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Introduction

We derive exponential decay results on eigenfunctions of a family of self adjoint generators H ε , ε ∈ (0, ε 0 ], of (substochastic) jump processes in R d in the limit ε → 0. The jump processes are associated with non-local Dirichlet forms on the real Hilbert space L 2 (R d ):

Hypothesis 1.1 Let E ε , ε ∈ (0, ε 0 ], be a family of bilinear forms on L 2 (R d , dx) with domains D(E ε ) given by

E ε (u, v) := 1 2 R d dx R d \{0} (u(x) -u(x + εγ))(v(x) -v(x + εγ)) K ε (x, dγ) + R d V ε (x)u(x)v(x) dx (1.1) D(E ε ) = {u ∈ L 2 (R d , dx) | E ε (u, u) < ∞} ,
where for all ε ∈ (0, ε 0 ] (a) V ε (x) dx is a positive Radon measure on R d (b) for x ∈ R d , K ε (x, . ) is a positive Radon measure on the Borel sets B(R d \ {0}) satisfying (i) K ε (x, E) < ∞ for all E ∈ B(R d \ {0}) with dist(E, 0) ≥ δ > 0 (ii) |γ|≤1 |γ| 2 K ε (x, dγ) ≤ C locally uniformly in x ∈ R d (iii) K ε (x, dγ) dx is a reversible measure on Y := R d × R d \ {0} in the sense that for all nonnegative φ, ψ

∈ C 0 (R d ) Y φ(x + εγ)ψ(x)K ε (x, dγ) dx = Y φ(x)ψ(x + εγ)K ε (x, dγ) dx . (1.2) 
We shall formally denote the reversibility condition (1.2) as

K ε (x, dγ) dx = K ε (x + εγ, -dγ) dx , (1.3) 
where the right hand side denotes the Radon measure on Y given by

Y f (x, γ)K ε (x + εγ, -dγ) dx := Y f (x, -γ)K ε (x + εγ, dγ) dx := Y f (x -εγ, -γ)K ε (x, dγ) dx ,
and (abusing notation) we shall even cancel dx on both sides of (1.3).

Assuming Hypothesis 1.1, E ε is a Dirichlet form (i.e. closed, symmetric and Markovian) and C ∞ 0 (R d ) ⊂ D(E ε ) for all ε ∈ (0, ε 0 ] (see Fukushima-Oshima-Takeda [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF]).

The general theory of Dirichlet forms E analyzed in [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF] covers the case, where (R d , dx) is replaced by (X, m) if X is a locally compact separable metric space and m is a positive Radon measure on X with supp m = X, provided that D(E) is dense in L 2 (X, m).

In particular, this is true for X = (εZ) d and m being the counting measure on X. In this situation, we proved similar decay results in [START_REF] Klein | Agmon-Type Estimates for a class of Difference Operators[END_REF] and [START_REF] Rosenberger | Asymptotic Spectral Analyis and Tunnelling for a class of Difference Operators[END_REF], with K ε (x, m(dγ)) = -a εγ (x; ε)m(d(εγ)) as a measure on Z d \ {0} (in fact, we treated a slightly more general case where the form E ε instead of being positive is only semibounded, E ε (u, u) ≥ -Cε for some C > 0 and ε ∈ (0, ε 0 ]).

In this paper, we focus on the complementary and much more singular case X = R d . We remark that, combining the results of [START_REF] Klein | Agmon-Type Estimates for a class of Difference Operators[END_REF] with this paper, one could treat the case where X is an arbitrary abelian subgroup of (R d , +) and m is Haar measure on X. Since our methods depend on some elements of Fourier analysis, this is a natural framework for our results.

The basic idea behind our estimates is due to Agmon [START_REF] Agmon | Lectures on Exponential Decay of Solutions of Second-order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators[END_REF]: The positivity of the quadratic form associated with a certain (weighted) operator H (on wavefunctions with support in a specific region) is related to decay of solutions of Hu = f in that region in weighted L 2 -sense, and the (optimal) rate function admits a geometric interpretation as a geodesic distance (which is Riemannian if H is a strongly elliptic differential operator of second order). A semiclassical version of the Agmon estimate (for the Schrödinger operator) was developed in [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF] by Helffer and Sjöstrand who also applied such arguments in their analysis of Harper's equation [START_REF] Helffer | Analyse semi-classique pour l équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique)[END_REF] to a specific difference equation. In [START_REF] Klein | Agmon-Type Estimates for a class of Difference Operators[END_REF] a semiclassical Agmon estimate was proved for a classs of difference operators on the lattice εZ d , identifying the rate function as a Finsler distance. We recall from [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF] (for the Schrödinger operator) and from [START_REF] Klein | Harmonic Approximation of Difference Operators[END_REF][START_REF] Klein | Asymptotic eigenfunctions for a class of difference operators[END_REF][START_REF] Klein | Tunneling for a class of difference operators[END_REF] that such estimates are an important first step to analyze the tunneling problem for a general multiwell problem. It is our main goal to develop this analysis in the context of jump processes as considered in this paper. Our motivation comes from previous work on metastability (see [START_REF] Bovier | Metastability in stochastic dynamics of disordered mean-field models[END_REF][START_REF] Bovier | Metastability and low lying spectra in reversible Markov chains[END_REF]).

To control the limit ε → 0, we shall impose stronger conditions on K ε and V ε .

Hypothesis 1.2 (a) The measure K ε (x, . ) satisfies K ε (x, . ) = K (0) (x, . ) + R (1) ε (x, . ) (x ∈ R d ) , (1.4) 
where (i) for any c > 0 there exists C > 0 such that uniformly with respect to x ∈ (εZ) d and ε ∈ (0,

ε 0 ] |γ|≥1 e c|γ| K (0) (x, dγ) ≤ C and |γ|≥1 e c|γ| R (1) ε (x, dγ) ≤ Cε (1.5) |γ|≤1 |γ| 2 K (0) (x, dγ) ≤ C and |γ|≤1 |γ| 2 R (1) ε (x, dγ) ≤ Cε (1.6) (ii) for all x ∈ R d there exists c x > 0 such that for all v ∈ R d R d \{0} (γ • v) 2 K (0) (x, dγ) ≥ c x v 2 . (1.7) (b) (i) The potential energy V ε ∈ C 2 (R d , R) satisfies V ε (x) = V 0 (x) + R 1 (x; ε) , where V 0 ∈ C 2 (R d ), R 1 ∈ C 2 (R d × (0, ε 0 ]) and for any compact set K ⊂ R d there exists a constant C K such that sup x∈K |R 1 (x; ε)| ≤ C K ε. (ii) V 0 (x)
≥ 0 and it takes the value 0 only at a finite number of non-degenerate minima x j , i.e.

D 2 V 0 | xj > 0, j ∈ C = {1, . . . ,
r}, which we call potential wells.

We remark that combining the positivity of the measure K ε (x, . ) with Hypothesis 1.2(a), it follows that

K (0) (x, . ) is positive while R (1) ε (x, .
) is possibly signed. It is well known (see e.g. [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF]) that E ε uniquely determines a self adjoint operator

H ε in L 2 (R d ). To introduce Dirichlet boundary conditions for H ε on some open set Σ ⊂ R d , one considers the form ẼΣ ε (u, v) = E ε (u, v) with domain D( ẼΣ ε ) = C ∞ 0 (Σ) . (1.8)
Then ẼΣ ε is Markovian (see [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF], ex. 1.2.1) and closable. In fact, if we consider L 2 (Σ) as a subset of

L 2 (R d ) (extend f ∈ L 2 (Σ) to R d by zero), the form E Σ ε (u, v) = E ε (u, v) with domain D( E Σ ε ) = {u ∈ L 2 (Σ) | E Σ ε (u, u) < ∞} (1.9)
-corresponding to Neumann boundary conditions -is a closed (Markovian) extension of ẼΣ ε (see [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF], ex. 

