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a b s t r a c t

We present a thorough photometric and geometric study of the multimedia devices

composed of both a matte screen and an attached camera, where it is shown that the light

emitted by an image displayed on the monitor can be expressed in closed-form at any

point facing the screen, and that the geometric calibration of the camera attached to the

screen can be simplified by introducing simple geometric constraints. These theoretical

contributions are experimentally validated in a photometric stereo application with

extended sources, where a colored scene is reconstructed while watching a collection of

graylevel images displayed on the screen, providing a cheap and entertaining way to

acquire realistic 3D-representations for, e.g., augmented reality.

1. Introduction

A lot of common multimedia devices (smartphones,

tablets, etc.) are composed of both a screen and a webcam. If

this is not the case, some cameras are designed to be easily

clipped onto laptops or even monitors. Using such devices, a

number of active vision applications attempt to use the

camera as a photometric measuring device where the screen

is used as a light source. One of the most appealing examples

is 3D-reconstruction through photometric stereo [1]: differ-

ent lightings can be obtained by successively displaying

various patterns on the screen [2–7].

Assume that a user is watching a slideshow of images (cf.

Fig. 1). A slideshow may correspond to a simple collection of

white rectangles with varying locations, as suggested in

[2,3,5,6], but also to circular patterns [7], or even to patterns

with non-trivial geometry [4], as natural images. Can the

light field emitted by the screen be treated as a light source

for some applications e.g., 3D-reconstruction through pho-

tometric stereo? This question raises the key issue of this

paper, which is that of efficiently estimating the light under

realistic hypotheses. This introduces two key problems:

modelling the emitted light field, and geometrically cali-

brating the device i.e., determining the camera pose w.r.t. the

screen.

The most simple approximation of the screen as a light

source is the infinitely distant point light source model. Such

a model was considered in uncalibrated photometric stereo

algorithms [3,5,7], though the discussion on the resolution of

the underlying linear ambiguity (a generalized bas-relief

ambiguity if integrability is imposed [8,9]) is rather limited.

To avoid such ambiguities, the mean direction and the mean

intensity of the light can be calibrated, as doWon et al. in [6].

Still, directional lighting seems rather unrealistic when

modelling nearby screens: an anisotropic point light source

model is considered instead in [2]. As we shall see in Section

2, this model is physically justified for modelling a single

pixel, but does not account for the extended behavior of the

screen. It is thus necessary to consider connected sets of

pixels, as did Clark in [4] but without considering anisotropy.

Our first contribution is to provide a general closed-form

expression of the intensity and direction of light emitted by

matte screens. As a particular case, we show how to compute

the light emitted by a rectangular set of pixels, whatever its
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size and location. The light emitted by an image can then be

approximated by a straightforward generalization of this

model to quadtree-like [10] image decomposition.

The camera/screen calibration requires observing reference

points on the screen plane. Due to our device configuration,

calibration must be carried out without a direct view of the

screen i.e., by using reflections in a mirror. Such a problem has

been widely considered in relevant literature [11–16] and

recently a solution from a single reflection in one spherical

mirror has been reported [17]. In this paper, we aim at

describing the most flexible modus operandi for users, and at

providing a simple algorithm requiring few input data, such

that we will consider one planar mirror and a minimal set of

three reference points on the screen, as in [15]. Our con-

tribution, initially presented in [18], is to take advantage of the

constrained model of the device, as the camera pose only has

four degrees of freedom: three for its location and one for its

orientation restricted to a rotation around the horizontal axis

of the screen. This hypothesis allows us to develop a more

efficient calibration method, where as few as two mirror

poses and three matched pairs of points are required.

The rest of this paper is organized as follows. After

studying in Section 2 the light field emitted by a matte

screen, we tackle in Section 3 the camera/screen calibration

problem. As an application, we consider in Section 4 the

photometric stereo problem using images displayed on the

screen as light sources, and show that, using the proposed

full photometric and geometric model for the device, rea-

sonably accurate shape and reflectance can be recovered.

2. Light model for matte screens

We start by investigating the light field emitted by the

screen: we show that a formal analysis of the problem

allows one to reach a highly realistic closed-form model of

the emitted light, which only relies on the definition of a

Lambertian primary source. After briefly discussing the

notion of matte screens, we will introduce a model for the

light emitted by a single pixel, considered as an anisotropic

point-wise source. Then, this elementary model will be

extended into a new theoretical model for planar sources,

holding anisotropy, spatially-varying luminance and par-

tial occlusion. Afterwards, we will introduce a framework

for simplifying this model when the luminance is uniform

and occlusions are ignored. Eventually, we will provide

closed-form approximations of the model for rectangular

patterns and natural grayscale images, and experimentally

validate them on real-world data.

2.1. Matte screens

Let us first introduce the class of monitors targeted in

this work: for the sake of simplicity, we only deal with the

so-called matte screens (both LCD and LED). Such screens

are specifically designed by using an anti-glare coating to

limit the apparition of shiny lighting effects, as opposed to

bright screens which provide more vivid colors but also

stronger reflections. We will also consider “small” viewing

angles: when watching the screen from wide angles,

brightness obviously tends to be vary much more, even for

matte screens. Since we are overall interested in modelling

the light emitted towards a user facing the screen, viewing

angles can reasonably be assumed to be limited.

The problem tackled here is that of modelling in closed-

form the luminous flux emitted by the screen. Considering

the screen as a matrix of pixels, the total flux is the sum of

the fluxes emitted by all pixels. An experimental study was

conducted in [2], where it is demonstrated that the

intensity of light emitted by a single pixel (or a small

pattern) radially decreases according to a cosine law. We

will show in the following that this is actually a con-

sequence of Lambert's law, which states that in the ideal

case, brightness must remain constant whatever the

viewing point, leading to this anisotropic behavior.

2.2. Case of a single pixel

Our first contribution consists in showing that the

empirical model of anisotropic punctual source proposed

in [2] to characterize a pixel directly follows from Lam-

bert's law. We define a pixel as a surface element dΣs

around a point xs ¼ ½xs; ys; zs#> with unit normal nðxsÞ. Let
d2

Φ denote the amount of luminous flux emitted by the

pixel inside the elementary cone of vertex xs with solid

angle dω and direction ue (see Fig. 2). By definition, the

luminance of the pixel at xs is the luminous flux per unit of

apparent surface, seen from direction ue, and per unit solid

angle; it is defined by

Lxs ueð Þ ¼ d2
Φ

dω dΣ0
s

ð1Þ

where dΣ0
s ¼ dΣsðnðxsÞ ( ueÞ denotes the apparent surface of

the pixel.

By assuming the pixels to be elementary Lambertian

primary sources, it follows that Lxs ðueÞ is independent of ue,

so the luminance will now be referred to as:

Lxs ðueÞ ¼ LðxsÞ ð2Þ

Let us now consider an elementary scene surface dΣ

around a point x¼ ½x; y; z#> at which the normal is nðxÞ.

Fig. 1. Overview of our contributions. While he watches a slideshow of

images, a user receives some incident light. In order to use such data in a

photometric stereo application (Section 4), we need both to model the

light field emitted by the screen (Section 2) and to estimate the pose of

the camera (Section 3).



