
HAL Id: hal-01272994
https://hal.science/hal-01272994

Preprint submitted on 11 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A feasible direction interior point algorithm for general
nonlinear semidefinite programming

Jean Rodolphe Roche, José Herskovits, Elmer Bazán

To cite this version:
Jean Rodolphe Roche, José Herskovits, Elmer Bazán. A feasible direction interior point algorithm for
general nonlinear semidefinite programming. 2015. �hal-01272994�

https://hal.science/hal-01272994
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A Feasible Direction Interior Point Algorithm for General
Nonlinear Semidefinite Programming

Jean Rodolphe Roche · José Herskovits · Elmer Bazán

Abstract This paper deals with nonlinear smooth op-

timization problems with equality and inequality con-

straints, as well as semidefinite constraints on sym-

metric matrix-valued functions. We present first a new

semidefinite programming algorithm that takes advan-

tage of the structure of the matrix constraints. This

is relevant in applications where these matrices have a

favorable structure, as in the case when finite element

models are employed. FDIPA GSDP is then obtained

by integration of this new method with the well known

Feasible Direction Interior Point Algorithm for nonlin-

ear smooth optimization, FDIPA. FDIPA GSDP makes

iteration in the primal and dual variables to solve the

first order optimality conditions. Given an initial inte-

rior point, FDIPA GSDP generates a descent interior

sequence, converging to a local solution of the problem.

At each iteration a feasible descent direction is defined.

A line search along this direction looks for a new inte-

rior point with s lower objective. Global convergence to

stationary points is proved. Some structural optimiza-

tion test problems were solved very efficiently, without

need of parameters tuning.

Keywords structural optimization, nonlinear opti-

mization,semidefinite programming, feasible directions,

interior-point methods.

Jean R. Roche
I.E.C.L., Université de Lorraine, CNRS, INRIA, B.P. 70239,
54506 Vandoeuvre lès Nancy, France.
E-mail: jean-rodolphe.roche@univ-lorraine.fr

José Herskovits, Elmer Bazán
Mechanical Engineering Program - COPPE - Federal Uni-
versity of Rio de Janeiro, PO Box 68503,21941-972, Rio de
Janeiro, Brazil.
E-mail: jose@optimize.ufrj.br, elmer@optimize.ufrj.br

1 Introduction

We deal with the nonlinear optimization problem:

min
x
f(x);x ∈ Rn

s.t. g(x) ≤ 0,

h(x) = 0,

A(x) 4 0.

(1)

where f(x) ∈ R, g(x) ∈ Rm, h(x) ∈ Rp and A(x) ∈
Sq×q are smooth functions, not necessarily linear or con-

vex. We call Sq the set of real symmetric matrices of size

q × q. A(x) 4 0 means that A(x) is negative semidefi-

nite.

Problem (1) is referred as a General Nonlinear

Semidefinte Program, the constraints g(x) ≤ 0 and

h(x) = 0, as vector inequality and equality constraints

respectively and A(x) 4 0 is a matrix constraint.

We call Ω = {x ∈ Rn;A(x) 4 0, g(x) ≤ 0} the

set of feasible solutions with respect to inequalities and

int(Ω), its interior. For a real number a, we denote

Ωa = {x ∈ Ω such that f(x) 6 a}.
In a first stage we propose a new algorithm to solve

the single SDP problem:

min
x
f(x);x ∈ Rn

s.t. A(x) 4 0.
(2)

This algorithm follows similar ideas to those pre-

sented in [Aroztegui,..], but using a formulation that

preserves the structure of the matrix constraints. In

particular, two linear systems with the same matrix

have to be solved at each iteration of the algorithm.

We also present a formulation that takes advantage of

the structure of the matrix constraints to solve more

efficiently the internal linear systems of the algorithm.

This fact is relevant in several application, in partic-

ular when partial differential equations are solved with

2

numerical methods, like Finite Elements or Finite Dif-

ferences. In the case of structural optimization, com-

puter solvers employ particular techniques that take

advantage of the particular structure of stiffness and

mass matrices.