E Σ ε is a restriction of E Σ ε , we have for u, v ∈ D(E Σ ε ), E Σ ε (u, v) = T Σ ε (u, v) + V Σ ε (u, v) with (1.10) T Σ ε (u, v) := 1 2 Σ dx Σ ′ (x) (u(x) -u(x + εγ))(v(x) -v(x + εγ)) K ε (x, dγ) and (1.11) V Σ ε (u, v) := Σ V ε (x)u(x)v(x) dx (1.12) where Σ ′ (x) := {γ ∈ R d \ {0} | x + εγ ∈ Σ}. (1.13)
Similarly,

E Σ ε = T Σ ε + V Σ ε . We remark that T Σ ε , V Σ ε .
T Σ ε and V Σ ε are again Dirichlet forms, in particular they are positive. We will use the notation q[u] := q(u, u) for the quadratic form associated to any bilinear form q.

Concerning the operator H ε associated to E ε we remark that, even assuming Hypothesis 1.2 in addition to Hypothesis 1.1, it is far from trivial to characterize the domains D(H ε ) and D(H Σ ε ). Without additional assumptions, H ε =:

T ε + V ε (or H Σ ε ) is not even defined on C ∞ 0 (R d ) (or C ∞ 0 (Σ) resp.
). However, there are some cases for which we can give formulae for T ε u on subsets of its domain.

(a) If the measure K ε (x, . ) is finite uniformly with respect to x ∈ R d , one has

T ε u(x) = R d \{0} (u(x) -u(x + εγ))K ε (x, dγ)
and

T ε is bounded on L 2 (R d ). (b) If K ε (x, dγ) = k ε (x, γ) dγ, where k ε ∈ C (R d × R d \ {0}) is Lipschitz in x ∈ R d , locally uniformly with respect to γ ∈ R d \ {0}, then C 2 0 (R d ) ⊂ D(H ε ) and, for u ∈ C 2 0 (R d ), T ε u(x) = R d \{0} 2u(x) -u(x + εγ) -u(x -εγ) k ε (x, γ) dγ + R d \{0} u(x) -u(x -εγ) k ε (x -εγ, γ) -k ε (x, γ) dγ . (1.14) (c) If K ε (x, dγ) = K ε (x, -dγ), then C 2 0 (R d ) ⊂ D(H ε ) and for u ∈ C 2 0 (R d
) one even has the simpler form

T ε u(x) = R d \{0} u(x) -u(x + εγ) -εγ∇u(x) K ε (x, dγ) .
(1.15) (d) In the case of a Levy-process, i.e. if K ε (x, dγ) = K ε (dγ) (which by reversibility, see (1.3), implies K ε (dγ) = K ε (-dγ)) one has both the representation (1.15) and (since the second term on the rhs of (1.14) formally vanishes)

T ε u(x) = R d \{0} 2u(x) -u(x + εγ) -u(x -εγ) K ε (dγ) .
Similar formulae hold for the operators with Dirichlet (and Neumann) boundary conditions. In this paper, we shall need none of them, since we shall directly work with the Dirichlet form (1.1).

We define t 0 : R 2d → R as

t 0 (x, ξ) := R d \{0} 1 -cos η • ξ K (0) (x, dγ) , (1.16) 
which in view of Hypothesis 1.2(a),(ii) extends to an entire function in ξ ∈ C d , and we set t0 (x, ξ) := -t 0 (x, iξ) =

R d \{0} cosh η • ξ -1 K (0) (x, dγ) , (x, ξ ∈ R d ) .
(1.17)

We remark that t 0 formally is the principal symbol σ p (T ε ) -the leading order term in ε of the symbol -associated to the operator T ε under semiclassical quantization (with ε as small parameter). Recall that for a symbol b ∈ C ∞ (R 2d × (0, ε 0 )), the corresponding operator is (formally) given by

Op ε (b) v(x) := (ε2π) -d R 2d e i ε (y-x)ξ b(x, ξ; ε)v(y) dy dξ , v ∈ S (R d ) ,
(for details on pseudo-differential operators see e.g. Dimassi-Sjöstrand [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF]).

In particular, the translation operator τ ±εγ acting as τ ±εγ u(x) = u(x ± εγ), has the ε-symbol e ∓iγξ . Thus, writing T ε formally as

1 2 R d \{0} 1 -τ -εγ K ε (x, dγ) 1 -τ εγ
and using σ p (A • B) = σ p (A)σ p (B) for the principal symbols of operators A, B, immediately gives t 0 = σ p (T ε ) given in (1.16). We emphasize, however, that under the weak regularity assumptions given in Hypotheses 1.1 and 1.2, T ε is not an honest pseudo-differential operator (i.e. one with a C ∞ -symbol, for which the symbolic calculus holds), but only a quantization of a singular symbol, giving a map S (R d ) → S ′ (R d ) (see [START_REF] Dimassi | Spectral Asymptotics in the Semi-Classical Limit[END_REF]).

We shall now assume 

(x) = 0 for x = x j . (b) d ∈ C 2 (Ω). (c) the (generalized) eikonal equation holds in some neighborhood U ⊂ Ω of x j , i.e. t0 (x, ∇d(x)) = V 0 (x) for all x ∈ U . (1.18) (d) the (generalized) eikonal inequality holds in Σ, i.e. t0 (x, ∇d(x)) -V 0 (x) ≤ 0 for all x ∈ Σ . (1.19)
We remark that in a more regular setting, i.e. if h0

:= t0 -V 0 ∈ C ∞ (R 2d
), such a function d may be constructed as a distance in a certain Finsler metric associated with h0 (see [START_REF] Klein | Agmon-Type Estimates for a class of Difference Operators[END_REF]), if Σ avoids the cut locus. We shall discuss the Finsler distance d in the case of low regularity and its relation to large deviation results for jump processes (see e.g. [START_REF] Léonard | Large deviations for Poisson random measures and processes with independent increments[END_REF]) in a future publication.

Our central results are the following theorems on the decay of eigenfunctions of H Σ ε and H Σ ε . Theorem 1.5 Assume Hypotheses 1.1, 1. Fix R 0 > 0 and let E ∈ [0, εR 0 ]. Then there exist constants ε 0 , B, C > 0 such that for all ε ∈ (0, ε 0 ] and real u ∈ D(

H Σ ε ) 1 + d ε -B e d ε u L 2 (Σ) ≤ C ε -1 1 + d ε -B e d ε H Σ ε -E u L 2 (Σ) + u L 2 (Σ) . (1.20) In particular, let u ∈ D(H Σ ε ) be a normalized eigenfunction of H Σ ε with respect to the eigenvalue E ∈ [0, εR 0 ]. Then there exist constants B, C > 0 such that for all ε ∈ (0, ε 0 ] 1 + d ε -B e d ε u L 2 (Σ) ≤ C .
(1.21)

The constants ε 0 , B, C are uniform with respect to E ∈ [0, εR 0 ] and u with u L 2 (Σ) ≤ 1.

Analog results hold for u ∈ D( H Σ ε ) and u a normalized eigenfunction of H Σ ε respectively.