The solid angle dω of the cone of vertex xs, supported by

dΣ, writes:

dω¼ dΣ )ue ( nðxÞð Þ
Jxs)xJ2

ð3Þ

On the other hand, the irradiance at x:

dI xð Þ ¼ d2
Φ

dΣ
ð4Þ

is the amount of luminous flux per unit of surface which is

emitted by the pixel at xs and received by the scene sur-

face at x. Using (1) and (3), the irradiance at x due to xs is

provided by the following proposition:

Proposition 1. The irradiance (4) can be written in the dot

product form

dIðxÞ ¼ nðxÞ ( dsxs ðxÞ ð5Þ

where dsxs ðxÞ is the vector having the closed-form:

dsxs xð Þ ¼ LðxsÞ dΣs

Jxs)xJ2
nðxsÞ ( ueð Þ )ueð Þ ð6Þ

In the proposed model (6), the first factor represents

the inverse of square falloff, the second stands for the

cosine-like anisotropy, which has been experimentally

validated in [2], and the third is the unit lighting direction

(oriented towards the source). This model is nothing else

than an anisotropic nearby pointwise source model, which

has recently received some attention in the context of

photometric stereo [19]. This justifies a posteriori the

ability of the model to deal with LEDs-based screens, since

LEDs can be realistically considered as anisotropic point-

wise sources.

In the sequel, without loss of generality, it is assumed

that zs¼0 and nðxsÞ ¼ ½0;0;1#> . As a consequence, and

knowing that ue ¼ ðx)xsÞ=Jx)xs J , Eq. (6) simplifies so

the light received at x¼ ½x; y; z#> from a pixel at xs is

written, in intensity and direction:

dsxs xð Þ ¼ L xsð Þ dΣs
z ðxs)xÞ
xs)xk k4

ð7Þ

2.3. Case of a connected set of pixels

Since it is not realistic to illuminate a scene by a single

pixel (the elementary pointwise sources composing the

screen have very low intensities), we need to consider

connected sets of pixels. In most relevant papers [2,3,5,6],

rectangular patterns are considered, with size small

enough to allow approximation by a punctual source

model, yet large enough to provide sufficient lighting. As a

consequence, such models are empirical: our second

contribution is to derive from the infinitesimal model (7),

holding for an infinitely small pattern, a general expression

of the light emitted by any (extended) planar domain.

Now considering the screen S as a regular grid of pixels,

vector dsxs ðxÞ describes the light emitted by an infinitesi-

mal part of the screen, of size dΣs ¼ dxs dys. Summing the

elementary contributions (5) of all the pixels, the total

irradiance at a point x of a surface facing the screen, with

outward normal nðxÞ, is written:

IðxÞ ¼
ZZZ

xs AT ðxÞ
nðxÞ ( dsxs ðxÞ ¼ nðxÞ (

ZZZ

xs AT ðxÞ
dsxs ðxÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sðxÞ

ð8Þ

where the domain T ðxÞ +R3, which models penumbra,

refers to the set indicating which pixels xs of the screen S

are visible from x. Causes of penumbra actually include

self-shadowing effects such as described in Fig. 3b

(nðxÞ ( dsxs ðxÞo0) as well as cast-shadowing effects such as

described in Fig. 3c (nðxÞ ( dsxs ðxÞZ0, but the screen is

partly occluded by the surface itself).

Eventually, let us recall that zs¼0 for a point

½xs; ys; zs#> AS, so that T ðxÞ is characterized by a 2D-

domain ΩðxÞ in screen coordinates. Considering Eqs.

(7) and (8), we obtain:

Proposition 2. The light received at x¼ ½x; y; z#> from a set

ΩðxÞ of visible elementary Lambertian sources ðxs; ysÞ, lying

Fig. 2. Light emitted by a single pixel. Elementary scene surface dΣ with

normal nðxÞ, located around x, is illuminated by pixel xsAR
3 with ele-

mentary surface dΣs and normal nðxsÞ. Application of Lambert's law to

this illumination configuration provides the closed-form anisotropic

punctual source model (7).

Fig. 3. Partial occlusion of the screen. (a) When there is no occluding object and when the tangent plane to the surface at x does not intersect the screen,

then all pixels xsAS contribute to the total irradiance. This is not the case in (b), where only the pixels inside T ðxÞ are visible from x. It is possible to

explicitly define this set by intersecting the screen with the tangent plane to the surface at point x, since it only depends on the local description of the

surface through its normal. In the situation (c), the whole screen is not visible either, because of an occlusion: this type of partial visibility is much harder to

deal with, since it involves global knowledge of the surface.



within a plane with normal ½0;0;1#> , is given by:

s xð Þ ¼ z

ZZ

ðxs ;ysÞAΩðxÞ
L xsð Þ xs)xð Þ

xs)xk k4
dxs dys ð9Þ

where LðxsÞ is the luminance of pixel xs ¼ ½xs; ys;0#> .

Adapting this result to planar sources with arbitrary

orientation is straightforward.

2.4. Some remarks on partial visibility

The result from Proposition 2 can be used to model any

kind of extended planar Lambertian light source, provided

the luminance LðxsÞ is known, which is the case here, since

LðxsÞ is proportional to the displayed graylevel. The xs

locations of the pixels being known as well, a discrete

approximation of the integral in (9) by a finite sum over

the pixels can be numerically computed. This is sufficient

for the rendering of synthetic images: the geometry

x¼ ½x; y; z#> of the scene being perfectly known, the visi-

bility subspace T ðxÞ, and hence ΩðxÞ can be computed by

raytracing techniques.

On the contrary, in 3D-reconstruction applications, the

geometry of the scene is the main unknown. Visibility

should thus be estimated within an iterative process, by

considering the previous estimates of x and of nðxÞ to

approximate the current visibility. Yet, proceeding so is not

reasonable, because this process has to be repeated for

every point x of the scene, resulting in an extremely slow

process, even on modern computers. Indeed, in real-world

scenarios such as photometric stereo, x is one point inside

a dense point cloud containing as many points as the

camera has pixels, and the size of ΩðxÞ can be up to the

resolution of the screen: the computation time required to

evaluate the light field becomes prohibitive when con-

sidering HD devices, and computation of the visibility

makes things even worse.

Hence, for the sake of simplicity, we now wish to find a

closed-form approximation of the integral in (9) that can

provide a fast, yet reasonably realistic, estimation of the

lighting. For this purpose, we ignore the visibility issue in

the following, and leave it as an interesting perspective, as

in other state-of-the-art large sources models for photo-

metric stereo [4]. As a consequence, the proposed model

will be accurate for surfaces with relatively small slopes

and no occlusion, but approximate in the presence of

shadows or penumbra effects.

2.5. Domains with arbitrary shape and uniform luminance

To further simplify the integral in (9), we need to

explicit the dependency of the emitted luminance LðxsÞ in
terms of screen coordinates, so as to obtain a closed-form

expression. Let us start with the simplest case of a uniform

luminance.