In a second stage we propose a new algorithm to

solve the generalized problem (1), inspired by the fea-

sible direction interior point method for standard non-

linear programming described in [xxFDIPA].

Even if inequality vector constraints can be treated

as diagonal matrix constraints, our approach deals nat-

urally with them and also with equality constraints.

Given an initial feasible point, the present algorithm

produces a decreasing sequence of feasible points that

converges to a local solution of the problem. For this, at

each iteration a feasible descent direction is first com-

puted. Then, a new interior point with lower objective

is obtained by means of a line search.

In [Aroztegui] several references about linear and

nonlinear semidefinite programming are cited, and also

some applications in structural optimization. The range

of structural optimization problems that can be solved

by using the formulation of the problem (1) is quite

large. Local constraints can be considered, as bounds

on local stresses or nodal displacements, and also con-

straints on the fundamental frequencies or on the struc-

tural compliance. In free material optimization the elas-

ticity matrices are constrained to be positive definite

[xx].

This paper is organized as follows. Section 2 is de-

voted to the presentation of some required notation

and definitions and also auxiliary results needed for

our study. In section 3 we introduce an SDP algorithm

which preserves the structure of the matrix constraints.

Then in section 4 we demonstrate the global conver-

gence of this algorithm. Some implementation issues are

described in section 5, in particular how to take advan-

tage of the structure of the matrix constraint. In section

6 we extend the domain of application of the algorithm

presented in section 3, we consider the case where we

have, SDP constraints, vector inequalities and equal-

ities constraints. Some models employed in structural

optimization are described and solved with the present

techniques. Following we discuss the numerical results.

Finally, our conclusions about the present technique,

their numerical implementation and our numerical re-

sults are described.

2 Basic concepts

In this section we focus Problem (2) and describe some

basic concepts and theoretical results related to the

present method.

2.1 Notation

Let Rq×n denote the space of q × n real matrices. The

sets of symmetric positive semidefinite and positive def-

inite matrices of size q× q are denoted Sq+ and Sq++, re-

spectively. Negative semidefinite and definite matrices

are defined in a similar way.

The symbol 4 refers to a partial order on the neg-

ative semidefinite matrices, that is, A 4 B means that

A− B is negative semidefinite, [5]. Similarly, the sym-

bol ≺,< and � refers to a partial order on the negative

definite, positive semidefinite and positive definite ma-

trices, respectively.

Let us define the two following maps:

vec(A) =
[
a11 ... aq1, a12, aq2, a1q ... aqq

]>
,

vec : Rq×q → Rq2 , and mat : Rq2 → Rq×q, the inverse

of vec, see [3]. Here, aij is the (i, j)th entry of a matrix

A ∈ Rq×q. Then, the inner product

〈A,B〉 = tr(A>B) = vec(A)>vec(B), forA,B ∈ Rq×q.

The Kronecker product of two matrices A ∈ Rp×q

B ∈ Rr×sis denoted by A⊗B and is defined as:

A⊗B =

a11B ... a1qB

a21B a2qB

.

.

ap1B ... apqB

Lemma 1 The followings properties are true, [3]:

i) ∀ A ∈ Rp×q, B ∈ Rr×s and C ∈ Rs×q,

(A⊗B)vec(C) = vec
(
BCA>

)
ii) ∀ A ∈ Rp×q and B ∈ Rr×s

(A⊗B)> = (A> ⊗B>)

iii) ∀ A ∈ Rp×q, B ∈ Rr×s and C ∈ Rq×k, D ∈ Rs×l,

(A⊗B)(C ⊗D) = (AC)⊗ (BD)

iv) ∀ A ∈ Rp×p and B ∈ Rr×r,

(A⊗B)−1 = (A−1 ⊗B−1)

for A and B invertible.

ut
The partial derivative of A(x) with respect to

xk, k = 1, ..., n is denoted by
∂A
∂xk

(x), with components

∂aij(x)

∂xk
, i, j = 1, .., q.

