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Abstract

This paper is devoted to sequential decision making
with Rank Dependent expected Utility (RDU). This de-
cision criterion generalizes Expected Utility and en-
ables to model a wider range of observed (rational)
behaviors. In such a sequential decision setting, two
conflicting objectives can be identified in the assess-
ment of a strategy: maximizing the performance viewed
from the initial state (optimality), and minimizing the
incentive to deviate during implementation (deviation-
proofness). In this paper, we propose a minimax re-
gret approach taking these two aspects into account, and
we provide a search procedure to determine an optimal
strategy for this model. Numerical results are presented
to show the interest of the proposed approach in terms
of optimality, deviation-proofness and computability.

Introduction
Decision making under uncertainty deals with situations
where the consequences of an action depends on exoge-
nous events. Such situations appear in several applications
of artificial intelligence: medical diagnosis, troubleshooting
under uncertainty (Breese and Heckerman 1996), designing
bots for games (Maı̂trepierre et al. 2008), etc. The standard
way to handle uncertainty is to compare actions on the basis
of expected utility theory (von Neumann and Morgenstern
1947). In this theory, a decision is viewed as a probability
distribution over consequences – denoting L the set of prob-
ability distributions over the set X of consequences, a deci-
sion is thus a lottery L ∈ L. A lottery L is then evaluated on
the basis of its expected utility EU(L) =

∑
x∈X L(x)u(x),

where L(x) is the probability of consequence x and u :
X → R is a utility function that assigns a numerical value
to each consequence.

Nevertheless, despite its intuitive appeal, expected utility
has shown some limits to account for all rational decision
behaviors. One of the most famous examples of such limits
is due to Kahneman and Tversky (1979). This example is
summarized in Table 1, whereX = {$0, $3000, $4000} and
each cell indicates probability L(x).

Most of people prefer L1 to L′1 (preference for certainty)
and L′2 to L2 (choosing L′2 instead of L2 almost amounts
to exchange $3000 for $4000). By elementary calculus,
one can show there exists no utility function u such that

x $0 $3000 $4000
L1(x) 0.00 1.00 0.00
L′

1(x) 0.10 0.00 0.90
L2(x) 0.90 0.10 0.00
L′

2(x) 0.91 0.00 0.09

Table 1: Kahneman and Tversky’s example.

EU(L1) > EU(L′1) and EU(L′2) > EU(L2). However,
this preference reversal can be encompassed by a non-linear
handling of probabilities. This had led researchers to gen-
eralize the definition of expected utility. One of the most
popular generalizations of expected utility is the rank de-
pendent expected utility (RDU) model (Quiggin 1993). In
this model, a non-linear probability weighting function ϕ is
incorporated in the expectation calculus. Let us use a simple
example to illustrate the principle. Consider lottery L2 and
assume that u(x) = x. The expected utility of L2 can be re-
formulated as: 0+0.1×(3000−0)+0×(4000−3000) (the
utility of lottery L2 is at least 0 with probability 1, then the
utility might increase from 0 to 3000 with probability 0.1,
and the utility cannot increase from 3000 to 4000). The rank
dependent expected utility of L2 is obtained from expected
utility by inserting ϕ as follows: 0 +ϕ(0.1)× (3000− 0) +
ϕ(0)× (4000− 3000). By setting ϕ(0.09) = ϕ(0.1) = 0.2
and ϕ(0.9) = 0.7, the preference induced by RDU are then
compatible with Kahneman and Tversky’s example.

The topic of this paper is to study how to handle RDU
in sequential decision making under uncertainty. A standard
way of modeling a sequential decision problem under risk is
to use a decision tree representing all decision steps and pos-
sible events. One does not make a simple decision but one
follows a strategy (i.e. a sequence of decisions conditioned
by events) resulting in a non deterministic outcome (a strat-
egy is analogous to a policy in the literature dedicated to
Markov decision processes). The set of feasible strategies is
then combinatorial. As a consequence, the number of strate-
gies exponentially increases with the size of the problem and
computing an optimal strategy according to a given decision
model requires an implicit enumeration procedure.

