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CENTRAL LIMIT THEOREM AND LAW OF THE ITERATED

LOGARITHM FOR THE LINEAR RANDOM WALK ON THE TORUS

JEAN-BAPTISTE BOYER

ABSTRACT. Let p be a probability measure on SL4(Z) and consider the random walk
defined by p on the torus T¢ = R*/z.

Bourgain, Furmann, Lindenstrauss and Mozes proved that under an assumption on
the group generated by the support of p, the random walk starting at any irrational
point equidistributes in the torus.

In this article, we study the central limit theorem and the law of the iterated
logarithm for this walk starting at some point having good diophantine properties.
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1. INTRODUCTION

Tt Ot =

15
17
17
23
28
34

Let T" be a subgroup of SL;(Z) and p a probablity measure on I". The action of I' on
the torus X := T4 = R4 / Z% allows one to define a random walk, setting, for any z € X,

X() =X
XnJrl :gnJran

where (g,) € TV is chosen with the law p®~. We note P, the measure on X' associated

to the random walk starting at x.
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The Markov operator associated to the walk is the one defined for any non-negative
borelian function f on X and any = € X by

Pf(x) = /G f(gz)dp(g)

We note v the Lebesgue measure on X. As v is I'—invariant, it is also P—invariant : for

any continuous function f on X,
/ Pfdv = / fdv
X X

One can prove that for any p € [1,+o0], P is a continuous operator on Lp(’IFd7 v) and
HPHLP =1.

In the sequel, we will need an hypothesis telling that the support of p is big.

Let H be a closed subgroup of SLy(R). We say that the action of H on R? is strongly
irreducible if H doesn’t fix any finite union of proper subspaces of R? and we say that
the action is proxzimal if there is some h € H for which there are an h—invariant line V,;L
in R? and an h—invariant hyperplane V,= such that R? = V;* @ V,= and the restriction
of h to Vh< has a spectral radius strictly smaller than the restriction of A to Vh+.

We say that a borelian probability measure p on G = SL4(R) has an exponential
moment if for some € € R’} we have

/ lglFdp(g) < +oo
G

Under these assumptions (exponential moment and strongly irreducible and proximal
action of the closed subgroup generated by the support of p), we know that P has a
spectral radius strictly smaller than 1 in the orthogonal of the constant functions in
L2(X,v) (cf Furmann and Shalom in [FS99] and also Guivarc’h in [Gui06]). We will say
in that case that P has a spectral gap in L*(X,v).

In particular under these assumptions, for any function f € L%(X,v), there is a
function g € L?(X,v) such that f = g — Pg + [ fdv and the law of large numbers and
the central limit theorem are already known for v—a.e. starting point z € T¢ (see for
instance [GL78], [BIS95] and [DL03]) the variance in the central limit theorem beeing

(1.1) a*(f) =/92 — (Pg)*dv

In this article, we are interested in the study of the walk starting at an arbitrary point
r €T

It is easy to see that the rational points in T¢ have a finite T'—orbit since any g € I’
increases the denominator of such a point. So to study the walk starting at a rational
point one can use the classical results for Markov chains with a finie number of states.

We define a measurable application v : X — M?!(X) (the set of probability measures
on X) by v, = v (Lebesgue measure on X) if z ¢ Q?/Z% and v, is the equidistributed
measure on ',z if © € Q?/Z% where I', is the subgroup of SL4(Z) generated by the
support of p.

Bourgain, Furmann, Lindenstrauss and Mozes proved the following
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Theorem 1.1 ([BFLMI11]). Let p be a probability measure on I' = SLy4(Z) having an
exponential moment and whose support generates a strongly irreducible and proximal
subgroup.

Then, for any x € X, any continuous function f on X and p®N—a.e. (g,) € TV,

n—1

oS fgegi) > [ pan,

n
k=0

This theorem is the law of large numbers for the sequence (f(gn - ..912))nen and we
would like to study the central limit theorem and the law of the iterated logarithm. First,
we will look at conditions on the function f for which the variance given by equation 1.1
vanishes. This was studied in [FS99] when the measure p is aperiodic : it’s support is
not contained in a class modulo a proper subgroup of G.

Let G be a locally compact group acting continuously on a topological space X pre-
serving the probability measure v.

We say that the action of G on X is v—ergodic if every measurable G—invariant
function is constant v—a.e.

We will prove next

Proposition (3.4). Let G be a locally compact group acting continuously and ergodically
on a topological space X endowed with a G—invariant probability measure v.
Then, for any g € L2(X,v), the following assertions are equivalent
(1) [ Pgll2 = llgll2
(2) There is some subgroup H of G and some v € G such that g is H—invariant
and supp p C H~y.

Remark 1.2. In particular, there is a non-constant function g € L?(X,v) such that
IPgll2 = |lg||2 if and only if there is a subgroup H of G whose action on X is not ergodic
and some element v € G such that supp p C Hy.

From now on, we fix a norm || .|| on R? which defines a distance on the torus, setting,
for any =,y € X,

d(z,y) = inf [T -7 —p
peZd

Where T (resp. %) is a representative of z (resp. y) in RY.
We note C%7(X) the space of y—hélder continuous functions on X that we endow
with the norm : for any f € C%7(X),

. 1)~ Sw)]
(1.2) 1 £l = sup [F(@)] + ”CS;;X d(z,y)"
T7Y

To prove the central limit theorem and the law of the iterated logarithm, we will see in
section 4 that the result of Bourgain, Furmann, Lindenstrauss and Mozes in [BFLM11]
allows one to have a speed of convergence depending on the diophantine properties of x
(when f is holder continuous). This will give us the

Theorem (4.17). Let p be a probability measure on I' = SL4(Z) having an exponential
moment and whose support generates a strongly irreducible and proximal subgroup.
3



Then, for any v €]0,1] there is By € R%. such that for any B € R% and  €]0, B[ we
have that for any irrational point x € X such that the inequality

d <x, B) < ¢~ B’
q

has a finite number of solutions p/q € Q%/Z?, we have that for any y—holder continuous
function f on the torus, noting o®(f) the variance given by equation 1.1 we have that

n—1
S0 SN [raen)
(If 02 = 0, the law N (11, 0?) is a Dirac mass at ).
Moreover, if 0?(f) # 0 then, P,—a.e
L f Xe) — J fdv = —1 and limsup L f Xe) — ) fdv =1
2no?(f)Inlnn 2no?(f)Inlnn

and if o*(f) = 0, then for v—a.e. = € X, the sequence (3 j_ f Xi) — [ fdv), is
bounded in L2(P,).

lim inf

Remark 1.3. Our condition is satisfied in particular for diophantine points of the torus.
Therefore, the set of points where our theorem applies has Lebesgue-measure 1. But,
the theorem also works for some Liouville numbers.

Our strategy to prove this result is Gordin’s method. For a continuous function on
the torus, we call Poisson’s equation the equation f = g — Pg+ [ fdv where g is some
unknown function. If this equation has a continuous solution (we already know, with
a spectral gap argument, that a solution exists in L?(X,v)) then, we can write for any
r € X and p®N—a.e. (g,) € 'V,

n—1 n—1

> F(Xk) = 9(X0) — 9(Xn) + > 9(Xkg1) — Pg(Xy)

k=0 k=0
The key remark is that M, = > 5 Lg(Xpi1) — Pg(Xy) is a martingale with bounded
increments and we can use the classic results for the martingales to prove the central
limit theorem and the law of the iterated logarithm.

Here, in general, there cannot exist a continuous function g on the torus such that
f =9— Pg+ [ fdv because this would imply that f has the same integral against all
the stationary measures (in particular, we would have that f(0) = [ fdv). However,
we will prove the theorem by showing that for any holder contlnuous function f on the
torus, we can solve Poisson’s equation at points having good diophantine properties (cf.
section 4). Moreover, the solution we construct will not be bounded on X but will be
dominated by a function u : X — [1,+00] that we call drift function and that satisfies

Pu<au-+b

for some a €]0, 1] and b € R. This equation means that if u(x) is large, then, in average,
u(gz) is much smaller than u(x). Or in other words, the function g that we construct is
not bounded but the walk doesn’t spend much time at points = where |g(z)| is large.
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The first section of this article consists in a study of drift functions and the proof
of the central limit theorem and the law of the iterated logarithm for martingales with
difference sequence bounded by drift functions.