3

We define ∇A(x) in Rn×q2 , as

∇A(x) =

vec

(
∂A
∂x1

(x)

)>
...

vec

(
∂A
∂xn

(x)

)>

 . (3)

The derivative of A in the direction d ∈ Rn at x,

denoted by DA(x)d, is:

DA(x)d =

n∑
p=1

dp
∂A
∂xp

(x). (4)

In consequence, we have

vec (DA(x)d) = ∇A(x)>d. (5)

The Lagrangian of problem (2) is

L(x,Λ) = f(x) + 〈A(x), Λ〉; L : Rn × Rq×q → R

Alternatively, the Lagrangian can be written as follows,

L(x, λ) = f(x) + 〈vec(A(x)), λ〉; L : Rn × Rq2 → R

where λ = vec(Λ). Then

∇xL(x, λ) = ∇f(x) +∇A(x)λ, (6)

see [15] and [2].

2.2 Definitions

We give now some definitions related to semidefinite

programming extension of Karush-Kuhn-Tucker first

order optimality conditions, [14] and [15].

Let {b1(x), . . . , br(x)} ⊂ Rq2 be an orthonormal ba-

sis of ker(A(x)⊗ I) .

Definition 1 A point x is a regular point of problem

(2) if the vectors ∇A(x)bi(x) : i = 1, ..., r are linearly

independent.

Definition 2 A regular point x is a stationary point

of problem (2) if there exists Λ ∈ Rq×q such that the

following conditions are verified:

∇xL(x,Λ) = 0

ΛA(x) = 0

A(x) 4 0

(7)

Definition 3 If Λ < 0 we say that a stationary point

of problem (2) is a Karush-Kuhn-Tucker point.

The following definitions are related with the

method proposed in this paper.

Definition 4 We call a vector d ∈ Rn a feasible di-

rection of Ω at x ∈ Ω if there exists τ > 0 such that

x+ td ∈ Ω for all t ∈ [0, τ].

Definition 5 The vector field d(x) defined on Ω ⊆ Rn

is said to be an uniformly feasible direction field of Ω

if there exists τ > 0 such that, x + td(x) ∈ Ω for all

x ∈ Ω and all t ∈ [0, τ].

When the vector field d(x) is a uniformly feasible di-

rection field of Ω, the segment [x, x+ τd(x)] is included

in Ω for all x ∈ Ω.

Definition 6 A vector d ∈ Rn is a descent direction of

a real function f at x ∈ Rn if there exist some δ > 0

such that: f(x+ td) < f(x) for all t ∈ (0, δ].

2.3 Some auxiliary results

Lemma 2 Let A ∈ Sq++ and B ∈ Sq. If AB+BA ≺ 0,

then B ≺ 0.

Proof See [1]. ut

The proof of the following lemma is similar to the

previous one.

Lemma 3 Let A ∈ Sq++ and B ∈ Sq. If AB+BA 4 0,

then B 4 0.

ut

Lemma 4 If A,B ∈ Sq and A � 0, the matrix AB has

real eigenvalues and the same inertia as B. See [7].

ut

Lemma 5 Let A ∈ Sq++ and B ∈ Sq−. If they commute,

then

y>ABy = 0⇐⇒ By = 0.

Proof See [1]. ut

Lemma 6 Let A ∈ Sq++ and B ∈ Sq−. If A and B

commute, then

(A⊗ I)−1(B ⊗ I) ∈ Sm
2

− .

Proof Since A � 0 and B 4 0 and commute then there

exist a regular matrix P ∈ Rq×q such that

A = PDAP
−1,

B = PDBP
−1.

In view of Kronecker product properties, see for exam-

ple lemma E.1 in [3] :

A⊗ I = PDAP
−1,

B ⊗ I = PDBP
−1,

4

where P = P ⊗P , DA = DA⊗ I and DB = DB ⊗ I. DA

and DB are diagonal matrices and P is orthonormal.