It is well-known that computing an optimal strategy ac-
cording to EU in a decision tree can be performed in lin-
ear time by rolling back the decision tree, i.e. recursively
computing the optimal EU value in each subtree by starting
from the leaves of the decision tree. However, this approach



is no longer valid when using RDU since Bellman’s prin-
ciple of optimality does not hold anymore. Actually, it has
been shown that computing an optimal strategy according to
RDU, viewed from the root of a decision tree, is an NP-hard
problem (Jeantet and Spanjaard 2011). Furthermore, once a
RDU-optimal strategy s∗ has been computed, it may be dif-
ficult to implement for a human decision maker because she
may have an incentive to deviate after some decision steps.
When entering a subtree the substrategy corresponding to
s∗ may indeed be suboptimal, a consequence of the viola-
tion of the Bellman principle. This shows that the enhanced
descriptive possibilities offered by RDU have drawbacks in
terms of computational complexity and implementability.

These difficulties have led Jaffray and Nielsen (2006) to
propose an operational approach eliminating some strategies
whenever they appear to be largely suboptimal for RDU at
some node. Their approach returns an RDU-optimal strategy
(viewed from the root) among the remaining ones, such that
no other strategy dominates it (w.r.t. stochastic dominance);
unfortunately, by deliberately omitting a large subspace of
strategies, this approach does not provide any information
about the gap to RDU-optimality at the root nor at the sub-
sequent decision steps (and therefore precludes any control
on the incentive to deviate).

We propose here another implementation of RDU theory
in decision trees. Our approach is based on the minimiza-
tion of a weighted max regret criterion, where regrets mea-
sure, at all decision nodes, the opportunity losses (in terms
of RDU) of keeping the strategy chosen at the root. Our aim
in proposing this approach is to achieve a tradeoff between
two possibly conflicting objectives: maximizing the quality
of the strategy seen from the root (measured by the RDU
value) and minimizing the incentive to deviate.

The paper is organized as follows: we first introduce the
decision tree formalism and describe the main features of
RDU. After recalling the main issues in using RDU in a se-
quential decision setting, we present the approach of Jaffray
and Nielsen (2006), and we position our approach with re-
spect to it. We then provide a solution procedure able to re-
turn a minimax regret strategy in a decision tree. Finally, we
provide numerical tests on random instances to assess the
operationality of the proposed approach.

Decision Trees and RDU
The formalism of decision trees provides a simple and ex-
plicit representation of a sequential decision problem under
uncertainty. A decision tree T involves three kinds of nodes:
a set ND of decision nodes (represented by squares), a set
NC of chance nodes (represented by circles) and a set NU
of utility nodes (leaves of the tree). A decision node can be
seen as a decision variable, the domain of which corresponds
to the labels of the branches starting from that node. The
branches starting from a chance node correspond to different
possible events. These branches are labelled by the probabil-
ities of the corresponding events. The values indicated at the
leaves correspond to the utilities of the consequences. An
example of decision tree is depicted in Figure 1.

A strategy consists in making a decision at every decision
node. The decision tree in Figure 1 includes 3 feasible strate-
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Figure 1: A decision tree representation.

gies: (D1 = up,D2 = up), (D1 = up,D2 = down) and
(D1 = down) (note that nodeD2 cannot be reached ifD1 =
down). For convenience, a strategy can also be viewed as
a set of edges, e.g. strategy s = (D1 = up,D2 = up)
can also be denoted by {(D1, C1), (D2, C2)}. A strategy is
associated to a lottery over the utilities. For instance, strat-
egy s corresponds to lottery (0.81, 10; 0.09, 20; 0.1, 500).
More generally, to any strategy is associated a lottery L =
(p1, u1; . . . ; pk, uk) that yields utility ui with probability
pi = P ({ui}), where u1 < . . . < uk represent the utili-
ties at the leaves of the tree and P is a probability distribu-
tion over U = {u1, . . . , uk}. Comparing strategies amounts
therefore to comparing lotteries. A useful notion to com-
pare lotteries is the decumulative function GL given by
GL(x) =

∑
i:ui≥x pi. For the sake of simplicity, we will

consider a lottery L as a function from U to [0, 1] such
that L(ui) = pi. The set of lotteries is endowed with the
usual mixture operation pL1 + (1 − p)L2 (p ∈ [0, 1]), that
defines, for any pair L1, L2, a lottery L characterized by
L(u) = pL1(u) + (1− p)L2(u).