Let S
0 be a subset of S over which the luminance is

uniform i.e., LðxsÞ ¼ L0, and let Ω be the corresponding 2D-

domain. According to Eq. (9), the light field received in

x¼ ½x; y; z#> from the pixels xs ¼ ½xs; ys;0#> AS
0, with

ðxs; ysÞAΩ, is written:

s xð Þ ¼ z L0

ZZ

ðxs ;ysÞAΩ

xs)x

xs)xk k4
dxs dys ð10Þ

or, equivalently:

s xð Þ ¼ )L0
2

F1ðxÞ; F2ðxÞ; F3ðxÞ½ #> ð11Þ

where:

F1 xð Þ ¼ )2z∬
ðxs ;ysÞAΩ

xs)x

ðxs)xÞ2þðys)yÞ2þz2
h i2

dxs dys

F2 xð Þ ¼ )2z∬
ðxs ;ysÞAΩ

ys)y

ðxs)xÞ2þðys)yÞ2þz2
h i2

dxs dys

F3 xð Þ ¼ 2z2∬
ðxs ;ysÞAΩ

1

ðxs)xÞ2þðys)yÞ2þz2
h i2

dxs dys

8

>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð12Þ

Denoting r¼ xs)x and s¼ ys)y, these functions are

rewritten:

F1 xð Þ ¼ )2z∬
ðr;sÞAΩ)ðx;yÞ

r

ðr2þs2þz2Þ2
dr ds

F2 xð Þ ¼ )2z∬
ðr;sÞAΩ)ðx;yÞ

s

ðr2þs2þz2Þ2
dr ds

F3 xð Þ ¼ 2z2∬
ðr;sÞAΩ)ðx;yÞ

1

ðr2þs2þz2Þ2
dr ds

8

>>>>>>>>><

>>>>>>>>>:

ð13Þ

Let C+R2 be a planar domain whose contour ∂C is

positively oriented and piecewise C1. For any pair (P,Q) of

continuous functions C-R, the Green–Riemann formula

writes:

∬
ðr;sÞAC

∂Q
∂r

)∂P
∂s

- .

dr ds¼
I

ðr;sÞA∂C
P drþQ dsð Þ ð14Þ

Using the following identities:

∂
∂r

1

r2þs2þz2

- .

¼ ) 2r

ðr2þs2þz2Þ2

) ∂
∂s

1

r2þs2þz2

- .

¼ 2s

ðr2þs2þz2Þ2

∂
∂r

r

r2þs2þz2

- .

) ∂
∂s

)s

r2þs2þz2

- .

¼ 2z2

ðr2þs2þz2Þ2

8

>>>>>>>>><

>>>>>>>>>:

ð15Þ

we easily deduce from Eqs. (13)–(15):

F1 xð Þ ¼ z

H

ðr;sÞA ∂Ω)ðx;yÞ

ds

r2þs2þz2

F2 xð Þ ¼ )z

H

ðr;sÞA∂Ω)ðx;yÞ

dr

r2þs2þz2

F3 xð Þ ¼
H

ðr;sÞA ∂Ω)ðx;yÞ

r ds)s dr

r2þs2þz2

8

>>>>>>>><

>>>>>>>>:

ð16Þ

As soon as contour ∂Ω is “simple”, closed-formed

expressions of the three curvilinear integrals in Eq. (16)

can be found. Example of “simple” contours include the

case of rectangular patterns such as those considered in

[2,3,5–7], circular shapes [7], and even partly self-occluded

sources (Fig. 3b), since the set Ω can be expressed in



closed-form by intersecting the tangent plane to the sur-

face with the screen (though, as discussed in the previous

paragraph, effective handling of occlusions is left for future

prospect). The originality of the expressions (16) is thus

their generality, as they provide a framework for handling

arbitrary extended planar illuminants. As an example, let

us now provide the explicit form of the integrals in (16) for

a rectangular set Ω.

2.6. Closed-form expressions for rectangular sets

If Ω is the rectangle ½xmin; xmax# - ½ymin; ymax#, the inte-

grals in (16) are easily simplified, and one obtains:

Proposition 3. If the illuminant is the rectangle

Ω¼ ½xmin; xmax# - ½ymin; ymax#, and the luminance is uniform

(LðxsÞ ¼ L0), then the emitted light field received in x is given

by Eq. (11), with:

F1 xð Þ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þz2
p tan )1 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þz2
p

- .2 3ymax )y

s ¼ ymin )y

" #xmax ) x

r ¼ xmin ) x

F2 xð Þ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þz2
p tan )1 r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þz2
p

- .2 3ymax )y

s ¼ ymin )y

" #xmax )x

r ¼ xmin )x

F3 xð Þ ¼
r tan )1 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þz2
p

- .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þz2
p þ

s tan )1 r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þz2
p

- .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2þz2
p

2

6
6
4

3

7
7
5

ymax )y

s ¼ ymin )y

2

6
6
6
4

3

7
7
7
5

xmax )x

r ¼ xmin ) x

8

>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð17Þ

We believe that the closed-form model above might

help improving the results obtained by photometric stereo

techniques using rectangular patterns [2,3,5–7], since it is

physically motivated. Compared to Clark's model [4], our

model considers anisotropy, while Clark considers that

pixels emit light in an isotropic way, limiting the applica-

tions of his model to small objects, as stated in the sen-

tence: “We assume that the LCD pixels are isotropic illu-

minants, which is not the case […]. The assumption of

isotropy is made more palatable […] in our experimental

setup, where the object is small […]”. As we shall see in

Section 2.7, considering this anisotropic falloff dramati-

cally increases the accuracy of the model.

The other simple case we study is that of image

approximation by a non-uniform rectangular partition, as

suggested by Clark in [4] using his simplified (isotropic)

light model. This case is illustrated in Fig. 4. It trivially

follows from the previous proposition that:

Proposition 4. If the illuminant is a non-uniform rectan-

gular partition [n
i ¼ 1Ω

i, where Ωi ¼ ½ximin; x
i
max# - ½yimin; y

i
max#,

and the luminance is uniform inside each Ω
i, with value L0

i
,

then the light field received in x is given by:

s xð Þ ¼ )
Xn

i ¼ 1

Li0
2

F i1ðxÞ; F
i
2ðxÞ; F

i
3ðxÞ

h i>
ð18Þ

with the same notations as in Proposition 3.

2.7. Experimental validation

We now experimentally assess the accuracy of the

proposed light model for rectangular patterns Ω with

varying size jΩj, and by natural images, using a white sheet

of paper located on a plane parallel to the screen (Fig. 5).

Methodology: We assume that the sheet of paper is

Lambertian, and that its pose is known (we stuck the sheet

on a chessboard). Its normal will be denoted n. According

to Lambert's law, the luminance emitted by the sheet is

given, in every point x of its surface, by:

l xð Þ ¼ )ρðxÞ
π

n ( s xð Þ ð19Þ

where ρðxÞ is the albedo, which is a scalar: we assume for

simplicity in this experimental part that the camera cap-

tures graylevel images, and that the screen also displays

graylevel images. The albedo of the paper sheet being

uniform, we denote ρðxÞ ¼ ρ. It follows that:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x

lðxÞ2
r

¼ ρ

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x

n ( sðxÞð Þ2
r

ð20Þ

when summing over all the points x of the sheet. Thus, for

every point x:

lðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

xlðxÞ
2

q ¼ )n ( sðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

x n ( sðxÞð Þ2
q ð21Þ

This normalization basically eliminates the unknown

albedo ρ of the sheet of paper. The luminance lðxÞ is pro-

portional to the graylevel of the image captured by the

camera, up to the cos 4 α factor of the image irradiance

equation [20], which is also removed by the normalization.