The following theorem gives a weaker result in the case that d is only Lipschitz outside some small ball around x j . Then we have to assume more regularity of K (0) with respect to x. Theorem 1.6 Assume Hypotheses 1.1, 1.2 and 1.4 and let H Σ ε and H Σ ε be the operators with Dirichlet and Neumann boundary conditions from Definition 1.3. Moreover assume that K (0) ( . , dγ) is continuous in the sense that for all c > 0

γ∈R d \{0} |γ| 2 e c|γ| K (0) (x + h, dγ) -K (0) (x, dγ) = o(1) (|h| → 0) (1.22) locally uniformly in x ∈ R d . Fix R 0 > 0 and a constant D > 0 such that the ball K := {x ∈ R d | d(x) ≤ D} is contained in Ω, and let E ∈ [0, εR 0 ].
Then there exist constants C, B > 0 such that (a) for any fixed α ∈ (0, 1] there exists ε α such that for all ε ∈ (0,

ε α ] and real u ∈ D(H Σ ε ) e (1-α)d ε u L 2 (Σ) ≤ C ε -1 e d ε H Σ ε -E u L 2 (Σ) + u L 2 (Σ) .
(1.23) (b) there exists a constant α 0 > 0 such that for any fixed α ∈ (0, α 0 ] there exists

Φ α ∈ C 2 (Σ) and ε α > 0 such that for all ε ∈ (0, ε α ] and real u ∈ D(H Σ ε ) e Φα ε u L 2 (Σ) ≤ C ε -1 e Φα ε H Σ ε -E u L 2 (Σ) + u L 2 (Σ) , (1.24) 
where for some C ′ > 0 and for any fixed α ∈ (0, 1]

e d(x) ε 1 C ′ 1 + d(x) ε -B 2 ≤ e Φα(x) ε ≤ e d(x) ε C ′ 1 + d(x) ε -B 2 for x ∈ K and (1.25) e (1-α)d(x) ε ≤ e Φα(x) ε ≤ e d(x) ε for x ∈ Σ \ K . (1.26) (c) for any fixed α ∈ (0, 1] there exists ε α > 0 such that for any ε ∈ (0, ε α ] and real u ∈ D(H Σ ε ) 1 C ′ 1 + d ε -B 2 e d ε u 2 L 2 (K) + e (1-α)d(x) ε u 2 L 2 (Σ\K) ≤ e Φα ε u 2 L 2 (Σ)
(1.27)

and if u is a normalized eigenfunction of H Σ ε with respect to the eigenvalue E ∈ [0, εR 0 ], then e Φα ε u L 2 (Σ) ≤ C .
(1.28)

The constants α 0 , ε α , B, C are uniform with respect to E ∈ [0, εR 0 ] and u with u L 2 (Σ) ≤ 1.

Analog results hold for H Σ ε and for real u ∈ D( H Σ ε ) respectively.

Remark 1.7 All assertions of Theorem 1.5 and 1.6 remain true if E ε is not necessarily positive, but only satisfies

E ε (x) ≥ -Cε or, more special, E ε ≥ 0 but V ε ≥ -Cε.
In a stochastic context, such a situation could arise if e.g. one starts with a Dirichlet form Ẽε on L 2 (m ε ) associated with a pure jump process (with V ε = 0), given by a kernel Kε (x, dγ), which is integrable with respect to γ ∈ R d \ {0}, i.e. satisfies Kε (x, dγ) < ∞, and reversible with respect to m ε (dx

) = e -F (x) ε dx. If K ε (x, dγ) := e F (x+εγ)-F (x) 2ε Kε (x, dγ) is integrable with respect to γ ∈ R d \ {0}, then E ε (u, v) := Ẽε e F 2ε u, e F 2ε v = R d R d \{0} (u(x + εγ) -u(x))(v(x + εγ) -v(x)) K ε (x, dγ) dx + u , V ε v L 2 ,
is a Dirichlet form on L 2 (dx), where

V ε (x) = R d \{0} e -F (x+εγ)-F (x) 2ε -1 K ε (x, dγ) = R d \{0} ( Kε -K ε )(x, dγ) .
If F is smooth and K ε and Kε have an expansion as in Hypothesis 1.2(a), then one verifies that K (0) (x, dγ) = K (0) (x, -dγ) and V ε ≥ -Cε for some constant C > 0. If the integrability conditions for K ε and Kε are not satisfied, the above transformation is more delicate and requires regularity of

K ε (x, dγ) in x.
We emphasize that the eigenvalue E in Theorem 1.5 and 1.6 need not be discrete (a priori, it could be of infinite multiplicity or be imbedded into the continuous (or essential) spectrum of H ε ). In this paper, H ε need not have a spectral gap. However, to develop tunneling theory in analogy to [START_REF] Klein | Agmon-Type Estimates for a class of Difference Operators[END_REF][START_REF] Klein | Harmonic Approximation of Difference Operators[END_REF][START_REF] Klein | Asymptotic eigenfunctions for a class of difference operators[END_REF][START_REF] Klein | Tunneling for a class of difference operators[END_REF], one needs to impose further conditions on the jump kernel K ε .

Preliminary Results

This section contains preparations for the proof of Theorem 1.5 and 1.6. Lemmata 2.1 -2.3 contain our abstract approach to Agmon type estimates, while Lemmata 2.4 -2.7 contain more specific estimates on t0 (x, ξ), d(x) and the phasefunctions used in the proof of Theorem 1.5 and 1.6. 

± ϕ ε v ∈ D(E Σ ε ) (or D( E Σ ε ) resp.) E Σ ε e -ϕ ε v, e ϕ ε v = V ε + V ϕ ε,Σ v , v L 2 (Σ) + 1 2 Σ dx Σ ′ (x) K ε (x, dγ) cosh 1 ε ϕ(x) -ϕ(x + εγ) v(x) -v(x + εγ) 2 , (2.1)
where Σ ′ (x) is defined in (1.13) and

V ϕ ε,Σ (x) := Σ ′ (x) 1 -cosh 1 ε ϕ(x) -ϕ(x + εγ) K ε (x, dγ) , (2.2) 
which ist bounded uniformly in ε. An analog result holds for E Σ ε . Proof. We have by (1.10)

E Σ ε e -ϕ ε v, e ϕ ε v -V ε v , v L 2 (Σ) = 1 2 Σ dx Σ ′ (x) v(x) 2 -2 cosh 1 ε (ϕ(x + εγ) -ϕ(x)) v(x)v(x + εγ) + v(x + εγ) 2 K ε (x, dγ) = 1 2 Σ dx Σ ′ (x) v(x) 2 + v(x + εγ) 2 1 -cosh 1 ε (ϕ(x + εγ) -ϕ(x)) K ε (x, dγ) + 1 2 Σ dx Σ ′ (x) cosh 1 ε (ϕ(x + εγ) -ϕ(x)) v(x) -v(x + εγ) 2 K ε (x, dγ) . (2.3)
Since cosh ξ is even with respect to ξ and by the reversibility (1.2) of K ε (x, dγ)

1 2 Σ dx Σ ′ (x) v(x) 2 + v(x + εγ) 2 1 -cosh 1 ε (ϕ(x + εγ) -ϕ(x)) K ε (x, dγ) = Σ dx Σ ′ (x) v(x) 2 1 -cosh 1 ε (ϕ(x + εγ) -ϕ(x)) K ε (x, dγ) . (2.4)
Thus inserting (2.4) into (2.3) and using the definition of V ϕ ε,Σ gives (2.1). To show boundedness of the integral on the right hand side of (2.2), one observes that cosh t -1 ≤ |t| sinh |t| for all t ∈ R. Choosing t = 1 ε (ϕ(x)ϕ(x + εγ)) and using that ϕ is Lipschitz with Lipschitz constant L > 0 gives

cosh 1 ε ϕ(x) -ϕ(x + εγ) -1 ≤ L 2 |γ| 2 sinh(L|γ|) L|γ| . (2.5) 
Inserting (2.5) into (2.2) proves the assertion, according to Hypothesis 1.2,(a),(i).