In the second section, we study the variance appearing in the central limit theorem
and the case where it vanishes.

Finally, in the third section, we solve Poisson’s equation for points of the torus having
good diophantine properties and we prove theorem 4.17.

2. DRIFT FUNCTIONS

In this section, we introduce and study some kind of functions that
we call “drift functions” and that allow one to control the sequence
(f(X,)) when f is dominated by one.

Moreover, we prove the law of large number, the central limit theorem
and the law of the iterated logarithm for martingales dominated by
drift functions.

2.1. Definitions. In this section, (X,,) is a Markov chain on a standard borelian space
X.

Definition 2.1 (Drift function). Let u : X — [1,4o00] be a borelian function and C' a
borelian subset of X.
We say that (u,C) is a drift function if u is bounded on C' and if there is some b € R
such that
Pu<u+ble

In general, we will say that w is a drift function without indicating the set C.

Remark 2.2. These functions are studied by many authors and our main reference
is [MT93] (see also [GM96]).

Meyn and Tweedie don’t assume that u is bounded on C' but that C' is a so called
petite-set and this allows them to prove that one can find a borelian set C’ such that
(u,C") is a drift function with our definition.

Remark 2.3. Many authors call Lyapunov function any non negative measurable function
v : X — [1,400[ such that Pv < v. So, our drift functions are very close to Lyapunov
functions.

As we assume that Pu < u + bl¢, we can study borelian functions f on X such that
(2.1) |f| <u— Pu+ble

We are going to see that we have a good control on the sequence (P"f) (or, more
specifically, on the series whose general terms involves the P"f).
Therefore, we set, for p € Ry,

£p = {f X R‘f is borelian and IMVz € X, [f(z)| < M(u — Pu+ b10)1/p}
And, for any f € &, we set

Ifllep = inf {M c ]R‘V:U e X, |f(z)] < M(u— Pu+ b1c)1/p}



Remark 2.4. The space (€, ||.||¢») is a Banach space.
In the same way, we set, for any p € [1, 400,
FP = {f X = R‘f is borelian and IM,Vx € X, |f(x)| < Mu(x)l/p}
and, for f € Fy,

— sup 1@
1fl 7 = sup w(z)l/?

In next lemma, we use the control given by the drift function to prove that the space
&l is a subset of the space of integrable functions against the stationary measures for
the Markov chain.

Lemma 2.5. Let u be a drift function and v a borelian probability measure on X that
is P—stationnary and such that v(u < +00) = 1.
Then, the identity operator defined from EL(X) to LP(X,v) is continuous.

Proof. (cf. lemma 3.8 in [BQ13])

Let f € £} be a non negative function, x € X and n € N*, then, by definition of &%,
[fIP(2) < I£ 1% (w — Pu+b)(x), and so,

—ZPk ey < VI

But, according to Chacon-Ornstein’s ergodic theorem (see for instance the theorem 3.4
of the third chapter of [Kre85]), there is a P—invariant function f* on X that is non
negative and such that [ |f|Pdv = [ f*dv and, for v—a.e. z € X,

n—1
LS PP @) - ()
k=0

But, since u is finite v—a.e., we get that f*(z) < b f||% for v—ae. x € X. And so,

£ (u— Pt nb) < 12y () + )

f* € L*(X,v) ¢ LY(X,v) since we assumed that v is a probability measure. This proves
that, f € LP(X,v) and that ||f|zr(x,.) < bl/prng O

2.2. The LLN, the CLT and the LIL for martingales.
In this section, we prove three of the classical results in probability
theory for martingales with increments dominated by a drift function.
In particular we will prove that the central limit theorem and the law
of the iterated logarithm for martingales can be deduced from a law of
large numbers and this will be our corollary 2.13.

Remark 2.6. In this section, we make an assumption such as “f € &Y for some p > 17
very often. The reader shall not be afraid of this assumption because in many examples
we can construct families of drift functions and if f is dominated by one, fP will be
dominated by an other one.
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Before we state and prove corollary 2.13, we state some lemmas that we will also use
in the study of the random walk on the torus.

First, we extend the law of large numbers for martingales (stated in [Bre60]) for
measurable functions f € &£ for some p > 1: this will be our proposition 2.10. To prove
it, we will use the following

Lemma 2.7. Let u be a drift function, x € X, and o € Ry, then
n
PFu—P
sup PH(u — Pu)(z) < ulz)
neN k=0 (k + 1)04

Proof. We can compute :

"\ P*(u — Pu) = 1 & 1 i
S S e/ = pky— _—  pkt+l
2; (k4 1) 2;w+1w “ g;w+1w “

1 1
_ = Pk _ Pn+1
;((k‘+1) ka) u+u e u

< u(x) since w is non negative

Then, we prove that it is the same thing to study

n—1 n—1
L3 F() — PR and £ 37 F(Xon) — PAX,)
k=0 k=0

Thus, having the law of large numbers, the central limit theorem and the law of the
iterated logarithm for martingales, we will get these results for functions f that writes

f=g9-Pg.

Lemma 2.8. Let u be a drift function and p > 1. Then, for any f € E, any x € X
such that u(x) is finite and any € €]0, p|,

f(Xn)
/=)

Remark 2.9. We will use this lemma with p > 1 and p — ¢ = 1 and with p > 2 and
p—e=2.

— 0P, — a.e. and in L'(P,)

Proof. With the notations of the lemma, let’s compute, for any n € N,
Eol f(Xa)P < | legEati(Xn) — Pu(Xa) +b = || flleg P"(u — Pu+b)

And so, assuming without any loss of generality that || f|lgr = 1, we get

n n

E.|f(X)P Pu) - 1
Z(k+1p/(p ) \Z k:—{—l 1+e/(p—¢) +bkzo(k3+1)1+€/(p€)

1
z) +b Z lte/(p—2)
neN*

where we used lemma 2.7 to control the first sum.
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Thus, for any = € X such that u(z) is finie,
S P N
ZEm (k + 1)1/(1)—6)
k=0
is finite and this finishes the proof. O

Proposition 2.10. Let u be a drift function and p €]1,4+o00[. For any f € &L and
x e X,
1
n

n—1
> [(Xk41) = Pf(Xi) = 0 P, — a.e. and in LP(P,)
k=0

Proof. For any n € N*, let M,, = ZZ;& f(Xg+1) — Pf(Xk).
Then, (M,,) is a martingale with EM,, = 0 and

Ey| M1 — Mp|P = Ee|f(Xpy1) = Pf(Xy)[P = P"(Eg|f(X1) — Pf(2)P)
2P| fP) () < 287 fllgp P (u — Pu+ b)

Thus,
+00 too
1 B Pt (y — Pu+b)
> —Eul Mt = Mol <227l 7
n=1 n=1

+oo
1
-1
<27 Sy (u<x>+bz ﬁ>
k=0

And so, according to the law of large numbers for martingales (see the theorem 2.18 in
[HHS0)), we get that 1M, — 0 Py—a.e. and in LP(P,). O

Lemma 2.11. Let u be a drift function such that Pu < au + b for some a €]0,1[ and
beR and let p €]1, +o0].

Let ¢ : N — Ry be a decreasing function converging to 0 at +o0.

Then, for any f € &L,

n—1
%Zw(k’)f(Xk) —0 P, — a.e. and in LP(P,)
k=0

Proof. We shall assume without any loss of generality that || f||cr = 1.
To prove the convergence in IP, we compute

n—1 p\ 1/p n—1
(m L3 wk)F(X) ) < k) (Bl FX))Y
k=0 k=0
n—1
<13 (Prut@)”

k=0

1 1/

<37 prlul@) +b/(1— @)

B
Il
o

And we conclude with Cesaro’s lemma.



To study the a.e.-convergence, in a first time, we are going to prove the for any x such
that u(z) is finite,

b(1 + b)L/P
(2.2) lim sup Z |f (X, W P, — p.s.