Thus, the left hand side of Eq. (21) can be directly mea-

sured as data, and compared to its right hand side (model),

both qualitatively and quantitatively, for our model (Pro-

position 3) and both the other physics-based ones [2,4].

Rectangular patterns: We first consider rectangular

patterns with varying sizes (Figs. 6 and 7). As expected, a

punctual light source model [2] is accurate enough for

small patterns, while an extended model [4] well describes

large patterns. On the other hand, our model performs as

good in both cases.

Natural images: Now, the light emitted by a graylevel

image is approximated by that emitted by its quadtree

decomposition [10], which provides a non-uniform rec-

tangular approximation of the image with n rectangles

(see Fig. 8), and we use Proposition 4, setting each emitted

luminance Li0 to the mean graylevel of each rectangle. We

compare qualitatively and quantitatively our model with

Clark's [4] in Fig. 8 and Table 1 (we cannot include a

comparison with the anisotropic point light source model

here, since only the case of homogeneous luminance is

considered in [2], preventing one from using real images

as illuminants).

These experiments prove that our model can simulate

the behavior of a screen in various conditions. The number

n of rectangles is set to 64 in the following, which

experimentally seems to offer a good compromise

between accuracy (n¼1 corresponds to the gross approx-

imation of the image by its mean graylevel) and speed (if n

is equal to the number of pixels, we get the discrete



version of (9), which is untractable when working with

large images).

3. Camera/screen calibration

Besides photometric 3D-reconstruction techniques mod-

elling the light emitted by the screen, several other computer

vision applications, such as gaze tracking, need to refer to

pixels w.r.t. the three-dimensional Euclidean coordinate

system attached to the screen. On the other hand, when

referring to the 3D-geometry of the scene (or the gaze),

coordinates are usually expressed in the camera coordinates

system. Hence, in such applications requiring to handle both

systems, the camera pose (location and orientation) w.r.t. the

screen needs to be estimated beforehand.

In this section, we provide a theoretical study of this

pose calibration problem. In particular, we show that, by

constraining the orientation of the camera (its location is

still unconstrained), the calibration problem is unambig-

uous from four matched pairs of points and two mirror

poses. Regarding the minimal case with only three pairs, as

a finite number of solutions exist, we furthermore describe

a geometric heuristic for determining the good one which

is favorably compared against state-of-the-art.

3.1. Scope of this study

Our problem is that of estimating the camera pose w.r.t.

to the three-dimensional screen coordinate system, from

images of known reference 3D-points. As the reference

points should lie on the plane supporting the screen, a

solution must be sought without a direct view of these

points by using their reflections in a moving planar mirror

e.g., as in [11]. In the relevant literature, the input data

consist in n¼4 reference points [11,12,14] and kZ5 [12] or

kZ3 [11,14] mirror poses. Recently, the problem with only

n¼3 reference points and kZ3 mirror poses was solved

by predicting all the possible solutions, and selecting the

best one according to the reprojection error [13] or an

orthogonality-based criterion [15].

Algorithms for solving the pose problem from minimal

cases are widely reported in the literature [21]. A minimal

case is a set of equations where the solution set generally is

finite. Both the approach in [15] and the proposed approach

Fig. 4. Modelling of the light field emitted by three rectangular patterns

Ω
1, Ω2 and Ω

3. The resulting field (extended source) is the sum of the

contributions of each infinitesimal source xs . The width of the gray

arrows represents the intensity for three infinitesimal sources xs;1 , xs;2

and xs;3 , which is a function of both the pixel–object distance (inverse-of-

square falloff), the angle between the lighting direction and the direction

½0;0;1#> (cosine-like anisotropy), and the luminance.

Fig. 5. Experimental setup. Top: a screen (laptop HP EliteBook8570w) displaying a rectangular pattern (left) or a graylevel image (right) in front of a white

planar sheet of paper. Bottom: real images used in the experiments. All images are of size 1600-900 (screen resolution).



deal with minimal cases. Why dealing with minimal cases is

important? In addition to the theoretical interest one can

find in studying minimal cases, solutions fromminimal cases

are of practical interest because they allow one to exhaus-

tively evaluate all the possible poses [15]. In a sense, this

yields the foundations to robust approaches as, by comput-

ing minimal solutions from a large number of mirror poses

and reference points, one can check all possible poses by

minimizing for each one a strongly nonlinear energy, as in

the recent approach [16], and select the one with the smal-

lest residual. Each possible pose can then be interpreted, in

terms of the nonlinear energy, as a point inside each local

convergence basin, so that selecting one convergence basin

comes down to selecting one of the possible poses. This pose

is naturally a good candidate for nonlinear optimization. In

addition to lie within the convergence basin of the global

minimum, the ideal candidate for initialization should

obviously be quick to compute.

In this work we show that limiting the rotation of the

camera to a single angle, as described in the next para-

graph, reduces the minimal case to n¼3 reference points

and k¼2 mirror poses. A unique solution can be found by

introducing a new simple geometric criterion based on

line intersection.

3.2. Assumptions

A study of the camera/screen calibration problem for

smartphones was recently conducted by Delaunoy et al. in

[16]. The authors report experimental results which indi-

cate that the camera orientation is basically exactly the

same as that of the screen.

Fig. 6. Qualitative evaluation of light models for rectangular patterns Ω with varying sizes. From top to bottom: displayed patterns, with respective sizes

200-200, 400-400, 800-800 and 1600-900 (full size); data (left hand side of (21)); model (right hand side of (21)) using, respectively, our model

(Proposition 3), an isotropic extended model [4], or an anisotropic point–source model [2].

Fig. 7. Evolution of the RMSE between the data and different lighting

models, according to the size jΩj of the patterns.



We deal with the case where the camera of the con-

sidered multimedia devices is assumed to be integrated or

clipped onto the screen so it can be moved around an axis

parallel to the screen's x-axis (or equivalently, the y-axis).

Thus, we allow the webcam to have one degree of free-

dom, as shown in Fig. 9. With this hypothesis, the problem

tackled in the following is that of estimating the camera

location t in screen 3D-coordinates, and the angle θ char-

acterizing the rotational part.

As in recent previous works [15,16], we assume that the

intrinsic parameters of the camera are known in advance

and that the distortion is already corrected. Typically, we

can run any publicly available algorithm to estimate these

parameters. From a practical point of view, we intrinsically

calibrate the camera and compute undistorted images

using the plane-based approach in [22], from multiple

images of a chessboard.

3.3. Geometric model

3.3.1. Change of coordinates

In this work, the three-dimensional world coordinate

system is the Euclidean coordinate system attached to the

screen. If xAR3 represents the Cartesian coordinates of a

3D-point in the screen coordinate system then the coor-

dinates x0 of the same point in the Euclidean coordinate

system attached to the camera are given by:

x0 ¼ R> x)tð Þ ð22Þ

where RAR
3-3 is the rotation matrix describing the

orientation of the camera in the screen coordinate system,

and tAR3 is the camera center. It is necessary to use this

relation whenever a variable described in the screen sys-

tem (such as the light flux in Section 2) needs to be

referred to in the camera system (as in the photometric

stereo application described in Section 4). Hence, both R

and t need to be estimated.

