1

n

n−1∑

k=0

1

pαk
hϕ(Xk)

δ/3 −→ 0 Px − p.s. et dans L1(Px)

What we just proved is that

1

n

n−1∑

k=0

P (g2)(Xk)− (Pg(Xk))
2 −→ −

∫
f2dν + 2

+∞∑

l=0

fP lfdν Px-p.s. et dans L
1(Px)
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To conclude, we only have to remark that

−
∫
f2dν + 2

+∞∑

l=0

fP lfdν =

∫
−(g − Pg)2 + 2(g − Pg)gdν

=

∫
2g2 − 2gPg − g2 + 2gPg − (Pg)2dν

=

∫
g2 − (Pg)2dν

which finishes the proof of the lemma. �

Theorem 4.17. Let ρ be a borelian probability measure on SLd(Z) whose support gen-
erated a strongly irreducible and proximal group and which has an exponential moment.

Then, for any γ ∈]0, 1] there is β0 ∈ R∗
+ such that for any B ∈ R∗

+ and any β ∈]0, β0[
we have that for any x ∈ Rd such that the inequality

‖x− p/q‖ 6 e−Bqβ

has a finite number of solution p/q ∈ Qd/Zd, we have that for any γ−hölder-continuous
function f on the torus, noting σ2(f) the number defined in lemma 4.16 we have that

1√
n

n−1∑

k=0

f(Xk)
L−→ N

(∫
fdm,σ2(f)

)

(If σ2(f) = 0, the law N (µ, σ2) is a Dirac mass at µ).
Moreover, if σ2(f) 6= 0 then

lim inf

∑n−1
k=0 f(Xk)−

∫
fdm√

2nσ2(f) ln lnn
= −1 et lim sup

∑n−1
k=0 f(Xk)−

∫
fdm√

2nσ2(f) ln lnn
= 1

and if σ2(f) = 0, then for ν−a.e. x ∈ X, the sequence (
∑n−1

k=0 f(Xk) −
∫
fdm)n is

bounded in L2(Px).

Proof. This is a direct corollary of lemma 4.16, lemma 2.8 and proposition 2.13. The
condition on σ2(f) comes from corollary 3.6 if we note that since Puϕ 6 auϕ + b, we
have, for any n ∈ N,

Pnuϕ 6 anuϕ +
b

1− a

and so, for any x satisfying the diophantine condition, supn P
n(g2)(x) 6 uϕ(x) +

b
1−a is

finite. And moreover, ν(x|uϕ(x) < +∞) = 1. �
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