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Abstract

This paper deals with local existence and uniqueness results for a transient two-dimensional combined nonlinear

radiative-conductive system. This system describes the heat transfer for a grey, semi-transparent and non-scattering

medium with homogeneous Dirichlet boundary conditions. We reformulate the full transient state system as a fixed-

point problem. The existence and uniqueness proof rests upon the Banach fixed-point Theorem assuming the initial

data T0 is non-negative and sufficiently small.

Keywords: Nonlinear radiative-conductive heat transfer system, Semi-transparent medium, Local

existence-uniqueness, Banach fixed point Theorem.
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1. Introduction and main results

The aim of this work is to prove the existence and uniqueness of the local solution for a transient two-dimensional

combined radiative-conductive system with homogeneous Dirichlet boundary conditions when the initial condition is

assumed to be small and non-negative . The medium is assumed grey, semi-transparent and non-scattering.

Let us consider a bounded, open, connected and convex set Ω ⊂ R2 with C∞ boundary. Let D be the unit disk,

for the problem considered, β ∈D, x ∈ Ω, ξ ∈ [0, τ] for τ > 0, X = Ω×D and Qτ = (0, τ)×Ω. Let n be the outward

unit normal to the boundary ∂Ω. We denote

∂Ω− = {(x,β) ∈ ∂Ω ×D such that β.n < 0}.
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(Jean Rodolphe ROCHE), didier.schmitt@univ-lorraine.fr (Didier SCHMITT ), mohamed.boutayeb@univ-lorraine.fr (Mohamed
BOUTAYEB)
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The full system of a combined nonlinear radiation-conduction heat transfer is written in dimensionless form,

I(ξ, x,β) + β.∇xI(ξ, x,β) = T 4(ξ, x) (ξ, x,β) ∈ [0, τ] ×X (1)

∂ξT (ξ, x) − ∆T (ξ, x) + 4πθT 4(ξ, x) = θ

∫
D

I(ξ, x,β)dβ (ξ, x) ∈ (0, τ] ×Ω (2)

T (ξ, x) = 0 (ξ, x) ∈ (0, τ] × ∂Ω (3)

I(ξ, x,β) = 0 (ξ, x,β) ∈ [0, τ] × ∂Ω− (4)

T (0, x) = T0(x) x ∈ Ω (5)

where ∂ξT = ∂T/∂ξ, θ is a non-negative constant, and T0 is also non-negative. In this paper we consider that the mean

radiation intensity of the blackbody Ib(T ) verifies the Stefan-Bolzmann law which is proportional to T 4. The radiative

transfer equation (RTE) (1) and the conductive equation (NHE) (2) are coupled via the source term.

Radiative-conductive heat transfer problems is the subject of various fields of engineering and science.

In the literature, this problem is studied using two different types of model. In the first type, the problem is described

using an unique parabolic partial differential equation. In the second type of model, the modeling of the radiation and

conduction is given by a coupled system of partial differential equations where each phenomenon is described by an

equation.

There is a huge mathematical theory in the first case, see [5, 6, 7, 8, 26, 39, 3, 4, 9, 28, 29, 30, 31]. For example,

the paper [5] is devoted to the study of a nonstationary nonlinear nonlocal initial boundary value problem governing

radiative conductive heat transfer in opaque bodies with surfaces whose properties depend on the radiation frequency.

This paper is a natural extension of the work done in [7], where the corresponding stationary problem was treated. In

[25], the authors considered the conductive radiative heat transfer in a scattering and absorbing medium bounded by

two reflecting and radiating plane surfaces. The existence and uniqueness of a solution of this problem is established

using an iterative procedure.

In [30], M. Laitinen and T. Tiihonen studied the well-posedness of a class of models describing heat transfer by

conduction and radiation in the stationary case. The employed theory covers different types of grey materials, that is,

both semitransparent and opaque bodies as well as isotropic or non-isotropic scattering/reflection provided that the

material properties do not depend on the wavelength of the radiation.

In M. M. Porzio and O. López Pouso [38] have proved the existence of a solution of the coupled radiation con-

duction system in the 3D case using accretive operators theory. In [38] the authors have assumed that the intensity of

radiation emitted from the blackbody in a frequency ν obeys the Planck’s law and then they considered a scattering

term, that introduces some regularization effects which are not present in our model.