The 3D-points x are furthermore projected onto image

2D-points xp of the camera according to the pinhole pro-

jection equation:

x>
p ;1

h i>
1KR> Ij)t½ # x> ;1

@ A> ð23Þ

where 1 denotes the projective equality, and KAR
3 is the

(upper-triangular) calibration matrix of the camera

intrinsic parameters commonly defined as in [23, p. 163].

Yet, the points x lying on the screen plane are not directly

visible from the camera. Thus, a planar mirror should be

Fig. 8. Qualitative evaluation of the model on natural images. Left: image displayed on the screen (top), and normalized luminance measured on the sheet

(bottom). Middle: image approximation by n¼4 rectangles (top); luminance simulated using our model (middle), luminance simulated using Clark's model

[4] (bottom). Right: same with n¼256. Note that, due to the configuration of the device, a bright area in the left of the displayed image results in a bright

area in the right of the sheet, as captured by the webcam.

Table 1

RMSE (multiplied by 104) between the measured normalized luminances

and those simulated according to an extended isotropic light model [4] or

to ours, for the 10 images shown in Fig. 5. Our model systematically

outperforms Clark's, confirming the importance of considering

anisotropy.

Real image n¼4 n¼64 n¼256

[4] Ours [4] Ours [4] Ours

Dog 1.14 0.109 1.12 9.8 1.10 0.98

Snow 2.20 0.78 2.19 0.67 2.19 0.66

Sun 1.46 1.17 1.55 1.14 1.56 1.15

Lake 1.76 1.11 1.62 0.97 1.62 0.95

Wall 1.34 0.94 1.53 0.94 1.55 0.98

Graveyard 1.05 1.04 1.15 0.82 1.17 0.79

Building 1.36 0.96 1.42 0.88 1.43 0.88

Street 1.43 1.13 1.66 0.57 1.70 0.55

Flower 1.90 1.03 1.95 0.97 1.96 0.98

Cave 3.05 1.26 2.76 1.02 2.76 1.01



introduced in the setup, and one should use k poses of this

mirror in order to estimate R and t.

3.3.2. Reflections in a planar mirror

We now consider the ith pose of the mirror. It is char-

acterized by the unit normal ni
AR

3 of its supporting

plane, oriented towards the camera, and the orthogonal

distance diAR from this plane to the origin of the screen

coordinate system. Actually, the mirror acts like a “gen-

erator” of virtual 3D-points by reflecting (in the geome-

trical sense) real 3D-points in the mirror plane. Keep in

mind that these virtual points will be seen from the

camera viewpoint when there is no direct view of the

corresponding real points. The virtual point x i (Fig. 10), the

so-called mirrored point, which is the reflection of a real

point x in the mirror plane w.r.t. its ith pose, satisfies the

reflection equation:

x i ¼ I)2nini>
h i

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

U i
AR

3-3

x)2dini ð24Þ

where U
i
is orthogonal with determinant )1.

The images captured by the camera are then obtained

by applying the projection Eq. (23) to the mirrored point

x i, that is to say:

h

xi
p

>
;1
i>

1KR> Ij)t½ #Ui x> ;1
@ A> ð25Þ

where Ui
AR

4-4 is the reflection matrix in homogeneous

coordinates w.r.t. the ith pose of the mirror:

Ui ¼ U
i )2dini

0> 1

" #

ð26Þ

Let us now introduce a dual reformulation of this setup

in terms of “virtual cameras”, which are those obtained by

considering reflections of the real camera.

3.3.3. A geometric interpretation of the reflections as virtual

cameras

Another interpretation of Eq. (25) can be obtained by

remarking that:

Ij)t½ #Ui ¼ U
ij)ðtþ2diniÞ

h i

ð27Þ

Ij)t½ #Ui ¼U
i½Ij) U

i
t)2dini

B C

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

t
i

# ð28Þ

Ij)t½ #Ui ¼U
i
Ij)t

i
h i

ð29Þ

where we used the identities ðU iÞ2 ¼ I and U
i
ni ¼ )ni to

go from (27) to (29). Hence, xi
p can also be seen as the

image of real 3D-point x by a “virtual” camera:

½xi>

p ;1#
>
1KR>U

i

|fflffl{zfflffl}

R
i>

Ij)t
i

h i

x> ;1
@ A> ð30Þ

where t
i
is the virtual camera location, the indirect

orthogonal matrix R
i ¼U

i
R is the virtual camera orienta-

tion (it is not a rotation matrix since det R
i ¼ )1), while

the intrinsic parameters are the same as the real camera.

Obviously, this camera is nothing else than that obtained

by reflection of the real camera while both cameras pro-

duce exactly the same images for a real point and its cor-

responding virtual reflection.

3.4. Estimation of R from a single mirror pose

For each mirror pose, as the virtual camera intrinsic

parameters are de facto known, the virtual camera pose

ðR i
; t

iÞ can be unambiguously estimated using perspective-

n-points (PnP) algorithms, from at least n¼4 matched

pairs fðx; xi
pÞg, for a cost of O(n) in most recent approaches

[24]. When n¼3, the problem is known as perspective-3-

points (P3P) [25], and there is a fourfold ambiguity i.e.,

four possible solution-pairs ðR i
; t

iÞ exist (cf. Section 3.6).

Let us first assume that nZ4. The solution ðR i
; t

iÞ is

unique, yet we are interested in recovering ðR; tÞ from

ðR i
; t

iÞ. The equations to be solved are hence:

U
i R¼ R

i

U
i
t)2dini ¼ t

i

8

<

:
⟺

R¼U
i R

i

t¼U
i
t
i)2dini

8

<

:
ð31Þ

but they cannot be directly used to recover R and t, since

U
i
, di and ni are unknown.

3.4.1. Estimation of R

Even if we use the constraints saying that R is a direct

orthogonal matrix, R
i
is an indirect orthogonal matrix, and

U
i
is a symmetry matrix, the first equation of (31) admits

an infinity of solutions ðU i
;RÞ. For instance, denoting

R
i ¼ l1; l2; l3

@ A>
, the (trivial) solution:

1 0 0

0 1 0

0 0 )1

2

6
4

3

7
5; l1; l2; ) l3

@ A>

0

B
@

1

C
A

is valid. Furthermore, if we post-multiply the solution for

U
i
by an arbitrary rotation matrix and we pre-multiply the

Fig. 9. Geometric setup. To estimate the location t of the camera and the

angle θ describing its orientation w.r.t. the screen (red system), we use

kZ2 poses M
i ; i¼ 1…k, of a planar mirror. By matching at least n¼3

reference points (x1 , x2 and x3 here) with their images captured by the

webcam after reflections in the mirror, one estimate of θ can be obtained

for each mirror pose, and the camera center can be estimated as the

intersection of the lines L
i , passing through the images t

i
of t by reflec-

tions, and oriented along the normals ni characterizing the mirror poses.