Since the formula (1.10) also holds for E Σ ε , the same arguments give the analog result. 2

Lemma 2.2 Assume Hypotheses 1.1 and 1.2 and for

Σ ⊂ R d open, let E Σ ε , E Σ ε and ϕ be as in Lemma 2.1. Then v ∈ D(E Σ ε ) or D( E Σ ε ) resp. ⇒ e ϕ ε v ∈ D(E Σ ε ) or D( E Σ ε ) resp. . Proof.
We will use the notation (see (1.10))

t Σ ε [u] := E Σ ε [u] + u 2 L 2 (Σ) = T Σ ε [u] + V Σ ε [u] + u 2 L 2 (Σ) . (2.6) 
We recall that a function

f ∈ D( E Σ ε ) is in D(E Σ ε ), if and only if there is a sequence (f n ) n∈N in D( ẼΣ ε ) such that t Σ ε [f n -f ] → 0 as n → ∞. We notice that for some C, L > 0 ϕ ∞ ≤ C and |ϕ(x) -ϕ(y)| ≤ L|x -y| , x, y ∈ R d .
(2.7)

Step 1:

Let v ∈ D( E Σ ε )
, then we shall show that for some C > 0 uniformly with respect to ε ∈ (0, ε 0 ]

t Σ ε [e ϕ ε v] ≤ e C ε t Σ ε [v] . (2.8) 
By (1.9), this implies e

ϕ ε v ∈ D( E Σ ε ). From (2.7) it follows at once that e ϕ ε v 2 L 2 (Σ) ≤ e 2C ε v 2 L 2 (Σ) .
(2.9)

Using the definition (1.12) of V Σ ε , we have by (2.7)

V Σ ε [e ϕ ε v] ≤ e 2C ε V Σ ε [v] .
(2.10)

It remains to analyze

T Σ ε [e ϕ ε v] = 1 2 Σ dx Σ ′ (x) e ϕ(x+εγ) ε v(x + εγ) -e ϕ(x) ε v(x) 2 K ε (x, dγ) . (2.11) Adding f -f for f = e ϕ(x+εγ) ε v(x)
inside the brackets on rhs(2.11) and then using (a + b) 2 ≤ 2(a 2 + b 2 ), we get

rhs(2.11) ≤ A[v] + B[v]
where (2.12)

A[v] := Σ dx Σ ′ (x) e 2 ϕ(x+εγ) ε v(x + εγ) -v(x) 2 K ε (x, dγ) B[v] := Σ dx Σ ′ (x) v(x) 2 e ϕ(x+εγ) ε -e ϕ(x) ε 2 K ε (x, dγ) .
(2.13) By (2.7) we have 

A[v] ≤ e 2C ε T Σ ε [v] . ( 2 
B[v] ≤ e 2C ε L 2 Σ dx|v(x)| 2 Σ ′ (x) |γ| 2 e 2L|γ| K ε (x, dγ) ≤ e C ε v 2 L 2 (Σ) , (2.17) 
where C is uniform with respect to ε ∈ (0, ε 0 ]. Inserting (2.17) and (2.14) into (2.12) and the result in (2.11), and combining (2.11), (2.10) and (2.9) proves (2.8).

Step 2:

We prove e

ϕ ε v ∈ D(E Σ ε ) for v ∈ C ∞ 0 (Σ) ⊂ D(E Σ ε ) . (2.18) Let j ∈ C ∞ 0 (R d ) be non-negative with R d j(x) dx = 1.
For δ > 0 we set j δ (x) := δ -d j( x δ ) and

ϕ δ := ϕ * j δ , then ϕ δ ∈ C ∞ (R d ) and e ϕ δ ε v ∈ C ∞ 0 (Σ) ⊂ D(E Σ ε ). Moreover ϕ δ ∞ ≤ ϕ ∞ ≤ C , ϕ δ -ϕ -→ 0 as δ → 0 (2.19)
and ϕ δ has the same Lipschitz constant L as ϕ (see (2.7)), since

|ϕ δ (x) -ϕ δ (y)| = R d ϕ(x -z) -ϕ(y -z) j δ (z) dz ≤ L|x -y| . (2.20) Assume v ∈ C ∞ 0 (Σ), then by Step 1, e ϕ ε v ∈ D( E Σ ε ). Thus it suffices to show that t Σ ε e ϕ δ ε -e ϕ ε v -→ 0 as δ → 0 . (2.21)
By dominated convergence, using (2.19),

e ϕ δ ε -e ϕ ε v L 2 (Σ) -→ 0 and V Σ ε e ϕ δ ε -e ϕ ε v -→ 0 , (δ → 0) . ( 2 

.22)

To analyze T Σ ε , we set Φ δ := e ϕ δ

εe ϕ ε , then

T Σ ε e ϕ δ ε -e ϕ ε v = A ′ [v] + B ′ [v]
, where (2.23)

A ′ [v] := Σ dx Σ ′ (x) Φ 2 δ (x + εγ) v(x + εγ) -v(x) 2 K ε (x, dγ) B ′ [v] := Σ dx Σ ′ (x) v(x) 2 Φ δ (x + εγ) -Φ δ (x) 2 K ε (x, dγ) . Since Φ δ ∞ ≤ e C ′ ε by (2.19) uniformly with respect to δ > 0, e 2C ′ ε (v(x + εγ) -v(x)) 2 is a dominating function for the integrand of A ′ [v], which is in L 1 (dµ) for the measure dµ = K ε (x, dγ)dx in Σ × R d \ {0}.
Thus by the dominated convergence theorem

A ′ [v] → 0 , (δ → 0) (2.24)
because Φ δ ∞ → 0 as δ → 0, by (2.19). Similarly,

B ′ [v] → 0 , (δ → 0) (2.25)
by the dominated convergence theorem (observe that using (2.16) for ϕ and ϕ δ , uniformly with respect to δ in view of (2.19) and (2.20) one finds Step 3:

|Φ δ (x + εγ) -Φ δ (x)| ≤ e ϕ δ (x+εγ) ε -e ϕ δ (x) ε + e ϕ(x+εγ) ε -e ϕ(x) ε ≤ 2e C ε +L|γ| L|γ|
Assume v ∈ D(E Σ ε ), then by Definition 1.3, there are v n ∈ C ∞ 0 (Σ) with t Σ ε [v n -v] → 0 as n → ∞. By Step 2, for all n ∈ N, e ϕ ε v n ∈ D(E Σ ε ), and 
t Σ ε e ϕ ε (v n -v) → 0 , (n → ∞) by (2.8), proving e ϕ ε v ∈ D(E Σ ε ). 2 
We will use Lemma 2.1 and Lemma 2.2 to prove the following norm estimate, which is a main ingredient in the proof of Theorem 1.5. 