In this paper, we consider the second type of model where the phenomenon is expressed as a coupled system of

nonlinear partial differential equations. In previous works we can find theoretical results of existence and uniqueness
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in one-dimensional case. Indeed, in the Kelley’s paper [24], the authors considered a steady-state combined radiative-

conductive heat transfer. In Asllanaj and al.[12] the authors generalized the Kelley’s study and they proved the

existence and uniqueness of the 1-D system of coupled radiative conductive in the steady state associated to the non-

homogeneous Dirichlet boundary with the black surfaces. The medium is assumed to be a non-grey ani-isotopically

absorbing, emitting, scattering, with axial symmetry and non homogeneous. They considered a nonlinear conduction

equation due to the temperature dependence of the thermal conductivity. However, the approach developed by Asllanaj

and al. [12] is just adaptable to 1D dimensional geometry. In this paper we prove the existence and uniqueness of local

solutions for the nonlinear system (1)-(5) with the non-negative non-homogeneous Dirichlet boundary conditions if

the initial data T0 is sufficiently small and non-negative .

Recently, the attention has been accorded to numerical methods to study the radiative transfer and the nonlinear

radiative-conductive heat transfer problem including optimal control problems, for more details see [10, 11, 12, 13,

14, 17, 19, 20, 21, 22, 23, 34, 35, 36, 37, 33]. Asllanaj and al. [13] simulated transient heat transfer by radiation and

conduction in two-dimensional complex shaped domains with structured and unstructured triangular meshes working

with an absorbing, emitting and non-scattering grey medium.

In order to state the main result, we introduce the following notations

Lp(Qτ) = Lp(0, τ; Lp(Ω)) for all p ∈ [1,∞)

W2,1
2 (Ωτ) := {φ s.t φ, φξ, φxi , φxi,x j ∈ L2(Ω)}

We will establish that the solution of the problem (1)-(5) is a fixed point of a well posed map H in the set

E1 = {T ∈ W2,1
2 (Ωτ); ‖T‖L8(Qτ) 6 M},

where M is a non-negative constant. We assume that the initial data T0 is non-negative , belongs to L5(Ω) and satisfies

the following hypothesis

‖T0‖L5(Ω) 6
5

√
15θπM8

8
. (6)

Let N =
√
πM4 and

E2 = {I ∈ L2(0, τ; L2(X)); ‖I‖L2(0,τ;L2(X)) 6 N}.

The main result of this paper is the following Theorem.

Theorem 1.1. If the initial data T0 verifies (6) then there exists τ? > 0 such that for all τ 6 τ?, the system of equation

(1)-(5) has a unique local solution (T, I) such that T ∈ E1 and I ∈ E2. Moreover , there exists C = C(Ω, τ, θ) such that

‖I‖L2(0,τ;L2(X)) 6
√
π‖T‖4L8(Qτ)
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and

‖T‖W2,1
2 (Qτ) 6 C

(
‖G‖L2(Qτ) + ‖T0‖L2(Ω)

)
. (7)

This paper is organized as follows: In the next section, we introduce the model describing the radiative-conductive

heat transfer system in a grey, semi-transparent and non-scattering medium. The section 3 is devoted to construct

a contraction mapping H on a suitable set, whose fixed point gives a solution of the nonlinear coupled radiative

conductive heat transfer system (1)-(5).

2. Model problem

Let Ω? be an open, bounded, connected and convex domain with C∞ boundary and

∂Ω?
− = {(x?,β) ∈ ∂Ω? ×D such that β.n < 0}.

The radiative transfer equation (RTE) in a two dimensional gray absorbing and emitting medium is given by, see

[13, 23]

β.∇x? I?(t, x?,β) + κI?(t, x?,β) = κn2Ib(T?(t, x?)), (t, x?,β) ∈ [0, τ?] ×Ω? ×D, (8a)

I?(t, x?,β) = Ib(T?(t, x?)), for (t, x?,β) ∈ [0, τ?] × ∂Ω?
− , (8b)

where I? is the radiation intensity, κ is the absorption coefficient of the medium and n is the refractive index.

In this work, the refractive index and the absorption coefficient are assumed to be equal to one, n = 1, κ = 1 m−1.