First, we remark that for any x € X,
[f (@)l < ulz) = Pu(z) + b < (1+bu(z)

Moreover, for any r €]0, 1], we note u, the function defined by wu,(z) = u(z)". And so,
using the concavity of the function (¢ — t"), we get that

Pu, < (Pu)" < (au+b)" <a"u,+b

This means that u, < ﬁ(ur — Pu, +b). And so, setting » = 1/p, we obtain

n—1
1 1—|—b
ﬁkz_(:)’f(Xk)’ Z?h/p Xk)

1+b 1/pq
T Zul/p Xi) — Puyp(Xi) + b

(1+b)l/p (1+b)1/p 1
< 1—a? \n ( ) +b 1—al/r n Zul/p (Xkt1) = Pujp(X)

Moreover, by definition, uzl’ p = UE &} and so, using proposition 2.10, we get

n—1

n Zul/p Xig1) = Puyp(Xy) = 0P — ace.
k 0

This proves inequality 2.2.
Thus, a.e., there is some ng € N such that for n > ng,

. Z 0] < 2T

al/p
And so, for n such that /n > ng, we get
n—1 [vn]-1 n—1
1 (0 PY([v/n
IS umire < 225 o S S )
k=0 k=0 k=|v7)
b(L+0)'/ (4(0)
<2
o \un b(v/n)
And, as v converges to 0, this finishes the proof of the lemma. O

Using the same ideas as in the proof of proposition 2.10, we can prove the
9



Lemma 2.12. Let u be a drift function and p > 2.
Let g € EL and x € X such that u(x) is finite.
Then, for any e € RY.

n—1

1

—> E. ((Q(Xk+1) - Pg(Xk))21\g(xk+l)_pg(xk)|>e\/ﬁ> —0
k=0

n n—4o0o
and

+oo 1

> %Em <’9(Xn+1) — Pg(X,)| 1|g(Xn+1)ng(Xn)|>e\/ﬁ> is finite

n=1

Finally, there is 6 € RY such that
~+00 1
4
Z ﬁEm ((Q(Xn+1) — Pg(X,)) l\g(Xn+1)—Pg(Xn)|<5\/ﬁ)

n=1
is finite.
Proof. Using Markov’s inequality, we can compute

P (E (9(X1) — Pg(Xo))")
2
B (M1, X0 L, o) < 2D

where we noted h(z,y) = g(z) — Pg(y).
But, E; [((9(X1) — Pg(X0))?] € &L, since we took g in &F.

So,
n n—1
1 2 c k
- E (h<Xk+1’ X) 1|h<xk+1,xk>|>e¢ﬁ> < o 2 Pru—Putb)
k=1 k=0
c bC

S A+ (0—2)/2p—2 u(z) +

And the right side converges to 0 since u(z) is finite.

The two sums that we have to study are bounded by constants times
+o0 1
Z:l WE$ (lg(Xnt1) = Pg(Xn)[")

n—=

and, once again, using that g € £, we get that
Eq (l9(Xn11) = Pg(Xn)[") < llgllez P"(u — Pu+b)

And we shall conclude with lemma 2.7.

n(P—2)/2gp—2

O

Lemma 2.12 is important since it is a first step in the proof of the central limit theorem

and the law of large numbers as we will see in next

Corollary 2.13. Let u be a drift function and p > 2.
Let g € EL and x € X such that u(x) is finite.

If

n—1

> P(g*)(Xk) — (Pg(X))?

k=0

S|

10



converges in LY(P,) and a.e. to some constant 0®(g,x), then,

— c
T ; 9(Xp41) — Pg(Xg) mN(Oaaz(g,ﬂ?))
Where we noted ./\/( ,0) the Dirac mass at 0.
Moreover, if 0%(g,x) # 0 then,
>0 9(Xk11) — Pg(Xy)

=1la.e.
V2n02(g,z) InIn(n)

lim sup

and
> ho0 9(Xi1) — Pg(Xi) _
V/2n02(g, ) Inln(n)

Proof. The central limit theorem comes from Brown’s one (cf [Bro71]) since the ¢ Lin-
deberg condition” is satified when ¢ is dominated by a drift function as we saw in
lemma 2.12.

The law of the iterated logarithm is given by corollary 4.2 and theorem 4.8 in [HHS80]
since the assumption is satisfied according to lemma 2.12. O

lim inf —1 a.e.

3. ABOUT THE NULLITY OF THE VARIANCE

In this section, we study conditions under which the variance appearing
in the central limit theorem and in the law of the iterated logarithm
can not vanish.
Let G be a locally compact group acting continuously on a topological space X pre-
serving the probability measure v.
We will always assume that the action of G on X is v—ergodic : this means that every
measurable G—invariant function is constant v—a.e.

Let p be a probability measure on G and P the associated Markov operator on X.
For any f € L2(X,v), we have, usmg Jensen’s inequality, that

HPfIIQ—/‘/fgwdp ww < [ [ 1ftg Pt
< /X (@) Pdv(@) = |1

And so, the operator P is continuous on L?(X,v) and | P|| < 1. It is clear that ||P| =1
since P1 = 1.

In our study of the central limit theorem for some function f on X, the variance will
always be given

a*(f) = llgl3 - 1Pgll3
where g € L?(X,v) is a function that we will have constructed such that f — [ fdv =
g—Pg (in L?(X,v)). It is therefore important to know if there can be some non-constant
function g € L2(X,v) such that ||Pgll2 = ||g]l2.

This question has been studied by Furman and Shalom in [FS99] where they prove
that if the measure p is aperiodic (that is to say that it’s support is not included in a
11



class of a subgroup of G) then there is no non-constant function f € L?(X,v) such that
[P fll2 = 1I£ll2-

We prove in this section that the existence of such functions is equivalent to the
existence of a subgroup H of G that does not act vr—ergodically on X and of some
g € G such that supp p C Hg. This will be our proposition 3.4.

If p is a borelian probability measure on G, we note p the symmetrized measure. It
is the probability measure defined for any borelian subset A of G by

zx14>::t/; 14(5~Y)dp(g)

Remark 3.1. Since the measure v is G—invariant, we can compute, for any fi, fo €
L2(X,v)

/fQPfldu—//fl 42) fo()dv () dp(g //,ﬁ ) falg™ ) du()
:/Xf1Pﬁf2dV

So, the operator P; is the adjoint operator of P, in L?(X,v).

Remark 3.2. In our definition of P,, we make the element g act on the left. Thus, if
p1, p2 are borelian probability measures on G, for any f € L?(X,v) and any z € X, we
get

%Wb/ o f(g2)dpi (g //mMmmmmm>%mm>

Thus, P, P,, is the operator associated to the measure ps * p1. This inversion doesn’t
have any consequence in this article (since we always convol a measure with it’s powers)
but in this section we have to remember that the measure associated to P*P is p * p.

First, we remark that for any f € L?(X,v),
11~ IPFIE = [ £2) = (PrP? /f (s = P*P)I (5)dv(y)

where P* is the adjoint operator of P in L?(X,v)
Moreover, we saw that ||f||? — ||Pf]|*> > 0.

Lemma 3.3. Let G be a group, S C G and S~ = {g~!|g € S}.
Then, the subgroup of G generated by SS™! is the smallest subgroup H of G such that
there is g € G with S C Hg.

Proof. First, let H be a subgroup of G and g € G. If S € Hg then SS™' c Hgg'H =
H.

On the other hand, let H be a subgroup of G containing SS~! and let g € S.

Then, for any h € S, we have that h = hg~'g. But, hg~! € H and so h € Hg. This
proves that S C Hg.

What we proved is that for any subgroup H of G, we have the equivalence between
“SS~1 c H” and “there is g € G such that S € Hg”. This proves the lemma since the

12



subgroup of G generated by SS~! is by definition the smallest subgroup of G containing
SS—1. 0

Proposition 3.4. Let G be a locally compact group acting continuously and ergodically
on a topological space X endowed with a G—1invariant probability measure v.
Then, for any f € L2(X,v), the three following assertions are equivalent
(1) IPfl2 = 1]
(2) For v—a.e. x € X and p* p—a.e. g € G, f(gx) = f(x).
(3) There is some subgroup H of G and some g € G such that f is H—invariant
and supp p C Hg.