Using these notations, the rank dependent utility (Quiggin
1993) writes as follows:

RDU(L) = u1 +
∑k
i=2 [ui − ui−1]ϕ (GL (ui))

where ϕ is a non-decreasing probability transformation
function, proper to any agent, such that ϕ(0)=0 and ϕ(1)=1.
The main interest of distorting cumulative probabilities,
rather than probabilities themselves (as in Handa’s model,
1977), is to get a choice criterion compatible with stochas-
tic dominance. A lottery L = (p1, u1; . . . ; pk, uk) is said to
stochastically dominate a lottery L′ = (p′1, u

′
1; . . . ; p′k, u

′
k)

if for all x ∈ R, GL(x) ≥ GL′(x).
Coming back to strategy s = (D1 = up,D2 = up) in

Figure 1, the RDU value of s is denoted by RDU(s) and is
equal to RDU(0.81, 10; 0.09, 20; 0.1, 500) = 10 + (20 −
10)ϕ(0.19) + (500 − 20)ϕ(0.1). If ϕ(p) = p for all p,
RDU clearly reduces to EU. For ϕ(p) 6= p, the probabil-
ity weighting function ϕ makes it possible to distinguish be-
tween weak risk aversion (i.e., if an option yields a guaran-
teed outcome, it is preferred to any other risky option with
the same expectation) and strong risk aversion (i.e., if two
lotteries have the same expectation, then the agent prefers
the lottery with the minimum spread of possible outcomes).
Within the RDU model, for a concave utility function u, an
agent is weakly risk-averse iff ϕ(p) ≤ p for all p ∈ [0, 1],
and strongly risk-averse iff ϕ is convex. Note that strong risk
aversion implies weak risk aversion. Throughout the paper,
we will assume that the decision maker is at least weakly



risk-averse.

Rolling Back Procedures
Before discussing the computational aspects of optimizing
RDU in a decision tree, we first recall the standard procedure
to get an EU-optimal strategy. It is well-known that rolling
back the decision tree makes it possible to compute in linear
time such an optimal strategy. Indeed, an EU-optimal strat-
egy satisfies the optimality principle: any substrategy of an
optimal strategy is itself optimal. Starting from the leaves,
one computes recursively for each node the expected utility
of an optimal substrategy as indicated in Algorithm 1, where
V ≡ EU and πN is the expected utility computed at node
N . The notations are the following: the children of node N
are denoted by Γ(N), the utility of a node N ∈ NU is de-
noted by u(N), the probability on edge (N,N ′) is denoted
by p(N,N ′) (withN ∈ NC), andLπ(N) denotes the lottery
characterized by L(πN ′) = p(N,N ′) for N ′ ∈ Γ(N).

Note that the rolling back procedure is no longer valid
when using RDU. Due to the non-linearity of RDU w.r.t.
the mixture operation defined above, the RDU value of a
strategy cannot be inferred from the RDU values of its sub-
strategies. Thus, in the case of V ≡ RDU, the value re-
turned by Algorithm 1 does not correspond in general to the
RDU value of any strategy. This difficulty can be bypassed
by rolling back lotteries instead of RDU values. This leads
to a variant summarized in Algorithm 2, where V ≡ RDU
and LN is the lottery computed at node N . To illustrate
how this variant operates, consider the decision tree of Fig-
ure 1 and assume that function ϕ is defined by ϕ(p) = 0
if p ≤ 0.1 and ϕ(p) = p otherwise (note that ϕ(p) ≤
p and therefore the decision maker is risk-averse). Node
D2 is labelled by lottery (0.9, 10; 0.1, 20), corresponding
to substrategy (D2 = up), since RDU(0.9, 10; 0.1, 20) =
10 > 0 = RDU(0.9, 0; 0.1, 500). Consequently, node C1

is labelled by lottery (0.81, 10; 0.09, 20; 0.1, 500). Finally,
node D1 is labelled by (1, 20), corresponding to strategy
(D1 = down), since RDU(1, 20) = 20 > 11.9 =
RDU(0.81, 10; 0.09, 20; 0.1, 500). The RDU value returned
by the rolling back method corresponds thus to strategy
(D1 = down). However, the optimal strategy is (D1 =
up,D2 = down) with RDU(0.81, 0; 0.19, 500) = 95. This
shows that Algorithm 2 does not provide the optimal RDU
value in general (which is not surprising since the problem
is NP-hard, as indicated in the introduction).