T?, the temperature of the medium and Ib(T?) is the mean radiation intensity of the blackbody which obeys Stefan-

Boltzmann’s law:

Ib(T?) =
σB

π
T?4

,

where σB = 5.6698 × 10−8 Wm−2K−4 is the Stefan-Boltzmann constant. In this paper the authors have assumed

Dirichlet boundary conditions. Emission and absorption of radiation by the medium lead to a radiative source term in

the energy equation of the medium. It is defined by the following relations:

S ?
rad(t, x?) = κ{G?(t, x?) − 4πIb(T?(t, x?))} (t, x?) ∈ [0, τ?] ×Ω?,

where G? is the incident radiation intensity,

G?(t, x?) =

∫
D

I?(t, x?,β) dβ (t, x?) ∈ [0, τ?] ×Ω?.
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The over all energy conservation links the three different modes of the heat transfer known as conduction, radiation

and convection. In this study, the convection has not been considered, then we have the following conduction equation

ρcp
∂T?

∂t
(t, x?) − kc∆T?(t, x?) = S ?

rad(t, x?) (t, x?) ∈ (0, τ?] ×Ω? (9a)

T?(0, x?) = T?
0 (x?) x? ∈ Ω? (9b)

T?(t, x?) = g?(x?), for (t, x?) ∈ [0, τ?] × ∂Ω?. (9c)

The data ρ, cp, and kc are the density, the specific heat capacity, and the thermal conductivity of the medium, respec-

tively. In this work, they are assumed to be constant. The NHE (9a) and the RTE (8a) are strongly coupled by the

incident radiation intensity G? and the temperature T?.

Let ξ =
αt
L2 the dimensionless time where α =

kc

ρcp
is the thermal diffusivity. Let Tre f be a reference temperature

and L a characteristic length, then we obtain the following dimensionless quantities:

x =
x?

L
, τ =

ατ?

L2 , T =
T?

Tre f
,

T0 =
T?

0

Tre f
, G =

G?

4σBT 4
re f

, S rad =
S ?

rad

4σBT 4
re f

,

I =
I?

Ire f
and g =

g?

Tre f

where

Ire f =
σB

π
T 4

re f

is a dimensionless constant, see [23]. The conduction radiation number which is denoted Ns satisfies the following

expression:

Ns =
kcκ

4σBT 3
re f

.

and we denote

θ =
κ2L2

Ns

Consequently, we obtain the dimensionless full system of a combined nonlinear radiation-conduction heat transfer

system (1)-(5) when the Dirichlet boundary condition g is equal to zero.

3. Local existence and uniqueness of solutions for the coupled system

In this section, we show that the existence of a solution T , and implicitly the existence of a solution I, of the

coupled system of equations (1)-(5) is related to the existence of a solution of a fixed point problem. We will apply the

fixed point Theorem to a well-chosen map H. To do so, we must show that this map H is well defined and completely

continuous. At first, we recall the definition of the set E1

E1 = {T ∈ W2,1
2 (Ωτ); ‖T‖L8(Qτ) 6 M}
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and we introduce the following sets

E2 = {I ∈ L2(0, τ; L2(X)); ‖I‖L2(0,τ;L2(X)) 6 N},

E3 = {G ∈ L2(Qτ); ‖G‖L2(Qτ) 6
√
πN},

The map H : E1 −→ E1 is a composition of three maps

H = H3 ◦H2 ◦H1.

The map H1 : E1 −→ E2 is defined as follows, for T ∈ E1, H1(T ) ∈ E2 is the solution of the radiative transfer

equation (1). The second map H2 : E2 −→ E3 is defined in the following way, for I ∈ E2, H2(I) = G ∈ E3 where G is

given by

G(ξ, x) =

∫
D

I(ξ, x,β)dβ (10)

and finally, the map H3 : E3 −→ E1 is defined as follows, for G ∈ E3, H3(G) ∈ E1 is the solution of the equation (2).

3.1. The maps H1 and H2

Now, we focus on the maps H1 and H2, we give some properties of the solution of the RTE (1).

Theorem 3.1. Let us consider T ∈ E1, the problem (1) has a non-negative unique solution H1(T ) ∈ L2(0, τ; L2(X)).