F 2 + (x) -F 2 -(x) = V ε (x) + V ϕ ε,Σ (x) -E , x ∈ Σ , (2.26 
)

where V ϕ ε,Σ (x) is given in (2.2). Then for u ∈ D(H Σ ε ) (or D( H Σ ε )) real-valued with F e ϕ ε u ∈ L 2 (Σ), we have for some C > 0 F e ϕ ε u 2 L 2 (Σ) ≤ 4 1 F e ϕ ε (H Σ ε -E)u 2 L 2 (Σ) + 8 F -e ϕ ε u 2 L 2 (Σ) . (2.27) Proof. First observe that for v := e ϕ ε u F v 2 L 2 (Σ) ≤ 2 F + v 2 L 2 (Σ) + F -v 2 L 2 (Σ) = 2 F + v 2 L 2 (Σ) -F -v 2 L 2 (Σ) + 4 F -v 2 L 2 (Σ) . (2.28)
By (2.26) one has

F + v 2 L 2 (Σ) -F -v 2 L 2 (Σ) = (V ε + V ϕ ε,Σ -E)v , v L 2 (Σ) . (2.29) Since v ∈ D(E Σ ε ) (or D( E Σ ε )
) by Lemma 2.2, it follows at once from Lemma 2.1 that

(V ε + V ϕ ε,Σ -E)v , v L 2 (Σ) ≤ E Σ ε e -ϕ ε v, e ϕ ε v -E v 2 L 2 (Σ) .
(2.30)

(2.29) and (2.30) yield by use of the Cauchy-Schwarz inequality, since u ∈ D(H Σ ε ),

2 F + v 2 L 2 (Σ) -F -v 2 L 2 (Σ) ≤ 2 e ϕ ε (H Σ ε -E) u , v L 2 (Σ) (2.31) ≤ 2 √ 2 1 F e ϕ ε (H Σ ε -E) u L 2 (Σ) 1 √ 2 F v L 2 (Σ) ≤ 2 1 F e ϕ ε (H Σ ε -E) u 2 L 2 (Σ) + 1 2 F v 2 L 2 (Σ) .
Inserting (2.31) into (2.28) we get

F v 2 L 2 (Σ) ≤ 2 1 F e ϕ ε (H Σ ε -E) u 2 L 2 (Σ) + 1 2 F v 2 L 2 (Σ) + 4 F -v 2 L 2 (Σ) ,
which by definition of v gives (2.27). 2 

, v ∈ R d v , D 2 L x | ξ0 v = R d \{0} (γ • v) 2 cosh(γ • ξ 0 )K (0) (x, dγ) ≥ R d \{0} (γ • v) 2 K (0) (x, dγ) ≥ c x v 2 .
(b): Since by Taylor expansion at ξ = 0 cosh(γ

• ξ) -1 + 1 2 (γ • ξ) 2 ≤ (γ • ξ) 4 sinh(γ • ξ) (γ • ξ) ,
one gets from (1.17) and Hypotheses 1.1 and 1.2

0 ≤ t0 (x, ξ) -ξ , B(x)ξ ≤ R d \{0} (γ • ξ) 4 sinh(γ • ξ) (γ • ξ) K (0) (x, dγ) = O |ξ| 4 ,
as |ξ| → 0, where the symmetric d × d-matrix B = (B µν ) is given by 

B νµ (x) = 1 2 R d γ ν γ µ K (0) (x,
V 0 (x) = t(x, ∇d(x)) = ∇d(x) , B(x)∇d(x) + O(|∇d(x)| 4 ) (2.33) ≥ C|∇d(x)| 2 . (2.34) (2.34) proves (b), since V 0 (x) = O(|x -x j | 2 ) (Hypothesis 1.2(b)). (a): Since d ∈ C 2 (Ω), d(x j ) = 0 and ∇d(x j ) = 0 (use (b)), Taylor expansion gives d(x) = 1 2 x -x j , D 2 d| xj (x -x j ) + o(|x -x j | 2 ) as |x -x j | → 0 .
Since d(x) ≥ 0, the matrix D 2 d| xj is non-negative. We shall now assume that 0 is an eigenvalue of D 2 d| xj with eigenspace N ⊂ R d and derive a contradiction. By the mean value theorem and the continuity of

D 2 d| x ∇d(x) = 1 0 D 2 d| xj +t(x-xj ) (x -x j ) dt = D 2 d| xj (x -x j ) + o(|x -x j |) (|x -x j | → 0). Thus ∇d(x) = o(|x -x j |) (|x -x j | → 0, (x -x j ) ∈ N ) . By (2.33) this gives V 0 (x) = o(|x -x j | 2 ) as x -x j → 0 in N , which contradicts D 2 V (x j ) > 0 (Hypothesis 1.2(b)). Thus D 2 d| xj is positive definite. 2 
Lemma 2.6 Assume Hypotheses 1.1, 1.2 and 1.4 and let χ ∈ C ∞ (R + , [0, 1]) such that χ(r) = 0 for r ≤ 1 2 and χ(r) = 1 for r ≥ 1. In addition we assume that 0 ≤ χ ′ (r) ≤ 2 log 2 . For B > 0 we define g : Σ → [0, 1] by

g(x) := χ d(x) Bε , x ∈ Σ (2.35)
and set

Φ(x) := d(x) - Bε 2 ln B 2 -g(x) Bε 2 ln 2d(x) Bε , x ∈ Σ . (2.36)
Then Φ ∈ C 2 (Ω) and there exists a constant C > 0 such that for all ε ∈ (0, ε 0 ]

|∂ ν ∂ µ Φ(x)| ≤ C , x ∈ Σ , µ, ν ∈ {1, . . . d} .
(2.37)

Furthermore, for any B > 0 there is

C ′ > 0 such that e d(x) ε 1 C ′ 1 + d(x) ε -B 2 ≤ e Φ(x) ε ≤ e d(x) ε C ′ 1 + d(x) ε -B 2 .
(2.38)

Proof. Using the estimates of Lemma 2.5, the proof follows word by word the proof of Lemma 3.3 in [START_REF] Klein | Agmon-Type Estimates for a class of Difference Operators[END_REF].

2 Lemma 2.7 Let j ∈ C ∞ 0 (R d ) be non-negative with R d j(x) dx = 1 and supp j ⊂ B 1 (0) := {x ∈ R d | |x| < 1}.
For δ > 0 we introduce the Friedrichs mollifier j δ (x) := δ -d j( x δ ). Under the assumptions of Theorem 1.6, setting d δ := d * j δ , we have, locally uniformly in

x ∈ R d , V 0 (x) ≥ t0 (x, ∇d δ (x)) + o(1) (δ → 0) . (2.39) 
We emphasize that ∇d δ does not converge to ∇d in ||.|| ∞ . The estimate (2.39) compensates. This is crucial to obtain the positivity needed in our Agmon estimate.