Seidenfeld (1988) justifies the choice of such a subopti-
mal strategy (the one returned by Algorithm 2) by claiming
that a decision maker should adopt the following principle of
dynamic feasibility: to assess a strategy at a decision node,
anticipate how you will choose at the (potential) “future”
decision nodes (by locally optimizing RDU) and declare in-
feasible all strategies incompatible with these choices. This
strategy will be followed by a sophisticated decision maker,
i.e. a decision maker who is able to anticipate her future
actions, and who also adopts a consequentialist behavior,
i.e. her decisions do not depend on the past nor on coun-
terfactual events (events that could have occured but did
not). Though appealing from an algorithmic viewpoint, one
easily shows that Algorithm 2 can return a stochastically

Algorithm 1: Rolling back values.
Input: Decision tree T
for each node N in T from the leaves to the root do

case N ∈ NU : πN ← u(N)
case N ∈ ND : πN ← max

N ′∈Γ(N)
πN ′

case N ∈ NC : πN ← V (Lπ(N))
end
return πroot

Algorithm 2: Rolling back lotteries.
Input: Decision tree T
for each node N in T from the leaves to the root do

case N ∈ NU : LN ← (1, u(N))
case N ∈ ND : LN ← arg max

N ′∈Γ(N)
V (LN ′)

case N ∈ NC : LN ←
∑

N ′∈Γ(N)

p(N,N ′)LN ′

end
return V (Lroot)

dominated strategy (Jaffray and Nielsen 2006). A strategy
s is said to be stochastically dominated if there exists an-
other strategy s′ such that L′ stochastically dominates L,
where L (resp. L′) is the lottery corresponding to s (resp.
s′). Following a stochastically non-dominated strategy is
obviously desirable from the normative viewpoint. Further-
more, as argued by Machina (1989), it is inappropriate to
impose consequentialism on non-EU behavior since the very
notion of a non-EU criterion (as RDU) implies a type of
non-separability which contradicts the consequentialist as-
sumption. For this reason, it seems reasonable to renounce
consequentialism, and therefore Algorithm 2, when using a
non-EU criterion. We assume here that, instead of following
the dynamic feasibility principle, the (sophisticated) deci-
sion maker adopts a resolute choice behavior (McClennen
1990), i.e. she initially commits to a strategy and never de-
viates from it later.

Resolute Choice Approaches
Two resolute choice approaches for using RDU in a decision
tree have been studied in the literature.

The first approach is resolute choice with root dictator-
ship, that consists in determining an optimal strategy ac-
cording to RDU viewed from the root of the decision tree.
A branch and bound procedure to determine such a strategy
has been proposed by Jeantet and Spanjaard (2011). Nev-
ertheless, note that an RDU-optimal strategy can include
poor substrategies, which can be an incentive for the deci-
sion maker to deviate from the predefined course of action.
For instance, in the decision tree of Figure 1, consider a de-
cision maker that wishes to follow the RDU-optimal strat-
egy (D1 = up,D2 = down). Assume that the decision
maker reaches node D2 at the second decision step, then
the choice set is (D2 = up) with RDU(D2 = up) = 10 or
(D2 = down) with RDU(D2 = down) = 0. Clearly, the
decision maker has here an incentive to choose (D2 = up)



and deviate from her initial resolutions.
The second approach is resolute choice with selves, that