Thus H1 is a well-posed map from E1 to E2. Moreover H1 is continuous.

Proof. Let T ∈ E1 then for all ξ ∈ [0, τ], we have T 4(ξ) ∈ L2(Ω). Using a result about the existence and uniqueness of

the solution of the transport equation, see [18], the boundary value problem (1)−(4) has a unique solution I(ξ) ∈ L2(X)

which satisfies the following a priori estimate

‖I(ξ)‖L2(X) 6
√
π‖T 4(ξ)‖L2(Ω).

If we integrate in time between 0 and τ, we obtain

‖I‖L2(0,τ;L2(X)) 6
√
π‖T‖4L8(Qτ)

hence,

‖I‖L2(Qτ) 6
√
πM4 = N.

Consequently, I ∈ E2 and then H1 is a well-posed map.

Using the maximum principle [1], this implies that the solution I of (1) − (4) is non-negative.

Now, we show the continuity of the map H1. We consider I1, I2 two solutions of (1) associated to T1,T2, respec-

tively . Let ξ ∈ [0, τ], we have

‖I1(ξ) − I2(ξ)‖L2(Ω×D) 6
√
π‖T 4

1 (ξ) − T 4
2 (ξ)‖L2(Ω). (11)
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Using the generalized Hölder’s inequality, we have the following inequality

‖T 4
1 (ξ) − T 4

2 (ξ)‖2L2(Ω) =

∫
Ω

(T1(ξ) − T2(ξ))2(T1(ξ) + T2(ξ))2(T 2
1 (ξ) + T 2

2 (ξ))2dx

6 ‖T1(ξ) − T2(ξ)‖2L8(Ω)‖T1(ξ) + T2(ξ)‖2L8(Ω)‖T
2
1 (ξ) + T 2

2 (ξ)‖2L4(Ω). (12)

If we integrate in time, we obtain

‖T 4
1 − T 4

2 ‖
2
L2(Qτ)

6 ‖T1 − T2‖
2
L8(Qτ)

‖T1 + T2‖
2
L8(Qτ)

‖T 2
1 + T 2

2 ‖
2
L4(Qτ)

.

Then we have

‖T 2
1 (ξ) + T 2

2 (ξ)‖4L4(Ω) 6 ‖T1(ξ)‖8L8(Ω) + 4‖T1(ξ)‖6L8(Ω)‖T2(ξ)‖2L8(Ω) + 6‖T1(ξ)‖4L8(Ω)‖T2(ξ)‖4L8(Ω)

+ 4‖T1(ξ)‖2L8(Ω)‖T2(ξ)‖6L8(Ω) + ‖T2(ξ)‖8L8(Ω).

Hence
‖T 2

1 + T 2
2 ‖

4
L4(Qτ)

6 ‖T1‖
8
L8(Qτ)

+ 4‖T1‖
6
L8(Qτ)

‖T2‖
2
L8(Qτ)

+ 6‖T1‖
4
L8(Qτ)

‖T2‖
4
L8(Qτ)

+ 4‖T1‖
2
L8(Qτ)

‖T2‖
6
L8(Qτ)

+ ‖T2‖
8
L8(Qτ)

.

Since T1,T2 ∈ E1, then we deduce that

‖T 2
1 + T 2

2 ‖L4(Qτ) 6 2M2. (13)

On the other hand, we have

‖T1 + T2‖L8(Qτ) 6 2M, (14)

it follows that

‖T 4
1 − T 4

2 ‖L2(Qτ) 6 4M3‖T1 − T2‖L8(Qτ),

From (11), we deduce that

‖I1 − I2‖L2(0,τ;L2(Ω×D)) 6 4
√
πM3‖T1 − T2‖L8(Qτ). (15)

The last inequality shows the continuity of H1.

Now, we give some properties of the map H2.

Proposition 3.2. H2 is a well posed, monotone and continuous map from E2 to E3.

Proof. Let us consider I ∈ E2 and G = H2(I), then we have

‖G‖L2(Qτ) 6
√
π‖I‖L2(0,τ;L2(X)). (16)

Hence , for all I ∈ E2, G = H2(I) belongs to E3. Since I is non-negative then G is non-negative. Therefore H2 is a

well posed map. Since H2 is a linear function, from the inequality (16), H2 is a continuous map. It is easily to deduce

that H2 is a monotone application.
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3.2. The map H3

In this subsection we introduce some properties of the map H3.