See also Figs. 10 (2D-view) and 11 (real-world example).



solution for R by the transpose of this rotation matrix, the

obtained solutions remain valid. Yet, such solutions are not

consistent with the assumption discussed in Section 3.2,

which constrains the rotation to a single angle around the

x-axis:

R¼
1 0 0

0 cos θ ) sin θ

0 sin θ cos θ

2

6
4

3

7
5 ð32Þ

where θ4 0 for multimedia devices with integrated cam-

era [16], and θa0 for cameras clipped onto a screen, as in

the example of Fig. 9.

This constraint reduces the number of possible solu-

tions, but we know that there exists at least one exact

solution, corresponding to the real rotation. Is this solution

unique? From the equation U
i
R

i ¼ R, and using (32), we

obtain a linear system of equations for the six independent

coefficients of the symmetric matrix U
i
:

U
i

11 U
i

12 U
i

13

U
i

12 U
i

22 U
i

23

U
i

13 U
i

23 U
i

33

2

6
6
6
4

3

7
7
7
5

R
i

11 R
i

12 R
i

13

R
i

21 R
i

22 R
i

23

R
i

31 R
i

32 R
i

33

2

6
6
6
4

3

7
7
7
5

¼
1 0 0

0 cos θ ) sin θ

0 sin θ cos θ

2

6
4

3

7
5 ð33Þ

which provides us with nine equations. Keeping only the

four ones where we have a 0 value in the right-hand side,

and both those obtained by remarking that R22 ¼ R33 and

R23 ¼ )R32, those six equations can be synthetized into a

homogeneous 6-6 linear system:

C yi ¼ 0 ð34Þ

where:

C¼

R
i

12 R
i

22 R
i

32 0 0 0

R
i

13 R
i

23 R
i

33 0 0 0

0 R
i

11 0 R
i

21 R
i

31 0

0 0 R
i

11 0 R
i

21 R
i

31

0 R
i

12 )R
i

13 R
i

22 R
i

32)R
i

23 )R
i

33

0 R
i

13 R
i

12 R
i

23 R
i

22þR
i

33 R
i

32

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð35Þ

and

yi ¼ U
i

11; U
i

12; U
i

13; U
i

22; U
i

23; U
i

33

h i>
ð36Þ

When the system (34) is well-determined, its solution

in yi is unique and can be computed by solving a total

least-squares problem through the singular value decom-

position of C. As the unicity of solution U
i
depends on the

rank of C, it can be proven that, in general, the solution is

unique. Nevertheless, degenerate configurations exist: for

instance, if ðR i

12;R
i

13Þ ¼ ð0;0Þ i.e., the axis of rotation of the

mirror is the same as that of the true camera, then the

solution is not unique. A simple way to detect such

degenerate cases is to check the singular values of C.

From the solution for yi in Eq. (34), we construct the

candidate reflection matrix U
i
, which is normalized by

observing that U
i
is a symmetry matrix with det U

i ¼ )1.

It is then straightforward to obtain θ using:

cos θ¼ ðU i
R

iÞ22; sin θ¼ ðU i
R

iÞ32 ð37Þ

3.4.2. Estimation of ni

Before estimating t, it is necessary to deduce ni from U
i
,

knowing from (24) that:

U
i ¼ I)2nini>

⟺nini > ¼ 1
2 I)U

i
B C

ð38Þ

Writing the singular value decomposition of the (sym-

metric) second member leads to:

U
iΣi

U
i > ¼ 1

2 I)U
i

B C

ð39Þ

where U
i is an order-3 orthogonal matrix, and Σi is the

diagonal matrix of the singular values, sorted by des-

cending order. Then, ni ¼ 7U
i½1;0;0#> , where we solve

the residual ambiguity on the sign of ni, assuming that the

mirror is oriented towards the camera.

Knowing from (31) that:

t¼U
i
t
i)2dini ð40Þ

the value of t depends on di, which is still unknown.

Hence, this shows that it is not possible to estimate t from

a single mirror pose.

Fig. 10. 2D-representation of the geometric model. A point x on the

screen S is reflected by the mirror Mi , i¼1,2, and projected on the pixel

xi
p of the real camera (blue line), as if the camera was directly observing

the mirrored point x i . On the other hand, the reflection by the mirror Mi

defines a mirrored (virtual) camera which directly observes the real point

x (red line).



3.5. Estimation of t from kZ2 mirror poses

Given k mirror poses, we obtain a system of 3k equa-

tions (40) in 3þk unknowns ðt; fdigÞ:

tþ2d1n1 ¼U
1 t

1

⋮

tþ2dknk ¼U
k
t
k

8

>>>>><

>>>>>:

ð41Þ

(in the case k¼2, we obtain a system of 6 linear equations

in 5 unknowns ðt; d1; d2Þ).
This problem comes down to intersecting k straight

lines in R3. The interpretation of Section 3.3.3 in terms of

virtual cameras provides us with a geometric interpreta-

tion of this line intersection problem. Indeed, remember-

ing that U
i ¼ I)2nini> , Eq. (40) is rewritten as:

tþ2 ni> t
iþdi

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

αi

0

@

1

Ani ¼ t
i ð42Þ

which indicates that, in the absence of noise on data, the

true camera center is exactly located at the intersection of

the k lines L
i; i¼ 1…k, passing through the centers t

i
of

the virtual cameras, and oriented by the vectors ni (mirror

normals), as illustrated in Figs. 9 and 10. Hence, as long as

the vectors ni are not collinear, this problem should admit

exactly one solution in the ideal case where the lines L
i

actually intersect each others. Due to noisy measurements

and numerical approximations, this is obviously wrong in

real-world scenarios, but an approximate solution can be

found by solving the intersection problem in the least-

squares sense.

Eq. (42) gives rise to a new linear system with 3k

equations and 3þk unknowns ðt; fαigÞ, thus over-

determined as soon as kZ2. When k¼2, it is written as:

I 2n1 03-1

I 03-1 2n2

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

AAR
6-5

t

α1

α2

2

6
4

3

7
5

|fflfflffl{zfflfflffl}

uAR
5

¼
t
1

t
2

" #

|fflffl{zfflffl}

bAR6

ð43Þ

This system usually admits no exact solution, but

its (ordinary) least-squares solution can be obtained by

solving the associated normal equations:

I n1 n2

n1>
2 0

n2>
0 2

2

6
4

3

7
5

t

α1

α2

2

6
4

3

7
5¼ 1

2

I I

2n1>
01-3

01-3 2n2>

2

6
4

3

7
5

t
1

t
2

" #

ð44Þ

It can be shown that the determinant of the pseudoinverse

of A, defined in Eq. (43), is equal to Jn1 - n2
J
2. Hence, as

predicted, as long as both mirror poses are not parallel and

non-degenerate (so that U
i
and ni, i¼1,2, are unambigu-

ously determined), the (approximate) solution in ðt; α1; α2Þ
is unique.

Clearly, robustness is improved when ensuring the

angle between n1 and n2 is high enough, and when con-

sidering more than k¼2 poses. In this case, removing

outliers according to any outlier detection heuristic such as

RANSAC [26] may be worthwhile. Since each pose provides

us with an estimation of θ, a robust estimation of this

angle can also be performed at this step.

Eventually, let us remark that the system Au¼ b,

defined in Eq. (43), satisfies

JAu)bJ2 ¼
Xk

i ¼ 1

d? ðt;LiÞ2 ð45Þ

which provides a geometric interpretation of its residuals

in terms of the orthogonal distances d? ðt;LiÞ from the

estimate t to the lines L
i.