consists in considering each decision node as a self who
represents the decision maker at the time and state when
the decision is made (Jaffray and Nielsen 2006). One then
aims at determining a strategy achieving a compromise be-
tween the different selves of a sophisticated decision maker,
i.e. a strategy that remains suitable for all selves. This is the
approach we follow here. The originality of our approach
stems from the fact that one focuses on determining a min-
imax regret strategy between the selves, where the regret of
a self for a given strategy s is defined as the difference be-
tween the RDU value of s at this node and the optimal RDU
value in the subtree. This significantly differs from the ap-
proach of Jaffray and Nielsen where the compromise strat-
egy is defined in a procedural manner. Their proposition can
be interpreted as relaxing the notion of dynamic feasibility as
follows: to assess a strategy at a decision node, determine a
set of admissible strategies at the (potential) future decision
nodes (where admissibility means they are both stochasti-
cally non-dominated and near optimal for RDU) and declare
infeasible all strategies that are incompatible with these ad-
missible strategies. The idea is to identify a subset of such
feasible strategies at the root, and then to select among them
the one maximizing RDU. Thus, each self, when making her
decision, should have little incentive to deviate from the pre-
defined strategy.

Algorithm 3 summarizes Jaffray and Nielsen’s procedure,
where the subset of feasible strategies at node N is denoted
by SN , and the cartesian product operator is denoted by Π.
Parameter θ represents the maximal gap to optimality ad-
missible for a strategy at a given decision node. Parameter
k is technical: if the number of feasible strategies becomes
higher than k, then only the k best ones w.r.t. RDU are kept.
This prevents a combinatorial growth of the number of in-
spected strategies. It seems however difficult to select a pri-
ori proper values for parameter θ and k. Furthermore, the
impact of these parameters on the quality of the solution is
not obvious: even when k is arbitrary large, the procedure
does not guarantee a gap to optimality lower than θ (con-
trary to intuition). Actually, due to parameter k, it seems dif-
ficult to formulate a decision criterion characterizing to what
extent the returned strategy can be seen as optimal.

A Minimax Regret Approach
The resolute choice approach we propose is based on the op-
timization of a minimax regret criterion between the selves.
For a strategy s involving decision node N , the regret rN (s)
of the self at node N is defined by rN (s) = RDU∗(N) −
RDU(sN ), where sN is the substrategy of s at node N
and RDU∗(N) is the RDU value of the optimal strategy
at node N . Hence, the regret of a strategy s is defined by
r(s) = maxN∈s λNrN (s), where λN is a weight assigned
to the self at decision node N and N ∈ s denotes the fact
that N can be reached when following strategy s. This eval-
uation represents the maximum regret over decision nodes
that can be reached by s. Then, our goal is to determine a
strategy s such that:

Algorithm 3: Jaffray and Nielsen’s procedure.
Input: Decision tree T , real θ, integer k
for each node N ∈ NU do SN ← {(1, u(N))}
for each node N in T do

case N ∈ ND :

SN ←
⋃

N ′∈Γ(N)

{
{(N,N ′)} ∪ s : s ∈ SN ′

}
for each s ∈ SN do Vs ← RDU(s)
Vmax ← max

s∈SN
{Vs}

for each s ∈ SN do
if [s is stochastically dominated] or
[Vs < Vmax − θ] then SN ← SN \ {s}

end
while |SN | > k do
SN ← SN \

{
arg mins∈SN {Vs}

}
end
case N ∈ NC : SN ←

∏
N ′∈Γ(N)

SN ′

end
return

{
arg maxs∈Sroot{Vs}

}
r(s) = mins′∈S?

root
r(s′)

where S?root denotes the set of stochastically non-dominated
strategies at the root. The weights λN allow greater flexibil-
ity, and can be interpreted in several ways, such as normal-
ization factors or weighting coefficients, for instance:
• if λN = 1 for all N , then all selves are considered equiva-
lently and this is the usual egalitarian view.
• if λN is the probability to reach nodeN , i.e. is equal to the
product of the probabilities along the path from the root to
N ifN ∈ s, and to 0 otherwise, then the importance given to
a self is proportional to the probability that the correspond-
ing decision situation occurs.
• if λroot = α and λN = 1 − α for N 6= root, then
the value of a strategy s can be reformulated as r(s) =
max{αrroot, (1 − α) maxN∈s rN}. Parameter α can be in-
terpreted as representing a tradeoff between optimality at
the root (term rroot) and deviation-proofness of the strat-
egy (term maxN∈s rN ). We mean here deviation-proofness
in the sense that the incentive to deviate is low for a self.