Theorem 3.3. Let us consider T0 ∈ L5(Ω), T0 > 0 almost everywhere in Ω and satisfies the hypothesis (6).

Let G ∈ E3 and non-negative. Then the equation (2) has a non-negative solution T = H3(G) ∈ E1.

Proof. For the proof of the existence and uniqueness of the solution of the equation (2), see [2, 27, 15].

First we give a proof of the non-negativity of T .

Let us consider F defined in (0, τ) ×Ω × R by

F(ξ, x, y) = θ
(
G(ξ, x) − 4πy4

)
then T is the solution of the following equation

∂ξT (ξ, x) − ∆T (ξ, x) = F(ξ, x,T (ξ, x)) (17)

T (ξ, x) = 0 in ∂Ω × (0, τ)

T (x, 0) = T0(x) in Ω.

Now, we define F̄ in (0, τ) ×Ω × R by

F̄(ξ, x, y) =


θ
(
G(ξ, x) − 4πy4

)
if y ≥ 0

θG(ξ, x) if y < 0.

Let us consider T̄ the solution of the following equation

∂ξT̄ (ξ, x) − ∆T̄ (ξ, x) = F̄(ξ, x, T̄ (ξ, x)) (18)

T̄ (ξ, x) = 0 in ∂Ω × (0,∞)

T̄ (0, x) = T0(x) in Ω.

Our goal is to prove that the solution T̄ of this equation remains non-negative over the time. In fact, in this case F̄ and

F coincide, therefore we have by the uniqueness of the solution T = T̄ which is non-negative .

We set T̄ + = max(T, 0) and T̄− = max(−T, 0), such that T̄ = T̄ + − T̄−.

Multiplying the equation (18) by (−T̄−) and integrating over Ω, we obtain

−

∫
Ω

∂ξT̄ (ξ, x)T̄−(ξ, x)dx +

∫
Ω

∆T̄ (ξ, x)T̄−(ξ, x)dx = −

∫
Ω

F̄(ξ, x, T̄ )T̄−(ξ, x)dx.

Now, we have

−

∫
Ω

∂ξT̄ (ξ, x)T̄−(ξ, x)dx =
1
2
∂ξ

∫
Ω

(T̄−(ξ, x))2dx
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∫
Ω

∆T̄ (ξ, x)T̄−(ξ, x)dx =

∫
Ω

(∇T̄−(ξ, x))2dx

−

∫
Ω

F̄(ξ, x, T̄ )T̄−(ξ, x)dx = −

∫
{T̄<0}

F̄(ξ, x, T̄ )T̄−(ξ, x)dx = −

∫
{T̄<0}

θG(ξ, x)T̄−(ξ, x)dx ≤ 0.

Consequently,
1
2
∂ξ

∫
Ω

(T̄−(ξ, x))2dx ≤ 0.

As T̄−(x, 0) = 0 for all x ∈ Ω because T0(x) ≥ 0 for all x ∈ Ω, we deduce that T̄−(x, ξ) = 0 for all (x, ξ) ∈ Ω × (0,∞).

It follows that T̄ (x, ξ) ≥ 0 for all (x, ξ) ∈ Ω × (0,∞), hence

F̄(x, ξ, T̄ (x, ξ)) = F(x, ξ, T̄ (x, ξ)).

Then T̄ is the solution of (17) and by uniqueness of the solution T = T̄ which proves the non-negativity of T .

In the following, we prove that T ∈ L8(Qτ). Let z be the solution of the parabolic problem
∂ξz(ξ, x) − ∆z(ξ, x) = θG(ξ, x) for (ξ, x) ∈]0, τ] ×Ω

z(ξ, x) = 0 for (ξ, x) ∈]0, τ] × ∂Ω

z(0, x) = T0(x) for x ∈ Ω

(19)

then we have that T ≤ z.

Since G ∈ L2(Qτ), T0 ∈ L2(Ω) and thanks to a result on parabolic regularity, see [27], then z ∈ W2,1
2 (Qτ) and there

exists a constant C̃ > 0 such that

‖z‖W2,1
2 (Qτ) 6 C̃

(
‖G‖L2(Qτ) + ‖T0‖L2(Ω)

)
. (20)

Then, we have z ∈ L8(Qτ) (see [27, p.80]) and consequently T ∈ L8(Qτ).