Remark 3.5. There can exist a non constant function f € L2(X,v) such that ||Pf]|ls =
1|2 only if supp p is included in a right-class of a subgroup of G whose action on X is
not v—ergodic.

Proof. First, we remark that

/ / 1F(g2) — F(@)2d(p * )(g)d(x) = / 21/ () — 2R(F@ PP (x))dv(x)
X JG X
2|3 - 2% ( / TP*Pfdv>

=2||fI13 - 2/l PfII3
So the first point implies the second one.

The second point implies that the function f is invariant by the subgroup generated
by (supp p)(supp p)~!. But, according to the previous lemma, this subgroup is precisely
the smallest subgroup H of G such that there is ¢ € G with suppp C Hg. And so, the
second point implies the third.

Finally, if there is some ¢ in G and a subgroup H such that f is H—invariant and
supp p C Hg, then, for v—a.e. x € X and any 7 € suppp, f(yz) = f(gx) and so,

Pf(x) = /G Fva)dp(y) = f(g2)
Thus,
/ P f () Pdu(z) = / | g) P (z) = / (@) Pdu(z)
X X X
And the third point implies the first one. ([l

Corollary 3.6. Let G be a locally compact group acting continuously and v—ergodically
on a topological space X endowed with a G—invariant probability measure v.

Let p be a borelian probability measure on G.

Let g € L*(X,v) such that v ({z € X!supn P"g*(z) < +o0}) =1 and note f = g—Pyg.
Suppose that ||g||2 = ||Pgll2 then, for v—a.e. x € X, the sequence (3 j_y f(gk--.g1%))
is bounded in L2(Py).

Moreover if g belongs to L>°(X) then, for v—a.e. x € X, we have that the sequence
(> reo gk - g1)) is bounded in L>®°(P;).

Proof. According to the previous proposition, if ||g|| = ||Pg||, there is some v € G and
a subgroup H of G such that suppp C Hy and g is H—invariant.
13



So, for v—a.e. = € X and p—a.e. g1 € G, g(¢1x) = g(yz). In particular, Pg(z) =

g(yx) and so, f(x) = g(x) — g(yz).
Thus, for v—a.e. z € X and p®"—a.e. (g;) € G",

n—1 n—1
> Flgr-qx) = glgr- .- q17) — 9(v9k - - - 1)
k=0 k=0
n—1
= 9(@) = g(gn - 912) + > _ 9(gks1---917) — 9(Vgk - .- 1)
k=0

=g(x) —9(gn ... 1)

This computation proves the corollary when the function g is bounded.
Moreover, we have that

> Fgr-- qiz)

2
dp™N((:)) = g(x)? + P"(¢%)(x) — 29(x) P"g(x)

9(x)* + P"(g*)(z) + 2|g(z)[/ P (g?)(x)
4

Where we used Jensen’s inequality to say that |[P"g(x)| < \/P"g%(z).
This finishes the proof of the corollary.

The following example is an illustration of the previous corollary in an explicit context.

Example 3.7. Let

2 1 0 1
A:<1 1>etB:<—1 0>

Then, the subgroup of SLa(R) generated by A and B is Zariski-dense and the Lebesgue

measure v on the torus T? = R?/Z? is ergodic.
Let p = %5,4 + %(5314.

Guivarc’h proved in [Gui06] that the operator P associated to p has a spectral gap in

L2(T2,v).

Let ||. || be the distance induced on T? = R?/Z? by the euclidean norm on R?. And

let g be the function defined for any = € T? by g(z) = ||z||.
Then, for any z € T?,

1 1
Pg(z) = ;|| Az + 5| BAz| = [|Az] = g(Az)

/\Pg \Qdu /]g (Ax \Qdu /\g ]du

and

Moreover, if we note f = g — Pg, then, for any 2 € X, n € N and any (g1,...9n) €

{A, BA}"™, we have that

9(nt1- .- q17) = g(Agn ... g12)
14



and so,

n—1 n—1
> Fgk- 1) = g(x) = g(gn - 912) + > 9lgks1-- - 17) — 9(Ag . .. 1)
k=0 k=0

=9(x) = 9(gn - .. 1)
This proves that for any x € X, the sequence (Zz;é f(gk...g1z)) is bounded in L*>°(P,).

4. APPLICATION TO THE RANDOM WALK ON THE TORUS
In this section, we go back to the random walk on the torus. The law of
large numbers is known as a corollary of a theorem in [BFLM11] which
allow one to have a speed of convergence depending on the diophantine
properties of the starting point. We use this to prove the central limit
theorem and the law of the iterated logarithm.

Let H be a subgroup of SLg(R). We say that the action of H on RY is strongly
irreducible if H doesn’t fixe any finite union of proper subspaces of R% and that it is
prozimal if for some h € H we have a decomposition R% = VhJr &) Vh< of R? into an
h—invariant line Vh+ and an h—invariant hyperplane Vh< such that the spectral radius
of h restricted to Vh< is strictly smaller than the one of h restricted to Vh+.

We say that the group H is strongly irreducible and proximal if it’s action is.

If we also assume that H is a subgroup of SL4(7Z), then it’s action pass to the quotient
X = T¢ = RY/Z% that we endow with a metric defined by a norm on R? and with
Lebesgue’s measure v. Moreover, H is strongly irreducible and proximal then any a €
Z%\ {0} has an infinite H—orbit and so, according to the proposition 1.5 in [BMO00] the
action of H on T¢ is v—ergodic (every H—invariant function is constant v—a.e.).

Let p be a probability measure on SLy(Z). We define a random walk on X noting, for
x e X,

X() = T
Xnt1 = Gnr1Xn
where (g,) € SLg(Z)N is an iid sequence of random variables of common law p.
In this constext, Bourgain, Furmann, Lindenstrauss and Mozes proves the following

Theorem ([BFLM11]). Let p be a borelian probability measure on SL4(Z) whose sup-
port generates a strongly irreducible and prorimal group and which has an exponential

moment'.
Note

= [ llgeldv(e)dp(e) > 0
SLy(Z) JP(RY)

IThere is € € R’ such that
/ llgllfdp(g) is finite
SLy(2)

15



where v is the unique® p—stationary probability measure on P(R?).
Then, for any e € RY., there is a constant C such that for any x € T¢, any a € Z%\ {0},
any t €]0,1/2] and any n € N with n > —C'Int, if

| % 05 (a)| > 2t]|af

then, x admits a rational approzimation p/q € Q1/Z¢ satisfying

d (ac, B) <e M gnd gl <t7¢
q

In particular, this proves that if x is irrational, then, for any a € Z%\ {0} and any
t €]0,1/2], there are only finitely many n € N such that |p*? * d,(a)| > 2t|jal|. This
proves that for any irrational point = in T¢ and any a € Z%\ {0},

li T —
Jm pe 0z(a) =0

And so, using Weyl’s equidistribution criterion we have that for any continuous function
f on T and any irrational point = € T¢,
4.1 lim P" = d
(41) Jim Pf) = [ v
where v is the Lebesgue measure on T¢. Moreover, the speed of convergence depend
on the diophantine properties of z (see corollary C' in [BFLMI11]). In this section, we
first want to obtain a more explicit speed of convergence in equation 4.1 in terms of
diophantine properties of . Then, we want to use this speed of convergence to prove
the central limit theorem and the law of the iterated logarithm for starting points having
good diophantine properties.

In the first sub-section, we state a corollary of the theorem 4 that is easier to deal
with. The price we have to pay is that we will only be able to study hélder continuous
functions. This will be proposition

Proposition (4.6). Let p be a borelian probability measure on SLg(Z) whose support
generates a strongly irreducible and proximal group and which has an exponential mo-
ment.

Then for any 7,6 €]0,1] and any strictly non-decreasing function ¢ : Ry — R with

1
i inf 226)
Ins

there are constants C,Cy, C1 € R’ such that for any v € T and any n € N,
W (p™" % 8z,v) < Cp(n) ()’
where hy, is the function defined for any x € T by

ho(z) = s 1
xTr) = up - -
T ecatyze 9(@)d(z,p/q)

2The fact that \; exists and is strictly non negative and that v exists and is unique comes from a
result in [GR85].
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the function v is defined by
b(t) = (97 ()

and W, is the Wasserstein distance defined for any probability measure 91,72 on the
feco (1)

torus by
[ o= [ sav,
X X
lrl~<1

Where C%V(T?) and | f||, where defined in equation 1.2.