Proof. First observe that by (1.22), (1.5) and (1.6)

t0 (x -y, ξ) -t0 (x, ξ) = R d \{0} cosh γ • ξ -1 K (0) (x -y, dγ) -K (0) (x, dγ) = o(1)
(2.40)

as |y| → 0 locally uniformly in (x, ξ) ∈ R 2d (since | cosh γ • ξ -1| ≤ C|γ| 2 e C|γ| ).
We remark that

∇d δ (x) = R d ∇d(x -y)j δ (y) dy = E δ ∇d(x -. ) , (2.41) 
where E δ denotes expectation with respect to the probability measure dµ δ (y) = j δ (y) dy (supported in the ball B δ (0)). Recall the multidimensional Jensen inequality (see e.g. [START_REF] Dudley | Real Analysis and Probability[END_REF])

E f (X) ≥ f E[X] (2.42) 
for any convex function f : R d → R and random variable X with values in R d . Choosing X( . ) = ∇d(x-. ) and using the convexity of t0 (x, . ) (see Lemma 2.4), we get by (2.41) and (2.42)

t0 (x, ∇d δ (x)) ≤ R d t0 (x, ∇d(x -y))dµ δ (y) = R d t0 (x -y, ∇d(x -y))dµ δ (y) + o(1) (δ → 0) , (2.43) 
where the last equality follows from (2.40) and supp j δ ⊂ B δ (0). Thus, by (2.43) and the eikonal inequality

(1.19) t0 (x, ∇d δ (x)) ≤ R d V 0 (x -y)dµ δ (y) + o(1) ≤ V 0 (x) + o(1) (δ → 0)
3. Proof of Theorem 1.5 and 1.6

Proof of Theorem 1.6. We partly follow the ideas in the proof of Theorem 1.7 in [START_REF] Klein | Agmon-Type Estimates for a class of Difference Operators[END_REF].

Proof of (b):

For Σ ′ (x) given in (1.13), let tΣ 0 (x, ξ) := Σ ′ (x) (cosh (γ • ξ) -1) K (0) (x, dγ), (x, ξ) ∈ Σ × R d ,
then by the positivity of the integrand

tΣ 0 (x, ξ) ≤ t0 (x, ξ) . (3.1) 
For any B > 0 we choose

ε B > 0 such that d -1 ([0, ε B B)) ⊂ U , then by Hypothesis 1.4 for all ε < ε B V 0 (x) -t0 (x, ∇d(x)) = 0 , x ∈ Σ ∩ d -1 ([0, Bε)) . (3.2) 
Let Φ be given in (2.36), then by (2.35)

∇Φ(x) = ∇d(x)(1 -f 1 (x) -f 2 (x)) , (3.3) 
where

f 1 (x) := Bε 2d(x) χ d(x) Bε and f 2 (x) := 1 2 χ ′ d(x) Bε log 2d(x) Bε . Choose η > 0 such that K := d -1 ([0, D + 2η]) ⊂ Ω and let χ, χ ∈ C ∞ (R + , [0, 1]) be monotone with χ(x) = 0 , x ≤ D + η 1 , x ≥ D + 2η χ(x) = 0 , x ≤ D 1 , x ≥ D + η .
Then we define g(x) := χ(d(x)) and g(x) := χ(d(x))

and we set for δ > 0

Φ α,δ (x) = (1 -g(x))Φ(x) + g(x) 1 -α 2 (1 -g(x))d(x) + g(x)d δ (x) ,
where d δ = d * j δ is defined in Lemma 2.7. Then Φ α,δ ∈ C 2 (Σ) for any δ > 0.

Step 1: We show that there is δ(α) such that for any δ < δ(α) the function Φ α := Φ α,δ satisfies (1.25) and (1.26).

Clearly, Φ α,δ satisfies (1.25) for all δ > 0 in view of (2.38), since Φ α,δ (x) = Φ(x) for x ∈ K. Now, by (1.18)

, for x ∈ Σ \ K Φ α,δ (x) = d(x) -g(x) α 2 d(x) -(1 -g)(x) Bε 2 ln d(x) ε + g(x) 1 -α 2 d δ -d (x) (3.5) 
Choosing B ≥ 2, all logarithms in (3.5) are positive (using 2d(x) Bε ≥ 1 on the support of g). Since d δd ∞ → 0 as δ → 0 and using that for some C, by Hypothesis 1.4,

inf{d(x) | x ∈ Σ \ K} ≥ C > 0 , (3.6) 
it follows that there is a δ(α) such that for all δ < δ(α)

1 -α 2 d δ (x) -d(x) ≤ α 2 d(x) , x ∈ Σ \ K , (3.7) 
proving the upper bound in (1.26) for Φ α . Now observe that there is an ε α > 0 such that for all ε ∈ (0, ε α )

Bε 2 ln d(x) ε ≤ α 4 d(x) , x ∈ Σ \ K . (3.8)
This follows from the fact that lhs(3.8)= o(1) as ε → 0 uniformly in x together with (3.6). Inserting (3.8) and (3.7) into (3.5) proves the lower bound of (1.26).

Step 2: We shall show that there are constants α 0 , C 0 , C 1 > 0 independent of B and E and ε α , δ(α) > 0 such that for all δ < δ(α), ε < ε α and for any fixed α ∈ (0, α 0 ]

V 0 (x) -tΣ 0 (x, ∇Φ α,δ (x)) ≥      0 , x ∈ Σ ∩ d -1 ([0, Bε)) B C0 ε , x ∈ Σ ∩ d -1 ([Bε, D + η)) C 1 , x ∈ Σ ∩ d -1 ([D + η, ∞)) (3.9) Case 1: d(x) ≤ Bε 2 Since Φ α,δ (x) = d(x) -Bε 2 ln B
2 and the eikonal equation (1.18) holds, we get

V 0 (x) -t0 (x, ∇Φ α,δ (x)) = V 0 (x) -t0 (x, ∇d(x)) = 0 , x ∈ Σ ∩ d -1 ([0, Bε 2 ]
) . which by (3.1) leads to (3.9).

Case 2: Bε 2 < d(x) < Bε Here Φ α,δ (x) = Φ(x). Since 1 < 2d(x)
Bε < 2, f 1 and f 2 in (3.3) are non-negative. In addition 0

≤ f j (x) ≤ 1, j = 1, 2 (use assumption χ ′ (r) ≤ 2 log 2 ). Therefore |1 -f 1 (x) -f 2 (x)| =: |λ(x)| ≤ 1. (3.10)
By Lemma 2.4, t0 (x, ξ) is convex with respect to ξ, therefore t0 (x, λξ .11) and, since t0 (x, 0) = 0 and t0 (x, ξ) = t0 (x, -ξ), it follows by choosing η = 0 that t0 (x, λξ) ≤ |λ| t0 (x, ξ) ,

+ (1 -λ)η) ≤ λ t0 (x, ξ) + (1 -λ) t0 (x, η) for 0 ≤ λ ≤ 1, ξ, η ∈ R d . ( 3 
for λ ∈ R, |λ| ≤ 1, ξ ∈ R d , x ∈ Σ . (3.12) 
Combining (3.10), (3.12) and (3.1) it follows that

V 0 (x) -tΣ 0 (x, ∇Φ α,δ (x)) ≥ V 0 (x) -|λ(x)| t0 (x, ∇d(x)) ≥ V 0 (1 -|λ(x)|) , (3.13) 
where for the second step we used (3.2). Since |λ(x)| ≤ 1 and V 0 ≥ 0, (3.13) gives (3.9). 

V 0 (x) -t0 (x, ∇Φ α,δ (x)) ≥ V 0 (x) -1 - Bε 2d(x) t0 (x, ∇d(x)) ≥ V 0 (x) Bε 2d(x) , (3.15) 
where for the second estimate we used that by Hypothesis 1.4 the eikonal inequality t0 (x, ∇d(x)) ≤ V 0 (x) holds. We now claim that there exists a constant C 0 > 0 such that To discuss the region W ∩ {|xx j | ≤ δ}, we remark that for some C > 0 by Hypothesis 1.2,(b)

V 0 (x) 2d(x) ≥ C -1 0 , x ∈ Σ ∩ d -1 ([Bε, ∞)) . ( 3 
V 0 (x) ≥ C|x -x j | 2 if |x -x j | ≤ δ.
Thus it suffices to show that for some C > 0

d(x) ≤ C|x -x j | 2 , |x -x j | ≤ δ .
This follows from Lemma 2.5(a).