Since G and T 4 belong to L2(Qτ), we have θG − 4πT 2 belongs to L2(Qτ). Consequently, using the same result on

parabolic regularity we obtain T ∈ W2,1
2 (Qτ).

To prove that T = H3(G) ∈ E1, we need a more precise control of ‖T‖L8(Qτ).

We multiply the equation (2) by T 4 and we integrate over Ω, so we obtain

1
5

d
dξ

∫
Ω

T 5(ξ)dx + 4
∫
Ω

(∇T (ξ))2(T (ξ))3dx + 4πθ
∫
Ω

T 8(ξ)dx = θ

∫
Ω

GT 4(ξ)dx.

As T ∈ W2,1
2 (Qτ) then T 4 belongs to L2(0, τ; H1

0(Ω)).

Using the Young’s inequality, we get

1
5

d
dξ

∫
Ω

(T
5
2 (ξ))2dx +

16
25

∫
Ω

(∇T
5
2 (ξ))2dx + 4πθ

∫
Ω

T 8(ξ)dx 6
θ

2ε

∫
Ω

G2(ξ)dx + θ
ε

2

∫
Ω

T 8(ξ)dx.

If we assume ε = 2π and we integrate in time, we obtain

1
5

sup
06ξ6τ

‖T
5
2 (ξ)‖2L2(Ω) + 4‖T

5
2 ‖2L2(0,τ;H1

0 (Ω)) + 3πθ‖T‖8L8(Qτ)
6

θ

4π
‖G‖2L2(Qτ)

+
1
5
‖T

5
2

0 ‖
2
L2(Ω),
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hence

‖T‖8L8(Qτ)
6

1
12π2 ‖G‖

2
L2(Qτ)

+
1

15θπ
‖T0‖

5
L5(Ω).

Since G ∈ E1, we deduce

‖T‖8L8(Qτ)
6

M8

4
+

1
15θπ

‖T0‖
5
L5(Ω).

If the initial data satisfies the hypothesis (6), it follows that

‖T‖8L8(Qτ)
6 M8.

Thus T ∈ E1 and the map H3 is well-posed.

Theorem 3.4. Under the assumptions of Theorem 3.3, H3 is a continuous map from E3 to E1.

Proof. Let G1,G2 ∈ E3, T1 = H3(G1) and T2 = H3(G2). Let us set w = T1 − T2, then w is solution of the following

equation

∂ξw(ξ, x) − ∆w(ξ, x) = −4πθ(T 4
1 − T 4

2 )(ξ, x) + θ(G1 −G2)(ξ, x) in (0, τ] ×Ω,

w(ξ, x) = 0 in (0, τ] × ∂Ω

w(0, x) = 0 in Ω.

We have

w(ξ) = −4πθ
∫ ξ

0
T(ξ − s)(T 4

1 − T 4
2 )(s)ds + θ

∫ ξ

0
T(ξ − s)(G1 −G2)(s)ds

where T(ξ) a semigroup of contraction in H1
0(Ω) generated by the operator A defined by

D(A) = {T ∈ H1
0(Ω), ∆T ∈ L2(Ω)} and AT = ∆T , ∀T ∈ D(A).

Now, using the regularizing effects of the heat equation, see [15, proposition 3.5.7, p.44 ] with p = 8 and q = 2,

we deduce the following inequality

‖w(ξ)‖L8(Ω) 64πθ
∫ ξ

0

1

(4π(ξ − s))
1
2−

1
8

‖T 4
1 (s) − T 4

2 (s)‖L2(Ω)ds + θ

∫ ξ

0

1

(4π(ξ − s))
1
2−

1
8

‖G1(s) −G2(s)‖L2(Ω)ds. (21)

In view of the inequality (12) and the Cauchy-Schwarz inequality , then (21) becomes

‖w(ξ)‖L8(Ω) 64πθ
∫ ξ

0

1

(4π(ξ − s))
1
2−

1
8

‖w(s)‖L8(Ω)‖T1(s) + T2(s)‖L8(Ω)‖(T 2
1 + T 2

2 )(s)‖L4(Ω)ds

+θ

(∫ ξ

0

ds

(4π(ξ − s))
3
4

) 1
2

‖G1 −G2‖L2(Qτ).