Wy (¥1,92) = sup

Then, we will prove that there is a function u, that dominates the function h, and
such that Pu, < aug, + b for some a €]0,1] and b € R. This means that in average,
uy(gr) is much smaller than u,(z) and this will allow us to prove, using the results of
section 2.2, the

Theorem (4.17). Let p be a borelian probability measure on SLy(Z) whose support gen-
erated a strongly irreducible and proximal group and which has an exponential moment.

Then, for any v €]0,1] there is By € R such that for any B € RY and any 5 €]0, Bo[
we have that for any irrational point x € T such that the inequality

d (x, B) < e B
q

has only finitely many solutions £ 7 € Q?/7%, we have that for any y—holder continuous
function f on the torus, noting o?(f) the quantity defined in equation 1.1 we have that

kZ:l (Xk) —>N</fdua f)>

(If o* = 0, the law N (u1,0?) is a Dirac mass at ).
Moreover, if 02(f) # 0 then
py f Xi) — [ fdv

(Xk) d
2 f W Jf U= 1t lim sup =
2no?(f)Inlnn 2no?(f)Inlnn

and if o*(f) = 0, then for v—a.e. z € X, the sequence (3 j_ f Xi) — [ fdv), is
bounded in L2(P,).

lim inf

4.1. BFLM’s result for holder-continuous functions.
In this section, we start with a few remind on Wasserstein’s distance

and then we state BFLM’s result using this distance.

4.1.1. Wasserstein’s distance on the torus. Note X the torus T? = R?/Z? endowed with
the metric induced by a norm on R

If ¥ and 95 are borelian probability measures on X, a way to measure their distance
is to compute the total variation

dour (91, 02) = sup ' / fdi, — / fdos
feco(x
||f||<><><1
17




This distance is not adapted to our study since, for instance, when p has a finite support,
so does the measure p* * §, and so, for any x € X and any n € N,

dvar(p*n * Og, V) =2

However, we can compute the distance between 11 and )2 seen has linear forms on the
space C%7(X) of y—holder continuous functions on X. Therefore, we make the following

Definition 4.1 (Wasserstein’s distance).
Let 91,92 be two borelian probability measures on a compact metric space (X, d).
For any « €]0, 1], we define the y—distance of Wasserstein between ;1 and 5 by

[ fao~ [ gao,

Remark 4.2. Sometimes, this distance is also named after Kantorovich and Rubinstein
and we refer to [Vil09] for an overview of it’s first properties.

W, (01,72) = sup
FECOV(X) (I flly<1

On the torus, Wasserstein’s distance between a given measure ¥ and Lebesgue’s mea-
sure is linked to the decreasing of the Fourier coefficients of ©/. We make this precise in
next

Lemma 4.3. For any 7 €]0, 1], there is a constant C' depending only on d and ~y such that
for any borelian probability measure ¥ on the torus T% and any t € R, if Wy(9,v) >t
then there is a € Z4\ {0} such that |9(a)| > Ct%|a|| where we noted v the Lebesque
measure on T¢.

To prove this lemma, we will need a result of Jackson and Bernstein about the rate at
which one can approximate in the uniform norm an holder continuous function by more
regular ones.

For r € N*, we define the Sobolev space

H =S f e LT D f@)P( + llal)™ < +o0
a€zZd
Lemma 4.4 (Jackson, Bernstein). Let v €]0,1] et r € [1,+o0].

Then, there is some C' € R such that for any function f € C%(T?), there is a sequence
(fn) € H'(THN such that for any n € N¥,

C
[ v = [ ados 1f = falle < 150 and ol < €l n

. 4
Proof. For y € R/Z, we note k,,(y) = <Slsl(n2(+?)y)> and for a point y = (y1,...,y4) € TY,

-1

we note K (y) = [, km(y:). Finally, we note I,,, = (fi{% k:m(y)dy) :
Define, for z € T¢,

I,

Jm(z) = / IE f(z + 2y) Ko (y)dy = f(y)Km(y — m)dy
[~1/4,1/4]4 2 Ji-1/2,/2¢ 2

18



Then, we can compute

£@)~fnl)] = | [ I4(£(2) — £z + 20) Knm(y)dy
[—1/4,1/4)d

<221, /

Iyl Ko (y)dy < I9257| £l / Iyl Km()dy
/4]¢ [0,1/4]¢

)

< L2 ), / W]+ 4 YKo (y)dy
[0,1/4]¢
< dL2"(|f |l Y km (y)dy
[0,1/4]

Where we used in last inequality the fact that

I / Y1 Ko (9)dy = I / Yk (y)dly
[0,1/4]¢ [0,1/4]

Note now,
1/4 1/4 sin(2rmy) \*
Ty = 2/ Yy km(y)dy = 2/ y’ <M> dy
0 0 sin(y)
Then, using that for any ¢ € [0,7/2], 2 <sin(t) < ¢, we get that

1 w/4 o A 1 w/4 a 4 1
F/ Yy (sin(2rmy))  dy < Jpy < ?/ Yy’ % (sin(2mrmy)) " dy := ?Lmﬁ
0 0
Moreover,
mm /2 y—4 d mm/2
Lo = [ (55) " ing)! g = zmm) 7 [T i)
And so,
Ly, = m3~7
Thus,
Imy X m3~7
and finally,
1/4 Jm N B
In [ W)y = 7 = ™
0 m,0

And so, what we proved is that there is some constant C' such that for any function
f € C%7(T?), we have that

C
If = fulle < )51
So, what is left is to prove that (for some maybe bigger constant C)
| fraller < ClLflloom™

But, it is clear that for any a € Z¢,

| (@) < [1£ ]l
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And, using that f,, = f * K,, and that K,, is a trigonometric polynomial of degree at
most Cm? for some C' as we may see by developping

. 4 —% % 4 —% % 4
o (y) = sin(2mmy) _ (e iy _ gdimmy _ imy iy _ gdimmy
" sin(my) e—iTY _ iy 1 _ e2imy

m—1 4
:e4z7ry 2 : 6227rky

k=—m

So, we have that for ||a|| > Cm*, K,,(a) = 0.
And this proves that

1/2 1/2
[ fmllaer = (Z(1+ a)QTfm(a)Q) < ( > (1+a)2’") [1f1lo0

aczZd lal]|<Cm*
< (14 Cm") (Cm)?| oo
Which finishes the proof of the lemma. O

Proof of lemma 4.5. By definition of W, (9, v), there is a function f € C%7(T¢) such that
I flly <1and | [ fd9 — [ fdv| > L.

Let r € N* such that > .7 (0} % =: C, is finite.

According to lemma 4.4, there is a sequence of functions (f,) € H"(T4)N such that

I1f = falle < & and || follzr < Cn®
Then,

- [ l/fow | - fs- |

5 21 = fallo =

t
2 n
But,

[a0- [ || 5 Tl < 52 [Tt

acZ\{0} and\{o}
[foller 5 19(a)|
S — I 0(a)] < | fallar G sup
aEZdZ\{O} (14 [lall?)72 acza\foy llall
<0nC,.  sup [9(a)]

aeZ\{0} [[all

and so,

9 t_ 2C

sup [9(a)| S i

aczir(oy llall — CCin
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So, taking n = L(%)l/yj + 1 we have that % — 2% > t/4 and there is some constant
C’ such that

and this finishes the proof. O
With lemma 4.3, we get a straightforward corollary of theorem 4.

Proposition 4.5 ([BFLM11] with Wasserstein’s distance). Let p be a borelian probability
measure on SLg(Z) whose support generated a strongly irreducible and prozimal group
and which has an exponential moment.