For illustration, consider strategy s′ = (D1 = up,D2 =
down) in Figure 1. One has RDU(sD1

) = 95, RDU(sD2
) =

0, RDU∗(D1) = 95 and RDU∗(D2) = 10. Hence, with
weights equal to 1, one gets r(s′) = max{95 − 95, 10 −
0} = 10. Finally note that the determination of a weighted
minimax regret strategy is NP-hard: if λroot = 1 and λN =
0 for N 6= root, the problem amounts indeed to determine
an RDU-optimal strategy at the root.

A New Algorithm
The solution algorithm we propose is composed of two
phases, the first phase aiming at computing optimal RDU
values in all subtrees (these values are required to evaluate
the regrets), and the second phase aiming at computing a
minimax regret strategy:



Phase 1. Computation of values RDU∗(N). This computa-
tion is performed via a branch and bound procedure. This
branch and bound is launched for every subtree T (N),
where T (N) is the subtree rooted in node N ∈ ND.
Phase 2. Computation of a minimax regret strategy. This
computation is also based on a branch and bound proce-
dure. Actually, both branch and bound procedures coincide
in their branching part. The bounding part for computing
a minimax regret strategy is explained in the sequel. This
branch and bound is launched only once.

Phase 1. To compute values RDU∗(N), the branch and
bound we use only differs in the bounding part from the one
proposed by Jeantet and Spanjaard (2011). One takes ad-
vantage of the specific shape of function ϕ induced by risk
aversion to compute tighter upper bounds on RDU∗(N). We
have the following (the proofs are omitted to save space):

Proposition 1 Let EU∗(N) denote optimal expected utility
at node N . If ϕ(p) ≤ p ∀p, then RDU∗(N) ≤ EU∗(N).

Proposition 2 Let RDU(N) denote value πN obtained at
node N by applying Algorithm 1 with V ≡ RDU. If ϕ is
convex, then RDU∗(N) ≤ RDU(N).

Proposition 1 can be used to compute an upper bound as
soon as the decision maker is weakly risk-averse. This upper
bound can be strengthened if the decision maker is strongly
risk-averse, by using also Proposition 2. For this reason, in
case of weak risk-aversion, one applies Algorithm 1 once,
with V ≡ EU , to obtain value EU∗(N) at each node N .
In case of strong risk-aversion, by applying a second time
Algorithm 1 with V ≡ RDU, the values at nodes N be-
come min{EU∗(N), RDU(N)}, from which one can com-
pute an upper bound at least as good as the previous one.

Phase 2. We first describe the branching part of the branch
and bound used in Phase 2. The principle is to partition the
set of strategies in several subsets according to the choice of
a given edge (N,N ′) at a decision node N . More formally,
the nodes of the enumeration tree are characterized by a par-
tial strategy. Consider a decision tree T and a set of nodes
N s including the root of T and one and only one successor
for every decision node N ∈ N s

D = ND ∩ N s. The set of
edges s = {(N,N ′) : N ∈ N s

D, N
′ ∈ N s} defines a par-

tial strategy of T if the subgraph induced byN s is a tree. A
complete strategy s′ is said to be compatible with a partial
strategy s if s ⊆ s′. The subset of strategies characterized
by a partial strategy corresponds to the set of compatible
strategies. A node of the enumeration tree is characterized
by a partial strategy, and branching consists in choosing an
edge among the ones starting from a given candidate deci-
sion node (one of the next future decision nodes compatible
with the partial strategy). For illustration, the whole enumer-
ation tree obtained for the decision tree of Figure 1 is given
in Figure 2.