(22)

We have (∫ ξ

0

ds

(4π(ξ − s))
3
4

) 1
2

=

(
4 4
√
ξ

(4π)
3
4

) 1
2

=
2 8
√
ξ

(4π)
3
8

. (23)
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Thanks to the generalized Hölder’s inequality, we get∫ ξ

0

1

(4π(ξ − s))
1
2−

1
8

‖w(s)‖L8(Ω)‖(T1 + T2)(s)‖L8(Ω)‖(T 2
1 + T 2

2 )(s)‖L4(Ω)ds

6
2 8
√

t

(4π)
3
8

(∫ t

0
‖w(s)‖8L8(Ω)

) 1
8
‖T1 + T2‖L8(Qτ)‖T

2
1 + T 2

2 ‖L4(Qτ). (24)

We substitute (23) and (24) into (22), we obtain

‖w(ξ)‖L8(Ω) 64πθ
2 8
√
ξ

(4π)
3
8

(∫ ξ

0
‖w(s)‖8L8(Ω)ds

) 1
8
‖T1 + T2‖L8(Qτ)‖T

2
1 + T 2

2 ‖L4(Qτ) + θ
2 8
√
ξ

(4π)
3
8

‖G1 −G2‖L2(Qτ).

The estimations (13) and (14) give

‖w(ξ)‖L8(Ω) 64πθ
2 8
√
ξ

(4π)
3
8

4M3
(∫ ξ

0
‖w(s)‖8L8(Ω)ds

) 1
8

+ θ
2 8
√
ξ

(4π)
3
8

‖G1 −G2‖L2(Qτ)

64πθ
2 8
√
τ

(4π)
3
8

4M3
(∫ ξ

0
‖w(s)‖8L8(Ω)ds

) 1
8

+ θ
2 8
√
τ

(4π)
3
8

‖G1 −G2‖L2(Qτ). (25)

Since (a + b)8 6 128(a8 + b8) for all (a, b) ∈ R2
+, it follows that

‖w(ξ)‖8L8(Ω) 6
θ8

π3 225M24τ

∫ ξ

0
‖w(s)‖8L8(Ω)ds +

θ8

π3 29τ‖G1 −G2‖
8
L2(Qτ)

.

Applying the Gronwall’s inequality, we deduce

‖H3(G1) −H3(G2)‖8L8(Qτ)
6
θ8

π3 29τ2e
θ8

π3 225 M24τ2
‖G1 −G2‖

8
L2(Qτ)

. (26)

3.3. Existence and uniqueness of the solution for the coupled system

Now, we will use an extension of the contraction mapping Theorem for a Banach space (see [32, p. 117] for

example) to prove the uniqueness of the local solution for the coupled system (1)-(5).

Theorem 3.5. If the initial data T0 satisfies (6) then there exists τ? > 0 such that for all τ 6 τ?, H is a contraction

map in E1.

Proof. H = H3 ◦H2 ◦H1 is a well-posed map because it is composed by a three well-posed maps.

Now, we show that H is a contraction map from E1 to E1.

Moreover, synthetically we have

(E1, ‖.‖L8(Qτ))
H1
−−→ (E2, ‖.‖L2(0,τ;L2(X)))

H2
−−→ (E3, ‖.‖L2(Qτ))

H3
−−→ (E1, ‖.‖L8(Qτ))

T 7→ I 7→ G 7→ T̄ .
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Let us consider (T1,T2, T̄1, T̄2) ∈ E4
1, (I1, I2) ∈ E2

2 and (G1,G2) ∈ E2
3 such that

I1 = H1(T1), I2 = H1(T2)

G1 = H2(I1), G2 = H2(I2)

T̄1 = H3(G1), T̄2 = H3(G2)

T̄1 = H(T1), T̄2 = H(T2).