We can illustrate the proposed approach by applying

our algorithm to images captured by the laptop considered

Fig. 11. Example result of geometric calibration of a laptop with integrated camera. (a–c) Three out of the six calibration images captured by the webcam. A

chessboard pattern is displayed on the screen, and a mirror provides 48 correspondences per image through reflection (the mirror is partly visible on the

right images). (d–e) Reconstructed geometric setup (the images (a–c) correspond to the poses 1, 5 and 6 of the reconstruction, and E describes the

calibration pattern located on the screen). For this device, we estimated θ4 )31.



in the experiments of Section 2, as seen in Fig. 11. In such

real-world applications, in order to have at ones disposal a

large number of point matches between image-pairs, we

use a chessboard pattern whose corners are easily detec-

ted by standard algorithms.

3.6. Estimation of ðR; tÞ in the ambiguous case where n¼3

When only n¼3 matched pairs fðx; xi
pÞg are available,

the pose ðR i
; t

iÞ of the ith virtual camera can still be esti-

mated by any P3P algorithm, but only up to a fourfold

ambiguity. Thus, if k poses of the mirror are considered,

the previous rationale provides us with 4k possible solu-

tions for ðR i
; t

iÞ. We can exhaustively compute all these

solutions, and select the one with the lowest geometric

residual (45). This heuristic is similar to the state-of-the-

art method of Takahashi et al. [15], who assess all their

candidates so as to keep the one which fits best an alge-

braic constraint. As stated earlier, such minimal case

solutions can be considered “good enough” initial esti-

mates for most accurate iterative calibration methods e.g.,

like in [16].

To evaluate our approach taking into account con-

straints on the orientation of the camera, we will thus

compare against [15] in this minimal case, keeping in mind

that both calibration methods can obviously be made

increasingly accurate by using more pairs of matched

points and more mirror poses.

3.7. Quantitative evaluation

As in [15], we assume to have at ones disposal a

minimal input data consisting of a set of n¼3 reference

points and k¼3 mirror poses. Given the matched pairs

fðx; xi
pÞg, we computed the four admissible poses of each

virtual camera using a standard P3P algorithm [26], and

estimated the camera pose using the state-of-the-art

approach from [15] and ours. For both methods, we mea-

sured the mean Riemannian distance ER between the

estimated R and the ground truth matrix, and the RMSE Et
on t, for several levels of noise on the 2D-observations

(zero-mean Gaussian noise with standard deviation σ) and

different camera-mirror distances di ¼ d; i¼ 1…k.

In these synthetic experiments, we used the same

intrinsic parameters as in [15], and similar values for the

Fig. 12. Quantitative evaluation of the proposed extrinsic calibration method. We show the error rate ER on the rotation matrix and the error rate Et on the

camera center location, against the noise level σ added to the 2D-observations (in pixels, top), and the orthogonal distance d to the mirrors (in pixels,

bottom). Our method outperforms the state-of-the-art method from [15] with k¼3, and reaches comparable results even in the case k¼2, which is

impossible to consider in [15].



other parameters. The distances di between the camera

and the mirrors are set to di ¼ d¼ 500; 8 i¼ 1…k. The

reference points are x1 ¼ ½0;0;0#> , x2 ¼ ½225;0;0#> and

x3 ¼ ½0;225;0#> . The mirror normals are set to ni ¼
)½ cos ai sin bi; sin ai sin bi; cos bi#> , with ða1; a2; a3Þ ¼
ðπ=4; )π=5; π=6Þ and ðb1; b2; b3Þ ¼ ðπ=7; )π=7; π=9Þ. A

Gaussian noise with zero-mean and standard deviation

σ¼0.01 is added to the 2D-measurements. The rotation R

is set to the identity, and t is generated by assigning a

random value within ½0;20# to each of its components. To

obtain the results in Fig. 12, we performed 100 trials before

meaning the error rates ER and Et.

Results shown in Fig. 12 prove that the proposed

method offers better performances against noise and dis-

tant mirrors than state-of-the-art. We also notice that

using only k¼2 mirror poses (we chose both first poses)

offers acceptable performances on such synthetic data.

4. Application to 3D-reconstruction

Up to this point, we have introduced an explicit closed-

form model for the light emitted by the screen, considered

as an extended anisotropic source, and provided a thor-

ough geometrical study of the camera pose estimation

problem, using a minimal amount of inputs. Let us now

describe, as an example application, a classical computer

vision problem involving both these photometric and

geometric constraints.

In the photometric stereo context [1], the 3D-

reconstruction of a surface is obtained by successively illu-

minating the surface from various directions. Considering

realistic lighting models for photometric stereo has recently

become an important research direction [27,28], since

neglecting radial and distance attenuation of light causes a

strong low-frequency bias in real-world applications (“potato

chip”-like 3D-reconstructions [29], see Fig. 17). Up to now,

extended sources have not been really considered: apart

from Clark's work [4], most photometric stereo approaches

using such sources have considered infinitely distant [3,5–7]

or pointwise [2] approximations.

In this section, we show how to use images displayed

on the screen as extended light sources for photometric

stereo (Fig. 13).

4.1. Photometric stereo setting

The screen successively displays m different images in

front of a still person (Fig. 13). For simplicity, we consider

here graylevel images, no additional lighting (black room

setting), and assume that the luminance emitted by these

images is the same in every channel. The case of color

images illuminating a colored scene being way more

complicated, it is left for future prospect.

Thosem images behaving as m light sources, as described

in Section 2, each graylevel image produces a light field si

which is given by Proposition 4: at each surface point x, we

can thus define a light matrix SðxÞAR3-m, by concatenating

all the light vectors: SðxÞ ¼ s1ðxÞ; …; smðxÞ
@ A

. In the same

way, the 3m RGB values collected at pixel xp are stacked in

the matrix IðxpÞARm-3 defined by:

IðxpÞ ¼
I1RðxpÞ I1GðxpÞ I1BðxpÞ

⋮

ImR ðxpÞ ImG ðxpÞ ImB ðxpÞ

2

6
6
4

3

7
7
5

ð46Þ

According to Lambert's law, the image formation model

is given by:

IðxpÞ ¼ SðxÞ>nðxÞρðxÞ> ð47Þ

where ρðxÞ ¼ ½ρRðxÞ; ρGðxÞ; ρBðxÞ#> is the albedo vector,

representing the percentage of light re-emitted by the

surface in each channel, and nðxÞ is the unit outward

normal to the surface. In Proposition 4, the light vectors

are given in screen coordinates: they need to be converted

into camera coordinates as described in Section 3.