The aim of the branch and bound is of course to explore
only a small portion of the enumeration tree. This goal is
pursued by two means: a priority rule guiding the order in
which the nodes are expanded, and bounding procedures en-
abling to prune subtrees (of the enumeration tree). The prior-

Algorithm 4: BB(s, best)

N1 ← {N1 ∈ ND : N1 is candidate in T };
Nmin ← arg min

N∈N1

priority(N);

Emin ← {(Nmin, N ′) : N ′ ∈ Γ(Nmin)};
for each (N,N ′) ∈ Emin do

best← min {best, heuristic (s ∪ {(N,N ′)})} ;
if bound(s ∪ {(N,N ′)}) < best then

temp← BB(s ∪ {(N,N ′)}, best);
if temp < best then best← temp;

end
end
return best

ities in the branch and bound are denoted by priority(N),
the smaller the better. Algorithm 4 describes formally the
branch and bound procedure we propose. For simplicity, we
present a version that returns the value of an optimal strat-
egy. The optimal strategy itself could of course be returned
by using standard bookkeeping techniques. The branch and
bound takes as arguments a partial strategy s and the min-
imax regret value found so far, denoted by best. Function
bound(s) (resp. heuristic(s)) returns a lower bound (resp.
upper bound) on the value of a minimax regret strategy com-
patible with s.
• bound(s): the lower bounding procedure is based on the
fact that the max regret over the decision nodes already in-
stanciated in a partial strategy s is a lower bound of the max
regret of any completion of s. The formal procedure is de-
scribed in Algorithm 5.
• heuristic(s): in order to generate a good feasible strategy
at each node of the branch and bound, one uses Algorithm 6.
It consists in completing the partial strategy s with optimal
substrategies according to EU, and then computing, in each
decision node N , the value of regret rN (s).

In order to ensure that the returned strategy is stochas-
tically non-dominated (SND), one tests whether the new
found strategy is SND before updating the incumbent. Since
the initial incumbent is also SND (any EU-optimal strategy
is SND), at any time the incumbent is SND, and therefore the
returned strategy as well. Testing whether a strategy is SND
amounts to solving a linear program (Jaffray and Nielsen
2006). The whole procedure is summarized in Algorithm 7.

D1

s = ∅

(D1, C1)

D2

s = {(D1, C1)}

{(D1, C1), (D2, C2)} {(D1, C1), (D2, C3)}

(D2, C2) (D2, C3)

(D1, C4)

{(D1, C4)}

Figure 2: Enumeration tree of strategies in Figure 1.



Algorithm 5: bound(s)

for each node N ∈ ND do
if ∃(N,N ′) ∈ s then

rN ← RDU∗(N)−RDU∗(N ′);
else

rN ← 0;
endif

end
return maxN∈ND

λNrN

Algorithm 6: heuristic(s, V )

for each node N in T from the leaves to the root do
case N ∈ NU : LN ← (1, u(N));

case N ∈ NC: LN ←
∑

N ′∈Γ(N)

p(N,N ′)LN ′ ;

case N ∈ ND:
if ∃(N,N ′) ∈ s then

rN ← RDU∗(N)−RDU(LN ′);
else

N ′ ← arg maxN ′∈Γ(N)EU
∗(N ′);

rN ← RDU∗(N)−RDU(LN ′);
endif

end
end
return maxN∈ND

λNrN

Algorithm 7: Minimax Regret(T )

compute all EU∗(N) by Alg. 1 with V ≡ EU;
compute all RDU(N) by Alg. 1 with V ≡ RDU;
for each node N in T do compute RDU∗(N);
s∗EU ← an EU-optimal strategy at the root;
best← BB(∅, r(s∗EU ));
return best

Numerical tests
Our algorithm, as well as Jaffray and Nielsen’s procedure,
have been implemented in C++. Solver CPLEX has been
used to solve the linear programs involved in the non-
dominance tests. The numerical tests were performed on a
Pentium IV 2.13GHz CPU computer with 3GB of RAM.
We consider complete binary decision trees where the nodes
of even (resp. odd) depth are decision (chance) ones, and the
leaves are utility nodes. The utilities are integers randomly
drawn in [0,100). All probabilities have been randomly gen-
erated in (0,1). Concerning the decision model, function ϕ is
defined by ϕ(p) = p2 in RDU, and all weights λN are equal
to 1 in the definition of the max regret.