Then, for any € € R% and any ~y €]0, 1], there is a constant C € Ry and ty €]0,1/2]
such that for any n € N, any t €]0,to] with n > —C'lnt and any x € T¢, if

Wy (p™" % 0z,v) >t
then there is p/q € Q4/Z% with |q| < Ct~C and
d(x,p/q) < e M7

The previous proposition proves that if the distance between p*™ * §, and v is large
and if ¢ is a function of n, then x is well approximated by rational points : for instance, if
t = e~ " for some a € R then the p/q produced by the proposition satisfies ¢ < Ce*Cn
and so,

c\ Ji—e)/aC
)
q

We are going to reverse this to, given a diophantine condition, find a rate of convergence.

From now on, we fix a strictly non-decreasing function ¢ : Ry — R .
For z € X, we note

1
(4.2) hy(r) = sup —————
v p/qeQd /74 @(q)d(.%'7p/q)
Thus, a point is M —diophantine if hy(z) is finite with p(t) = t*. We also remark
that if ¢ grows faster than any polynomial, then v(h, < +00) = 1.

Proposition 4.6. Let p be a borelian probability measure on SLg(Z) whose support gen-
erated a strongly irreducible and proximal group and which has an exponential moment.
Then, for any ~,0 €]0,1] and any strictly non-decreasing function ¢ : Ry — R with

In p(s)
ns

lim inf >0
there are constants C,Cy, Cy € RY such that for any x € T and any n € N,
Wy (0™ 5 0z, v) < Co(n)h ()
where hy, is the function defined in equation 4.2 and v is the function defined by

Y(t) = (o7 ()
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Remark 4.7. The assumption on ¢ implies that for some ¢ € RY we have that for any
t € R, p(t) > ct®. It is not restrictive at all since according to Dirichlet’s theorem on
diophantine approximation, if (t) = o(t'*%/9), then the function h, only takes infinite
values.

Remark 4.8. If we take ¢(n) = n”, then we get ¢(n) = e™"" for some x € R* and this
proves that for a generic diophantine point, the convergence is at exponential speed.

In the sequel, we will have to be sure that the sum of the ¢)(n) converges and so, we
will take ¢)(n) = n=!7* for some a € R*. This will allow us to study irrational points
x € T? such that the inequality

d <:c, B) < e~ B¢
q

has only finitely many solutions g € Q?/7¢ where 8, B will be constants depending on
p-

Proof. Let Cy,C1,C € [5,+00] whose values will be determined later.
We note Cs the constant given by proposition 4.5.
Let z € X et n € N.
If CY(n)hy(z)° > 2, then the inequality is satisfied since ||[P"f — [ fdm||s < 2[|f]lo-
Thus, we shall assume that Ct)(n)h,(z)° < 2.
Let t = %1/1(71)@,(36)5. Then, t < 3 and

—CoInt = —Cy1In <%1/J(n)h¢(x)5> < —CyIn (1h(n)) = C3CHIn 1 (e41™)

since Chy(x)/5 > 1 because C' > 5 and hy(z) > 1.
But, there is a constant Cs such that for any s € R, ¢(s) > C35“® and so,

. N 1/Cs
(s
SCH Y

Therefore, Inp~!(e“1") < C%(Cln —InC3) and —C'Int < n if Cp is small enough (de-
pending on C1).
Thus, we can apply proposition 4.5 to find that if

Wy (p™" % 0z, v) 2t
then there is p/q € Q?/Z¢ with ¢ < Ct~? such that

d (w, B) <e M\
q

Thus, as we shall assume without any loss of generality that Co (%)CQ < land CpCsr < 1,
we get that

< e
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and

i) < Ze-so-cim

eCln —Co
b(n) > ( . )

Which leads to a contradiction if C; < A, Cy is small enough and C is large enough.
Thus, there is no n € N and = € X such that Cy)(n)hy(x)° < 2 and

W, (p™ % 0g,v) > éCw(n)hw(m)‘S

So, for any n € N and any = € T?,
W, (0™ % 8z, v) < Cp(n)hy(x)°

which is what we intended to prove. O

4.2. Diophantine control along the walk.
In this section, we are going to prove that if x € X satisfies a diophan-
tine condition, then so does the gx with g € SLy(Z). We will deduce
from this a control of the speed of convergence in proposition 4.5 along
the walk.

We saw in proposition 4.6 that for any irrational point x of T¢, p*™ % §, converges for
Wasserstein’s distance to Lebesgue’s measure on the torus. Moreover, the rate depend
on the way x can be approximated by rational points of the torus.

To prove the central limit theorem starting at some point x, we will have to control
the rate of convergence of p* x d, for any y of Gz ; the problem being that the function
h, that we defined may take arbitrarily large values on Gu.

However, the set of points where h,, is finite is invariant under the action of I' = SL4(Z)
as one may see noting that for € T, p € Q?/Z¢ and g € T' we have

_ _ 1 _
lglld(z, g p) > d(gz,p) = d(gz, 99 'p) > Wd(:ﬂ,g 'p)

and g~ 'p is a rational point with the same denominator than p (since g~! has integer
coefficients) and this estimation proves that for any g € SLy(Z) and any z € T¢,

he(g2) < llgllhe (z)

In this section, we are going to prove that we can obtain a control that is far better
than this trivial one. We will indeed prove that for any irrational point x of the torus,
in average, gx is further from the rationals than x.
To do so, we begin by showing that, in average, gx is further from 0 than x. We will
prove this in proposition 4.10 but at first, we will need the next
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Lemma 4.9. Let p be a borelian probability measure on SLy(Z) whose support generates
a strongly irreducible and proximal group and which has an exponential moment.
For any § € R*. and x € T\ {0}, we note

1
u(g(,l?) = d(.%', 0)5

Then, there are ng € N, 6 € R* , a € [0,1] and b € R such that for any x € T\ {0},
Prous(a) < aus(a) + b

Proof. The proof is by going back to R? since our assumptions imply that the first
Lyapunov exponent is strictly non negative.

Let ¢ € R* and T € B(0,e) C T%. Choose a point z in B(0,¢) C R? whose projection
on the torus is . Then, for any n € N,

P"us(T) = /G d(gz,0)~*dp*" (g)
:/Gl||g||g§d(gf,0)édp*n(g)+/Gl||g||>%d(gfa0)5dﬂ*n(9)
< [t a5+ [ vl el a0

- g loel B o
<] 5( /G eI 4o (g) + /G TR PRI <g>)

Moreover, there is g € R* such that for any § €]0, §o] there are C,t € R* such that for
any n € N,

:/ 1||g||<1|!ng5dp*”(g)+/ 11> 1d(g7, 0)~°dp™(g)
G € G

_ llg|l
sup / e 61n HqIH dp*n(g) < Cre—tn
zeRAN{0} /G

(we refer to [BL85] theorem 6.1, for a proof of this result).
And so, we get that for any x € B(0,¢) \ {0},

Phus@) < @) (Ce + [ Lol Par o))
Let ng be such that Ce™0 < 1/4 and ¢ such that

/c; Ligis1yellg ™ I°dp™ (g) < 1/4

(such an ¢ exists since p has an exponential moment).
What we get is that for this choice of ng and e, for any T € B(0,¢) \ {0},

P"us(z) < zus(z)
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Moreover, if T is on the complement set of the ball,

P = / (570457 (0) < a0 [ 571°05™ (0

<< [la o)

and this finishes the proof of the lemma. O

From now on, we fix § € R* such that the function us satisfies P"us < aus + b for
some ng € N*, a € [0,1] and b € R. Let a1 €]a, 1] be such that a] "’a < 1.
Note

no—1

uy = Z al_kPku(g
k=0

Then,
no—1 no—1
Pug = Z akakHu(; =a Z akaku(s + a_("o_l)P""u(g
k=0
ng—1
<ar Y ay*Prus +ay "7 (aus +b)
k=1
< au ()—|—ba1(n° 2

Moreover, as
0) [l (9) < Prusto) = [ lawl a0 (0) < uste) [ a1 ao o)

the function g that we constructed is also equivalent to d(z,0)™ or more specifically,

ug(7) ug(7)
0< inf ———— 5 < su ——= < 400
ret0 d(,0) 7~ epa oy d@,0) 0

So what we just proved is the following

Proposition 4.10. Let p be a borelian probability measure on SLg(Z) whose support
generates a strongly irreducible and proximal group and which has an exponential mo-
ment.