Case 4: D ≤ d(x) < D + η Since Φ α,δ (x) = (1g(x))Φ(x) + g(x) 1 -α 2 d(x) and ∇Φ(x) is given by (3.14) in this region, we have

∇Φ α,δ (x) = ∇d(x) 1 - Bε 2d(x) (1 -g(x)) -χ ′ (d(x)) d(x) - Bε 2 ln d(x) ε + + χ ′ (d(x)) 1 -α 2 d(x) + g(x) 1 -α 2 = λ∇d(x) , (3.17) 
where

λ = 1 + h α (x) -(1 -g(x)) Bε 2d(x) -g(x) α 2 , h α (x) := χ ′ (d(x)) - α 2 d(x) + Bε 2 ln d(x) ε .
Since χ ′ (y) ≥ 0 it follows from the upper bound in (3.8) that h α ≤ 0, proving for α sufficiently small

0 ≤ λ ≤ 1 -t, t = t(x, α, ε) = (1 -g(x)) Bε 2d(x) + g(x) α 2 . ( 3 

.18)

Combining (3.1), (3.12), (3.17) and(3.18) gives, for all ε ≤ ε α sufficiently small

V 0 (x) -tΣ 0 (x, ∇Φ α,δ ) ≥ V 0 (x)t(x, α, ε) ≥ B C 0 ε ,
where we used (1.19) and, for the last estimate, (3.16).

Case 5: (1g(x)) t0 (x, ∇d(x)) + g(x) t0 (x, ∇d δ (x)) + α 2 t0 x, 2 α f δ (x)∇d(x) . Combining Lemma 2.7 with (1.19) yields, as δ → 0, Step 3: We shall show

D + η ≤ d(x) < D + 2η We have Φ α,δ (x) = 1 -α 2 ((1 -g(x))d(x) + g(x)d δ (x) and thus ∇Φ α,δ (x) = 1 -α 2 (1 -g(x))∇d(x) + χ′ (d(x))(d δ (x) -d(x))∇d(x) + g(x)∇d δ (x) = 1 -α 2 (1 -g(x))∇d(x) + g(x)∇d δ (x) + α 2 2 α f δ (x)∇d(x) , (3.19) 
V 0 (x) -t0 x, ∇Φ α,δ (x) ≥ V 0 (x) α 2 + o(1) ≥ C 1 , (3.20 
V ε (x) + V Φα (x) ≥        -C 2 ε for x ∈ Σ ∩ d -1 ([0, Bε]) B C0 -C 3 ε for x ∈ Σ ∩ d -1 ([Bε, D + η)) C 4 for x ∈ Σ ∩ d -1 ([D + η, ∞)) (3.22)
for some C 2 , C 3 , C 4 > 0 independent of B and E, where V Φα := V Φα ε,Σ is defined in (2.2) and Φ α = Φ α,δ for any δ < δ(α).

We write

V ε (x) + V Φα (x) = (V ε (x) -V 0 (x)) + V Φα (x) + tΣ 0 (x, ∇Φ α (x)) + V 0 (x) -tΣ 0 (x, ∇Φ α (x)) (3.23)
By Hypothesis 1.1 and since Σ is bounded, there exists a constant C 1 > 0 such that

V ε (x) -V 0 (x) ≥ -C 1 ε , x ∈ Σ . (3.24)
We shall show that V Φα (x) + tΣ 0 (x, ∇Φ α (x)) ≤ εC 2 .

(3.25) Then inserting (3.25), (3.24) and (3.9) into (3.23) proves (3.22). Setting (see (2.2))

V Φα 0 (x) := Σ ′ (x) [1 -cosh (F α (x))] K (0) (x, dγ), F α (x) = F α (x, γ, ε) = 1 ε (Φ α (x) -Φ α (x + εγ))
we write

V Φα (x) + tΣ 0 (x, ∇Φ α (x)) = V Φα (x) -V Φα 0 (x) + V Φα 0 (x) + tΣ 0 (x, ∇Φ α (x)) =: D 1 (x) + D 2 (x)
and analyze the two summands on the right hand side separately. Since Φ α ∈ C 2 (Σ), it follows from Hypotheses 1.1 and 1.2(a), using (2.5), that for some C > 0

|D 1 (x)| = Σ ′ (x) [1 -cosh (F α (x))] εK (1) + R (2) ε (x, dγ) ≤ Cε . (3.26)
uniformly with respect to x. We have for x ∈ Σ

|D 2 (x)| ≤ Σ ′ (x) cosh γ∇Φ α (x) -cosh F α (x) K (0) (x, dγ) . (3.27)
By the mean value theorem for cosh z and since

| sinh x| ≤ e |x| cosh F α (x) -cosh γ∇Φ α (x) ≤ sup t∈[0,1] exp F α (x)t + γ∇Φ α (x)(1 -t) F α (x) + γ∇Φ α (x) . (3.28) Since Φ α ∈ C 2 (Σ) there exist constants c 1 , c 2 > 0 such that |F α (x)| ≤ c 1 |γ| and |γ∇Φ α (x)| ≤ c 2 |γ| , x ∈ Σ, γ ∈ Σ ′ (x) . (3.29) (3.29) gives a constant D > 0 such that exp F α (x)t + γ∇Φ α (x)(1 -t) ≤ e D|γ| . (3.30) 
By second order Taylor-expansion, using (2.37) Then F ± are well defined and furthermore there exists a constant C, C > 0 depending only of R 0 and B such that Proof of (c):

(F α (x) + γ∇Φ α (x) ≤ C3 ε|γ| 2 . ( 3 
F := F + + F -≥ C √ ε > 0 , |F -| ≤ C√ ε and F 2 + -F 2 -= V ε + V Φα -E . ( 3 
(1.27) follows at once from (1.24) together with (1.25) and (1.26). If u is an eigenfunction of H Σ ε with eigenvalue E, then the first summand on rhs(1.24) vanishes. The normalization of u therefore leads to (1.28).

Proof of (a): For η as in the definition of g, we now claim that for any fixed α ∈ (0, 1] and for all δ < δ α and ε < ε 0 

Similar to

Step 3 in the proof of (b), it follows that for some C 1 , C 2 > 0 

V ε (x) + V Φα (x) ≥ -εC 1 , x ∈ Σ ∩ d -1 ([0, D + η) C 2 , x ∈ Σ ∩ d -1 ([D + η, ∞)) , ( 3 

Hypothesis 1 . 4

 14 Given Hypotheses 1.1 and 1.2, Σ ⊂ R d is an open bounded set with x j ∈ Σ for exactly one j ∈ C and x k / ∈ Σ for k ∈ C, k = j. Moreover there is an open set Ω ⊂ Σ containing x j and a Lipschitz-function d : Σ → [0, ∞)) satisfying, for t0 defined in (1.16), (a) d(x j ) = 0 and d

  2 and 1.4 with Σ = Ω. Let H Σ ε and H Σ ε be the operators with Dirichlet and Neumann boundary conditions from Definition 1.3.