Table 2 summarizes the performances of Jaffray and
Nielsen’s procedure (Algorithm 3). Parameter k takes value
in {1, 5, 10} and parameter θ takes value in {1, 5, 20}. The
execution times have been reported in the fourth column.
The fifth column indicates value r(s)/r∗, where r(s) is the
maximum regret of strategy s returned by Algorithm 3, and
r∗ is the minimax regret (value obtained by our approach). In

Algorithm 3
# Nodes k θ Time (sec.) r(s)/r∗ RDU(s)/RDU∗

127 1 1 < 1 1.1 0.98
127 1 5 < 1 1.2 0.99
127 1 20 < 1 2.4 0.99
127 5 1 < 1 1.1 0.99
127 5 5 < 1 1.4 0.99
127 5 20 < 1 23.6 0.99
127 10 1 < 1 1.1 0.99
127 10 5 < 1 1.1 0.99
127 10 20 < 1 35.5 0.99

511 1 1 < 1 1.1 0.98
511 1 5 < 1 1.7 0.99
511 1 20 < 1 7.9 0.99
511 5 1 < 1 1.2 0.99
511 5 5 < 1 1.7 0.99
511 5 20 1.3 187.2 0.99
511 10 1 < 1 1.1 0.98
511 10 5 < 1 1.9 0.99
511 10 20 1.2 121.3 0.99

2047 1 1 124.4 1.1 0.97
2047 1 5 122.0 1.7 0.98
2047 1 20 138.7 1.5 0.99
2047 5 1 109.2 1.8 0.97
2047 5 5 144.1 13.1 0.97
2047 5 20 160.2 98.4 0.99
2047 10 1 156.5 1.6 0.97
2047 10 5 174.7 4.4 0.98
2047 10 20 184.9 316.6 0.99

Table 2: Performances of Algorithm 3.

the sixth column, we indicate ratio RDU(s)/RDU∗, where
s denotes the strategy returned by Algorithm 3 and RDU∗
is the optimal RDU value.

As can be seen in Table 2 (sixth column), Algorithm 3
generally provides RDU values at the root close to the op-
timum. However, the performance concerning the dynamic
feasibility (represented by ratio r(s)/r∗ to be minimized)
is less convincing. Although ratio r(s)/r∗ is satisfactory in
most cases, we observe a significant number of cases where
the ratio becomes very large (up to 300), which proves that
the algorithm does not provide any guarantee on the max
regret. Note that a self with a high regret has a significant
incentive to deviate, thus threatening the complete imple-
mentation of the strategy. One could be tempted to decrease
the value of θ to overcome this difficulty, but a lower RDU
value is to be expected at the root. It may even happen that
Algorithm 3 returns no strategy, if all considered strategies
are stochastically dominated (Jaffray and Nielsen 2006).

Phase 1 Phase 2
# Nodes Time (sec.) Time (sec.) r(s)/r∗ RDU(s)/RDU∗

127 < 1 < 1 1 0.99
511 1.1 < 1 1 0.98
2047 2.6 < 1 1 0.96
8191 14.8 1.2 1 0.96

Table 3: Performances of Algorithm 7.

Table 3 indicates the performances of our approach (Al-
gorithm 7), based on minimax regret optimization. The sec-
ond column indicates the execution time of phase 1. The
third column indicates the execution time of phase 2. As
in the previous table, ratios r(s)/r∗ and RDU(s)/RDU∗

are indicated (fourth and fifth column). Obviously, the ma-
jor strength of Algorithm 7 is its ability to control the incen-
tive to deviate by optimally minimizing the max regret. As
a consequence, the performance is uniformly 1 in the third
column. Although RDU optimality at the root was not the
primary objective, a nice feature empirically attested by Ta-



ble 3 is the good quality of the returned strategies viewed
from the root (never less than 96% of the optimum). Finally,
our approach proves significantly faster than Algorithm 3:
decision trees with up to 8191 nodes can be solved within
15 seconds, while Algorithm 3 needs 10 times more to solve
instances with 2047 nodes. This can be explained by the fact
that the stochastic dominance tests are much more numerous
in Algorithm 3 than in our approach.
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