4.2. Iterative resolution

The color photometric stereo model (47) is similar to

that considered by Barsky and Petrou in [30], with the

major difference that in our case the light matrix SðxÞ
depends on x, which increases the accuracy of the model,

but also prevents us from obtaining a closed-form 3D-

Fig. 13. As a person watches a slideshow of images (first row, we show 4 out of 40 images), pictures are recorded (second row). The pictures displayed on

the screen serving as light sources, we employ the photometric stereo approach to recover the geometry and photometry of the scene.



reconstruction. To deal with this problem, we follow an

iterative procedure which alternatively estimates the sur-

face and updates the lights. Such iterations were already

proposed in recent works dealing with near-light photo-

metric stereo [31,27]. Given the current estimate xq of the

3D-points representing the surface (in camera coordi-

nates) at iteration q, a typical update writes:

1. use the camera pose to compute the 3D-points xq in

screen coordinates;

2. deduce the light vectors siðxqÞ in screen coordinates;

3. use the camera pose to compute these light vectors

siðxqÞ in camera coordinates;

4. solve Eq. (47) by least-squares to estimate nðxqÞ and

ρðxqÞ [30];
5. integrate the normals nðxqÞ into new 3D-points xqþ1

[32].

In the experiments, we used as initial guess x0 a plane

parallel to the screen at distance d, with d being an a priori

estimate of the mean screen–object distance. The solution of

the integration subproblem providing a solution only up to a

global scale (perspective ambiguity), disambiguation was

performed, as advised in [27], by setting to d the mean

screen–object distance. This prevents any drift in the iterative

process, which typically converges after 5–10 iterations [27].

In all our experiments, the algorithm was run until con-

vergence, defined as a mean relative change of the 3D-points

xk smaller than 10)6. Each iteration is around 10 s on a I7

processor, with non-optimized Matlab code.

4.3. Qualitative results

We finally present some qualitative 3D-reconstruction

results using the same HP EliteBook laptop as in the

Fig. 14. Rectangular patterns used as illuminants. Top: the m¼4 rectangular patterns displayed on the screen. Middle and bottom: the corresponding

images captured by the webcam.

Fig. 15. 3D-reconstructions by the proposed photometric stereo technique, for the two series of m¼4 images shown in Fig. 14. For the face dataset, we

manually removed the eyes from the reconstruction domain, since they are purely specular. Also note that the reconstruction of the face appears more

“noisy” than that of the pillow: this is the consequence of slight displacements of the person during the acquisition.



experiments of Sections 2 and 3, which has a 1600-900

matte screen and a 640-480 integrated camera, whose

pose was calibrated as described in Section 3. Experiments

were conducted using both uniform rectangular patterns

and natural images, considered as light sources as descri-

bed in Section 2.

Let us first consider the usual case or rectangular illu-

mination patterns [2,3,5,6]. In the experiments of Fig. 14,

we used m¼4 rectangles to illuminate a pillow and a

human. Using the proposed photometric stereo method,

we obtained the 3D-reconstructions shown in Fig. 15. Note

that the locations of the rectangles are very different in

each case, which maximizes the condition number of the

illumination matrix S in every point of the scene and thus

allows us to obtain very satisfactory 3D-reconstructions

using few illumination patterns.

When dealing with natural images instead of homo-

geneous rectangles, we lose the ability to control this

condition number, and more illumination conditions need

to be introduced. We used as source images the 10 natural

images shown in Fig. 5, that were flipped around the

horizontal axis, the vertical axis and both axes, so as to

obtain a total of 40 images with reasonable variations in

the lighting directions (this “trick” was proposed by Clark

in [4]). Results shown in Fig. 16 are qualitatively satisfac-

tory: the reconstructed shape and reflectance are suffi-

ciently realistic to be used for instance in augmented

reality applications. Let us emphasize that metrological

accuracy is not the objective here: for such applications of

photometric stereo, much more controlled environments

are usually considered [33,34], and the outliers to the

model have to be treated. Shadows and highlights

[30,35,36], as well as depth discontinuities [32], represent

well-known difficulties. In the case of extended sources,

the penumbra effects discussed in Section 2 would

represent additional difficulties that are less studied:

neglecting them causes the surface slope and the albedo to

Fig. 16. Three views of a relighting of the 3D-reconstruction, with or without color albedo warped onto the surface, obtained from the images of Fig. 13.

Note that shadows, highlights and discontinuities create some artifacts, since all the potential outliers to Lambert's law were ignored. Comparing this 3D-

reconstruction to the one obtained using naive models (Fig. 17) confirms the importance of considering a full geometric and photometric model rather than

naive simplifications.

Fig. 17. 3D-reconstruction by photometric stereo, using the standard directional approximation [3,5,7]. Neglecting the extended behavior of the screen

creates a large-scale bias, preventing realistic applications.



be over-estimated in penumbra areas, as can be seen in

Fig. 16.

Even though we neglected all these outliers, taking into

account the extended behavior of the source already

improved considerably, at least qualitatively, the accuracy

of the 3D-reconstruction, compared to more naive models

considered for instance in [3,5,7], as illustrated in Fig. 17

where the mean light directions and intensities were

estimated using [37] and considered as models for the

light instead of the proposed extended anisotropic model.

5. Conclusion and perspectives

We have tackled both the problems of realistically mod-

elling the light field emitted by a graylevel image displayed

on the screen of a multimedia device, and of geometrically

calibrating an attached camera with respect to this screen.

We first showed that a very general closed-form expression

of an extended anisotropic planar illuminant with spatially-

varying luminance could be obtained without empirical

approximation, providing an accurate model for the light

emitted by the screen. Then, we proposed a theoretical study

of the pose estimation problem for multimedia devices,

which incorporates the natural geometric constraints

induced by such devices. Finally, we introduced a cheap and

ludique 3D-reconstruction application, where a 3D-model of

a person is reconstructed while watching a collection of

images.

Up to this point, the main drawback of the proposed

photometric stereo application is the CPU time required to

iteratively refine the 3D-model. Yet, this is not much of an

issue, since the relevant literature already offers two ways

of accelerating screen-based photometric stereo applica-

tions. First, the process can be made multi-scale and por-

ted onto a GPU, as did Nozick in [5]. Second, a single image

can provide 3D-reconstruction, if one considers the screen

is displaying color images: this is what Schindler studied

in [3], following the approach of Hernandez et al. in [38].

Yet, the latter requires the observed scene to have uniform

reflectance: studying the case of both colored illuminants

and colored scene remains, to the best of our knowledge,

an open problem which is an interesting future direction

for research.

We also mentioned in Section 2.3 the problem of partial

occlusion of the screen, resulting in penumbra effects. This

is very easy to model, and to use in rendering through the

raytracing technique. Yet, it is a much more complicated

issue in the 3D-reconstruction framework, since visibility

of a pixel from a point on the surface depends on the

location of this point (and on the local orientation of the

surface), which is precisely the unknown. Theoretically,

this could be naturally handled using an iterative frame-

work, by computing the visibility at each iteration, based

on the previous estimation of the shape. Yet, this would

require an efficient raytracer, and hence porting the whole

application to GPU. We believe that such an extension

would be a very interesting perspective, and open the door

to efficient photometric 3D-reconstruction under a wide

variety of extended sources, including natural indoor

illumination (windows, neon lightings etc.).

We also plan to study how the proposed models can be

used in other computer vision applications. For instance,

accurately locating the screen w.r.t. the camera would be

useful for gaze-tracking applications, which usually

require introducing an additional device [39]. As shown in

[40], the detection of one person's eye provides important

3D-clues: we believe that coupling such a technique with

the proposed photometric and geometric models would

result in an improved gaze-tracking system which would

involve nothing but a computer screen and an integrated

webcam.
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