Lemma 2 . 1

 21 Assume Hypotheses 1.1 and 1.2 and, for Σ ⊂ R d open, let E Σ ε and E Σ ε denote the associated Dirichlet forms given in Definition 1.3 and (1.9) respectively. Let ϕ : R d → R be Lipschitz and bounded. Then for any real valued v with e

Lemma 2 . 3

 23 Assume Hypotheses 1.1, 1.2 and, for Σ ⊂ R d open, let H Σ ε ( H Σ ε ) denote the operator with Dirichlet (Neumann) boundary conditions introduced in Definition 1.3. Let ϕ : Σ → R be Lipschitz and bounded. For E ≥ 0 fixed, let F ± : Σ → [0, ∞) be a pair of functions such that F (x) := F + (x)+F -(x) > 0 and

Lemma 2 . 4

 24 Assume Hypotheses 1.1 and 1.2. (a) For any x ∈ R d , the function L x : R d ∋ ξ → t0 (x, ξ) is even and hyperconvex, i.e. D 2 L x | ξ0 ≥ α > 0, uniformly in ξ 0 . (b) At ξ = 0, for fixed x ∈ R d , the function t0 has an expansion 0 ≤ t0 (x, ξ)ξ , B(x)ξ = O |ξ| 4 as |ξ| → 0 , (2.32) where B : R d → M(d × d, R) is positive definite, symmetric and bounded. Proof. (a): By Hypothesis 1.2(a)(ii) there exists c x > 0 such that for all ξ 0

2 Lemma 2 . 5

 225 dγ) for µ, ν ∈ {1, . . . , d} , x ∈ R d . By Hypothesis 1.2(a)(ii), B is strictly positive definite, by Hypothesis 1.2(a)(i), B is bounded. Assume Hypotheses 1.1, 1.2 and 1.4, then (a) d(x) = 1 2 xx j , D 2 d| xj (xx j ) + o(|xx j | 2 ) as |xx j | → 0, and D 2 d| xj is positive definite. (b) ∇d(x) = O(|xx j |) as |xx j | → 0. Proof. (b): For |xx j | sufficiently small, the eikonal equation (1.18) holds. Thus by Lemma 2.4 (b), we have, with B(x) positive definite and bounded,

Case 3 : 2 ≤

 32 Bε ≤ d(x) < D In this region, we have Φ α,δ (x) = Φ(x) = d(x) -Bε 2 ln d(x) ε , thus ∇Φ α,δ (x) = ∇d(x) 1 -Bε 2d(1 -Bε 2d(x) ) < 1, by(3.14) and (3.12) we get the estimate

  .16) Then, combining (3.1), (3.15) and (3.16), we finally get (3.9). To see (3.16), we split the region W = Σ ∩ d -1 ([Bε, ∞)) into two parts. Clearly, for any δ > 0, (3.16) holds for x ∈ W ∩ {|xx j | > δ} (since Σ is bounded, d ∈ C 2 (Σ) and V 0 (x) ≥ C > 0 for |xx j | > δ by Hypothesis 1.2,(b)).

  where we setf δ (x) := χ′ (d(x))(d δ (x)d(x))and thus |f δ (x)| = o(1) (δ → 0) . Using (3.11) twice, we get by (3.19) t0 (x, ∇Φ α,δ (x)) ≤ 1 -α 2

  ) since V 0 (x) ≥ C > 0 in this region. Combining (3.1) with (3.20) gives (3.9).Case 6: d(x) ≥ D + 2η Since Φ α,δ (x) = 1 -α 2 d δ (x), we have by (3.12) t0 x, ∇Φ α,δ (x) ≤ 1 -α 2 t0 x, ∇d δ (x) (3.21)Combining Lemma 2.7 with (3.21) gives (3.20), as in Case 5.

Step 4 :

 4 .31) for all ε ∈ (0, ε 0 ] and some C3 > 0 independent of the choice of B. By (1.5), inserting (3.30) and (3.31) into (3.28) and this in (3.27), using Hypothesis 1.2(a), we get|D 2 (x)| = V Φα 0 (x)t Σ 0 (x, -i∇Φ α ) ≤ εC ′ .This and (3.26) give (3.25). We prove (1.24) and (1.21) by use of Lemma 2.3.Choosing B ≥ C 0 (1 + R 0 + C 3 ) (depending only on R 0 , but independent of u and E), we have B C 0 -C 3 ε -E ≥ ε , E ∈ [0, εR 0 ] . (3.32) Let Ω -:= {x ∈ Σ | V ε (x) + V Φα (x) -E < 0} and Ω + := Σ \ Ω -,(3.33) then from (3.32) combined with(3.22) it follows that Ω -⊂ {d(x) < εB} and by(3.22)|V ε (x) + V Φα (x)| ≤ ε max{C 3 , R 0 } for all x ∈ Ω -. (3.34)We define the functionsF ± : Σ → [0, ∞) by F + (x) := ε1 {d(x)<Bε} (x) + (V ε (x) + V Φα (x) -E)1 Ω+ (x) (3.35) and F -(x) := ε1 {d(x)<Bε} (x) + (E -V ε (x) -V Φα (x))1 Ω-(x) . (3.36)

F -e Φ ε u 2 L 2

 22 .37)The first inequality uses (3.22) combined with(3.32). By (2.38) and (3.37) supp F -⊂ {d(x) < Bε}, by (2.38) and (3.37) there exists a constant C > 0 such that 38), (3.39) and (3.40) in (2.27) yields (1.24) uniformly with respect to E ∈ (0, εR 0 ) and u.

For 1 -

 1 g defined in(3.4) andd δ = d * j δ defined in Lemma 2.7, we set Φα,δ (x) = 1 -α 2 g d(x) + g d δ (x) .Then for all x ∈ Σ andδ < δ α (1α) d(x) ≤ Φα,δ (x) ≤ d(x) . (3.41) In fact, if x ∈ K (3.41) is trivial, so let x ∈ Σ \ K. Then, writing Φα,δ = (1 -α 2 )(d + g(d δd)),(3.41) follows directly from (3.7).

V 0

 0 (x) -tΣ 0 (x, ∇ Φα,δ (x)) ≥ 0 , x ∈ Σ ∩ d -1 ([0, D + η) C , x ∈ Σ ∩ d -1 ([D + η, ∞)) . (3.42) If x ≥ D, this follows as in the proof of (b) (Case 5 and 6 of Step 2). If x < D, we have ∇ Φα,δ (x) = (1 -α 2 )∇d(x) and thus by the convexity of t0 and the eikonal inequality (1.19), analog to Step 2, Case 3 in the proof of (b), V 0 (x) -tΣ 0 (x, ∇ Φα,δ (x)) ≥ α 2 V 0 (x) ≥ 0 .

2

 2 .43) where we set Φα := Φα,δ for any δ < δ α . If F + , F -are defined as in(3.35) and (3.36) with Φ α replaced by Φα , arguments similar to those in (3.37) and below lead to e Proof of Theorem 1.5. This is a consequence of (the proof of) Theorem 1.6,(b). Since d ∈ C 2 (Σ), we can use Φ defined in (2.36) instead of Φ α . The arguments in Step 2, Case 1 -3, show that there are constants C 0 , C 1 > 0 independent of B, E and ε 0 > 0 such that for all ε < ε 0V 0 (x) -tΣ 0 (x, ∇Φ(x)) ≥ 0 , x ∈ Σ ∩ d -1 ([0, Bε]) B C0 ε , x ∈ Σ ∩ d -1 ([Bε, ∞))

Since Φ ∈ C 2 (Σ), the same arguments as in Step 3 of the proof of Thm. 1.6,(b), show

for some C 2 , C 3 > 0 independent of B and E, where

2). Defining F -and F + by (3.35) and (3.36) with Φ α replaced by Φ, we get (1.20) by use of Lemma 2.3 and Lemma 2.6. Note that Lemma 2.7 is not needed and neither is the continuity assumption (1.22).

2