Then, there is 6 € R%, a € [0,1[, b € R and a function uy on T?, such that

ug(z) up ()

0 < inf 7< su ——= < 400
weTi\0 (2,000~ ,eyajoy A, 0)70
and
Pug < aug +b

Now, we are going to use this function ug to construct some other that will allow us
to prove that if x is not well approximable by rational points, then, in p—average, so are
the gz.

What we will do is, for a fixed diophantine condition ¢, constructing u, such that
Pu, < auy, + b and uy, is finite on points satisfying the condition .
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For () € N*, we note X the set of primitives elements in éZd /7% that is to say, the
set of elements of %Zd/Zd that doesn’t belong to %Zd/Zd for ¢ < Q.

Then, X¢ is SLy(Z)—invariant : indeed, if p € X then gp € éZd /74 since g has
integer coefficients and gp can not belong to %Zd / 74 with ¢ < @Q because if it was so, so
would p = g~ gp.

Let ¢ : N — R% be a strictly non decreasing function. For x € T4\ {0}, we note

u@(x) = Z 5 Z uO

QeN* SD( peXg

This function wu,, is proper (it is non negative and lower semi-continuous)

Moreover, it carries the diophantine properties of x.

Indeed, by definition of hy(z) (see the previous section), we have that for some con-
stant C' that doesn’t depend on ¢,

ho(x)’ < Cuy(z)
and reciprocally, if ¢’ : R — R is an other strictly non decreasing function such that

¢'(Q) € O(p(Q)Q™("2/%)) then,
>5

ug(z) < Chy(x)’ Y Q (
QEN*

Thus, controlling u,(x) is controlling the diophantine properties of 2 and reciprocally.

The aim of this construction is the following

and so, if hy(z) is finite, so is u,(x).

Lemma 4.11. Let ug be the function constructed in the previous lemma.
Let ¢ : N — R% be a strictly non decreasing function such that

nd

Zw<—|—oo

n

For xz € T?, note
=14 >, oy 2wl
QEN* peXq

Then, there are a €]0,1] and b € R such that
Pu, < auy, +0

Remark 4.12. One has to think of ¢ has growing very fast (we will take p(n) = eB”B) SO

the summability assumption will always be satisfied and multiplying ¢ by a polynomial
function doesn’t really change the points where u,, takes finite values. Therefore, it is
almost the same thing to say that wu,(z) is finite or that hy(z) is

Proof. Let’s remind that Puy < aug + b for some a €]0,1] and b € R.
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And so, if we note, for Q € N* and = € T4\ Q¢/Z¢,
ug(x) = Y uo(z —p)
pGXQ

we have, using that SL;(Z) permutes X, that

Pug(x /Zuogx— )dp(yg /Zuo z —p))dp(g)

pEXQ peXg

= Y Puglz—p)<a Y uplz—p)+bXg|

pEXQ pEXQ
< aug(z) + bQ*

where we used that |Xg| < Q4
And so,

P(uy, 1—|—Z PuQ x) < auw(x)—l—l—a—l—bZQ—d

QEN* QeN*
O

We are finally able to solve Poisson’s equation for hélder-continuous functions in next

Corollary 4.13. Under the hypothesis of proposition 4.6, for any v €]0,1] and any
M € R%, there is By € R% such that for any B € R and any B €0, Bo[, there is a

Bnf

constant C such that, noting ¢(n) = ™ , we have that for any = such that

Up(z) < +00
we have that

W (p™ x 0g,v) < W?@,(m)

In particular, for any y—holder continuous function f on the torus, there is g € .7-"5’99 (cf
section 2.1) such that,

f=g-Pg+ / fdv on {uy, < +oo} and |lglzs < ClIfl,

Proof. We apply proposition 4.6 noting that in this case, there is a consant C' such that
for any n € N*,
C

*7 C
Wa (™" % 80,v) <~ ho (@) < —pug(a)

S pleM Y

and so,

3 3
1
*n 3 S
<ZW’Y(/) *51”/)> < Cug(x) <1 + E : n1+M>
n neN*
So, we can set



noting that, by definition of Wasserstein’s distance, for any n € N and any z € X,

P f() - / Fav| < [ FlWs (5™ % 6,,0)

4.3. Central limit theorem and law of the iterated logarithm.
In this section, we use the result of the previous ones to finally prove
the central limit theorem and the law of the iterated logarithm for the
random walk on the torus.

As we now know with corollary 4.6, holder continuous functions f on the torus writes
f =9— Pg+ [ fdv where g is dominated by a drift function finite on points badly
approximalble by rationals. We are going to prove the the validity of “law of large
numbers”-type hypothesis in corollary 2.13 and this will allow us to prove the central
limit theorem and the law of the iterated logarithm. We don’t know how to prove the law
of large numbers for functions of £ and this is why we will go back to the function f to
use the speed of convergence given by our corollary or Bourgain-Furmann-Lindenstrauss-
Mozes’s theorem.

We will need the following

Lemma 4.14. Let p be a borelian probability measure on SLg(Z) whose support generates
a strongly irreducible and proximal group and which has an exponential moment.

For any ~ €]0,1], there is ag € R such that for any o €|og,+oo[ there is fy € R
such that for any B €)0, Bo| and any B € R, noting p(q) = quﬂ, we have that for any
sequence (fn) of y—hélder-continuous functions on the torus and such that [ f,dv =0,
4

e (%ugo(x) w101

E
v Inn ke[0.n]

n—1
> FelXk)
k=0
Where the involved constant doesn’t depend on n, x nor the sequence (fy).

Remark 4.15. What is hidden behind this lemma is a kind of Burckholder inequality that
says that if (Y;) is a sequence of iid bounded random variables on R of null expectation,
then for any r € N,

5[S ) <o ()

n—1
DY
k=0
Proof. First, we choose o € R} and we will see a lower bound on « later. We note

¥(n) = n~® and according to proposition 4.6, there is a constant C' such that for any
n € N and any x € X,

C
W, (p™" % 05, v) < n—aug,(:n)

where p(q) = B4’ Moreover, for n € N, we note

n—1
Sn =Y felXk)
k=0
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We can compute
1 /4
E.|Snh ‘= E:rank4_k
S kzo@ £S5}

4
- Ex’Sn’4 + 4E$fn(Xn)S?L + Z
k=2

() Bttt

So, we note

k

4
A, = Exfn(Xn)SS’L et By, == Z <4>Em(fn(Xn))kSﬁk
k=2

and so, we have, noting p(n) (and even only p to simplify notations) a sequence that we
will determine later and such that 0 < p(n) < n, that

Ap

3
k=0

= Eufa(X0)S3 + 30 £a(X)(Sh — 5)57
3
2

<3> Emfn(Xn)(Sn - Sp)ksg_k
k=2

k

We note each of this terms AL, A2 et A3.
Then, using the fact that [ f,dv =0, and that, according to proposition 4.6,

PP LX) € gl (X
and that
Plu(z) < dlu(z) + 1 E a
we get that

‘Arlz‘ = ‘E$Pn_p+2fn(Xp—1)S§{

C 3
S muan’YEl‘u(Xp*lNSM
C 3 —1
< - - @@ D
= (n_p+2)a‘|fn||'y||5p”oop U(ﬂf)
¢ 3 1 b
< - P
<ol ISl ( . _a> u(z)

3
=0 L i—
(u(x) ma el Q)Q)
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Moreover,

ZEifn n) Fi(X) S5

q—1 n—1
=Y B PPN f(Xa) fe(Xi)Sp + D B PEP(fi PR £)(X5) S,
k=p k=q

and so, for some sequence g(n) that we will determine later and with p(n) < g(n) < n,
we have that
q—1

C
A7) < Z ———— || fillooll fully Eau(Xk) S5
(n—k)
k=p
+Z kaP" ¥l Egu(X,) Sy + ‘/f P *f,dv|E,S>
— CPru(x) R C|P|a"PPu(a)

<n? maX f 4 74— 7 + ||P||¢

o e i) [ S L IPET e,
ke[o,n) v i k:a (g —p)™ L3(X,v)