H1,H2 and H3 are a continuous maps , then from (15), ( 16) and ( 26) it follows that

‖I1 − I2‖L2(0,τ;L2(Ω×D)) 6 4
√
πM3‖T1 − T2‖L8(Qτ),

‖G1 −G2‖L2(Qτ) 6
√
π‖I1 − I2‖L2(0,τ;L2(Ω×D)),

‖T̄1 − T̄2‖
8
L8(Qτ)

6
θ8

π3 29τ2e
θ8

π3 225 M24τ2
‖G1 −G2‖

8
L2(Qτ)

.

Then we deduce

‖T̄1 − T̄2‖
8
L8(Qτ)

6 π8γ(τ)eγ(τ)‖T1 − T2‖
8
L8(Qτ)

where γ(τ) = π8

π3 225M24τ2, clearly there exists τ? > 0 such that for all τ 6 τ?, we have

π8γ(τ)eγ(τ) < 1.

Hence, H is a contraction map.

Consequently, the main Theorem 1.1 is a corollary of the last result, Theorem 3.5 .

Proof of Theorem 1.1. E1 is a closed subset of the Banach space L8(Qτ), then using an extend Banach Theorem and

Theorem 3.5 there exists τ? > 0 such that for all τ 6 τ?, H has a unique fixed-point T ∈ E1. T satisfies the equation

(2) therefore, by Theorem 3.1, I = H1(T ) is also the unique solution of the equation (1). Thus the couple (T, I) is a

solution of the equations system (1)-(5) and this solution is unique.

References

[1] V. I. Agoshkov, Boundary Value Problems for Transport Equations, Springer, 1998.

[2] H. Amann, Linear and Quasilinear Parabolic Problems,Volume I: Abstract Linear Theory, Springer, 1995.

[3] A. A. Amosov, The solvability of a problem of radiation heat transfer, Sov. Phys. Dokl. 24(4)(1979) 261-262.

[4] A. A. Amosov, The limit connection between two problems of radiation heat Sov. Phys. Dokl. 24(6)(1979) 439-441.

[5] A. A. Amosov, Nonstationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties

depending on the radiation frequency, Journal of Mathematical Sciences 165(1)(2010) 1-41.

[6] A. A. Amosov, Nonstationary radiative-conductive heat transfer problem in a periodic system of grey heat shields, Journal of Mathematical

Sciences 169(1)(2010) 1-45.

12



[7] A. A. Amosov, Stationary nonlinear nonlocal problem of radiativeconductive heat transfer in a system of opaque bodies with properties

depending on the radiation frequency, Journal of Mathematical Sciences 164(3)(2010) 309-344.

[8] A. A. Amosov, Semidiscrete and asymptotic approximations for the nonstationary radiative-conductive heat transfer problem in a periodic

system of grey heat shields, Journal of Mathematical Sciences 176(3)(2011) 361-408.

[9] A. Amosov. Solvability of a Nonstationary Problem of Radiative - Conductive Heat Transfer in a System of Semitransparent Bodies // Integral

Methods in Science and Engineernig. Theoretical and Computational Advances. Constanda Christian, Kirsch Andreas (Eds.), BirkhŁuser

basel, pp. 1-13, 2015.

[10] F. Asllanaj, G. Jeandel, J. R. Roche, Numerical solution of radiative transfer equation coupled with nonlinear heat condition equation, Internat.

J. Numer. Methods Heat flow 5-6 (11) (2001) 449-472.

[11] F. Asllanaj, G. Jeandel, J. R. Roche, Convergence of a numerical scheme for a nonlinear coupled system of radiative-conductive heat transfer

equation, Math. Models Methods Appl. Sc 7 (2004) 943-974.

[12] F. Asllanaj, G. Jeandel, J. R. Roche, D. Schmitt, Existence and Uniqueness of a Steady State Solution of a Coupled Radiative-Conductive

Heat Transfer Problem for a Non-grey Anisotropically and Participating Medium, Transport Theory and Statistical Physics 32 (1) (2003)

1-35.

[13] F. Asllanaj, G. Parent, G. Jeandel, Transient Radiation and Conduction Heat Transfer in a Gray Absorbing-Emitting Medium Applied on

Two-Dimensional Complex-Shaped Domains, Numerical Heat Transfer, Part B: Fundamentals 52(2)(2007) 179-200.

[14] C. Berthon, J. Dubois, R. Turpault, Numerical approximation of the M1-model. Mathematical models and numerical methods for radiative
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