So, with ¢ = n—Inn and p = n—n? with § < 1/2, and taking ag such that g > In || P|,,
we find that

1Py
2 2 4 n—Inn
A,=0 (n Jnax | fiellqu ( E ka 7_1 e P2 ) >>

k=Inn+1
n2
=0 (Wk max || fi||3u(x )>

and finally,

°. /3

’Ai’ < Z <kz> anHOOHSn - Sp”ﬁoEx’Splsik

k=2

But,
150 = Splloe < D 1fplloe < (n=p) sup |[filloo
P Z P ke[o,n—1]

SO

A3 — [ p1+20 4
8= 0 (042 1l

and we recall that we choose § < 1/2. So we can take § = 1/4 and we can assume that
dag > 1 to get that

Al -0 4, 3-0a
431 = 0 (u(a) max 17l
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thus we proved that
n2
Ap =0 ——F— 4
n ((ln n)a_1U(x) ||l >
To study B, remark in a first time that

n—1 n—1k—1
E.Sp =Y PH(fi)*(x) +2) ) PP fi)(x)
k=0 k=0 1=0

The first term of this sum is dominated by nmaxjc(o ) || fx|l, and a computation similar
to the previous one proves that the second one is bounded by constants times

2

n 2
nn)ot n)a,luw) max I fell”

Therefore,
n2
B (682 € O ((ramrde) s 1]
And this proves that
B, =0 (" ju(e) max 15"
" e T o
So,
n2
ISl = BalS.! + O ( g apu(e) ma 1Al
and iterating this relation, we get that

3
i_of " 4
EalSalt = O ((gramr ) o 1]

which is what we intended to prove. O
We are now ready to prove the convergence of the variance in next

Lemma 4.16. Let p be a borelian probability measure on SLg(Z) whose support generates
a strongly irreducible and proximal group and which has an exponential moment.
Then, for any vy €]0,1] there is By € RY such that for any B €0, Bo[ and any B € R,

noting ¢(q) = quﬁ, we have that for any y—holder-continuous function f on the torus,
noting g the solution to Poisson’s equation defined in fgw and given by corollary 4.13
we have that for any x € X such that u,(x) is finite,

—ZP )(Xk) — (Pg(Xk)) —>/ (Pg)*dv P, — a.e. and in L' (P,)

Proof. We take at first ag equal to the one of the previous lemma and take o > . It
comes with it a constant fy such that for any B € R and any (8 €]0, §y[, the function
¥(t) given by 4.6 satisfies that sup,, n®¢(n) is finite.

Remark that for any ~y—holder-continuous function f on the torus, the function g
given by proposition 4.6 is square-integrable agains Lebesgue’s measure. We can see this
as a consequence of 2.5 or, more simply, use that under our assumptions, the operator P
has a spectral gap L?(X,v) as we already saw in the introduction and so, the function
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g is a.e.—equal to a square-integrable function. We will actually use this spectral gap in
the proof of this lemma.

We assume without any loss of generality that [ fdv = 0. To prove the lemma, we
use that f = g — Pg to write

1 n—1

3
I

L(x) = = 37 P (Xe) — (Pg(Xi))> = = 37 P (i) — (9(Xk) — F(Xi))?
1 :i? 1 n—1 = 9 n—1
== P(g*)(Xk) — 9°(Xi) — - > (F(X0))* + - > F(X)g(Xk)
k=0 k=0 k=0

According to proposition 2.10, and using that u is a drift function and that g € F2, we
get that for any = such that u(z) is finite,

1 n
~ > P(g*)(Xy) - g°(Xx) = 0 in L'(P,) and P, — ace.

Moreover, the law of large numbers proves that for any irrational point x of the torus
(and so in particular, for any x such that u(z) is finite),

n—1

1
— Xi))? 2dv in L}(P,) and P, — a.e.
P ~ [ Favin L) and P, —ac

Moreover, if p : N — N is a non decreasing function converging to infinity that we will
determine later, we have that

P(k)—l —+00
glz)= > Pif@a)+ > P
1=0 I=p(k)
and so
1 1 n—1p(k)—1 n—1 +oo
_ l l
anXk (Xp) = =D D F(Xp)Pf(Xe) + Z > F(Xk)PF(X)
k=0 (=0 " =01~ p(k)

But, according to lemma 4.14 applied to the sequence of functions

p(n)—1
= > Pt [P
k=0

we have that
4

E, nzlp(kz)fl (f(Xk)Pl F(Xp) — / fPlfdu> =0 ( (1:3:)()? T ma kaH >

and, for any k € [0,n],

p(k)—1 p(k)—1 k)
) uPup(

f Z Pl < I Z I1PIF, < HfH”HPH
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Thus,
4

SR Ly ! n’ 8
23> ( P 0 - [ Pan)| = o (G u@rEiee)
k=0 [=0

so, if p(n) = 6;11n(Inn) with ¢; such that d;In||P||y < ag, we have that for n large
enough,

”p”p e n(lnn)[[Plly — = (In n)51 In||lPly
and so,
4
1 n—1p(k)—1
> i X > (Fe0P ) - [ 1P ar)| <o
n k=0 [=0
This proves that
1 n—1p(k)—1
EZ > F(Xp)P (X)) - / fP'fdv — 0 Pg-a.e. and in L}(P,)
k=0 =0
Moreover, using the spectral gap in L?(X,v) and Cesaro’s lemma, we get that
n—1p(k)—
SIS /fPlfdu%Z/fPlfdu
k=0 [=0

We are going to prove that + Zk 0 ?__O;(k) f(X)P f(X}) converges to 0. But, using

proposition 4.6, we have that

n—1 4o00 1n 1 4o
l l
Z Y. FEPHXD| <=0 Y IFX)IP (X))
k=0 [=p(k) k=0 [=p(k)
n—1 4o0
1 )9/
> ||f||ool1+a o (Xk) N Flly
k=0 [=p(k)
n—1
1 c’ s
< = he(X3)22 | f1I2
2 i e 0 I

for some constant C'.

But, by definition of u,, hé/ = F2 and so, according to lemma 2.11, we have that
1 n—1
—Z—h (X1)® -0 P, —a.e. and in L'(P,)
im0 Pk

What we just proved is that

n—1

%ZP( )(Xk) — (Pg(Xp))? — — /f du—i—QZfPlfdyIP’ -a.e. and in L'(P,)

k=0 =0
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To conclude, we only have to remark that
+oo
- /fzdu +2 Z fP fdy = / —(g — Pg)?® +2(g — Pg)gdv
=0

= / 29> — 2gPg — g* + 2gPg — (Pg)*dv

- /92 — (Pg)*dv
which finishes the proof of the lemma. ]

Theorem 4.17. Let p be a borelian probability measure on SLg(Z) whose support gen-
erates a strongly irreducible and proximal group and which has an exponential moment.

Then, for any v €]0,1] there is Sy € R% such that for any B € R and (3 €]0, fo| we
have that for any irrational point x € X such that the inequality

d <x, B) < ¢~ B’
q

has a finite number of solutions p/q € Q%/Z?, we have that for any y—holder continuous
function f on the torus, noting o(f) the variance given by equation 1.1 we have that

%gﬂm LN < [ fav 02(f)>

(If 0% = 0, the law N (11, 0?) is a Dirac mass at ).
Moreover, if o2(f) # 0 then, P,—a.e.,
n—1 n—1
Xi) — [ fd Xi) — | fd
Dohmo [ (Xg) — [ fdv — 1 and hmsuka:of( k) = fdv _
2no?(f)Inlnn 2no?(f)Inlnn

and if o%(f) = 0, then for v—a.e. x € X, the sequence (Zz;é [(Xyk) — [ fdv), is
bounded in L2(P,).

lim inf

Proof. This is a direct corollary of lemma 4.16, lemma 2.8 and proposition 2.13.
The condition on o?(f) comes from corollary 3.6 if we note that since Pu, < au, + b,
we have, for any n € N,

P"u, < auy +

1-a
and so, for any = satisfying the diophantine condition, sup, P"(¢%)(z) < uy(z) + 12 is
finite. And moreover, v(z|u,(z) < +00) = 1. O
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