Therefore

(A⊗ I)−1(B ⊗ I) = PDADBP
> ∈ Sq

2

− .

ut

3 A SDP algorithm that preserves the

structure of the matrix constraints

In a first stage we discuss the basic ideas leading to

the present method. The formal algorithm is described

later.

3.1 Basic ideas

Let us consider the following assumptions about f and

A:

Assumption 1 There exists a real number a such that

Ωa is compact and int(Ωa) 6= ∅.

Assumption 2 For any x ∈ int(Ωa), A(x) ≺ 0.

Assumption 3 f and A belong to C1(Ωa). In addi-

tion we assume that ∇f and
∂A
∂xp

for p = 1, ..., n are

Lipschitz functions.

Assumption 4 Any point x ∈ Ωa is a regular point of

problem (2).

The present algorithm looks for a primal and dual

feasible solution of the equations characterizing a criti-

cal point given in (7),

∇f(x) +∇A(x)λ = 0

vec(ΛA(x)) = 0
(8)

where λ = vec (Λ) . We propose a Newton-like iteration

tailored in such a way to have a minimizing sequence

of strictly feasible points.

Remark that, since A(x) is symmetric and Λ is also

symmetric at a stationary point, the complementar-

ity condition is equivalent to svec(sym(ΛA(x))) = 0,

where svec is defined in [Aroz]. The algorithm proposed

in [Arozte] works with the symmetric part of the com-

plementarity condition and with the symmetric parts of

A(x) and Λ as unknowns. These procedure reduces sig-

nificantly the size of the nonlinear system to be solved,

but destroys the structure of the involved matrices. In

the present approach the nonlinear system is larger, but

the computer effort to solve it is dramatically reduced

by taking advantage of the structure of the constraint

matrix.

Considering now the definition of Kronecker prod-

uct. We deduce,

vec(IΛA(x)) = [A(x)⊗ I]vec(Λ)

and also,

vec(ΛA(x)I) = [I ⊗ Λ]vec(A(x)).

Therefore, the Jacobian of the nonlinear system (8)

is:[
∇xxL(x, λ) ∇A(x)

(I ⊗ Λ)∇A(x)> (A(x)⊗ I)

]
. (9)

In a similar way as in [6], instead of the Hessian

of the Lagrangian ∇xxL(x, λ), we can employ a posi-

tive definite matrix denoted B. This matrix B can be a

quasi-Newton approximation, or even the identity ma-

trix.

A Newton like iteration to solve (8) is given by the

following linear system[
B ∇A(x)

(I ⊗ Λ)∇A(x)> (A(x)⊗ I)

] [
x0 − x
λ0 − λ

]
(10)

= −
[
∇f(x) +∇A(x)λ

vec(ΛA(x))

]
where (x,Λ) ∈ int(Ωa) × Sq++ is the current iterate

and (x0, λ0) ∈ Rn×Rq2 is the new estimate. Note that

λ = vec (Λ) and λ0 = vec (Λ0).

Let be d0 = x0 − x. Then we have,

Bd0 + ∇A(x)λ0 = −∇f(x)

(I ⊗ Λ)∇A(x)>d0 + (A(x)⊗ I)λ0 = 0
(11)

If d0 = 0 equation (11) becomes,

∇f(x) +∇A(x)λ0 = 0 (12)

and

(A(x)⊗ I)λ0 = 0 (13)

Since A(x) ≺ 0, the matrix A(x) ⊗ I is nonsingu-

lar and we have Λ0 = mat(λ0) = 0. This proves that

Λ0A(x) = 0.

Therefore, ∇f(x) = 0 and x is a stationary point of

the problem.

We shall prove, in the case when d0 6= 0, that d0 is

a descent direction of the objective function.

However when x is on the boundary of Ω we cannot

ensure that d0 is a feasible direction. In effect, when x

is on the boundary of Ω, it follows from (11) that d0 is

5

tangent to Ω. Thus, depending on the curvature of the

boundary of Ω, d0 can point outwards of the feasible

domain.

To obtain a feasible direction, as in [6], we modify

the previous linear system introducing an appropriate

term in the right hand side:

Bd + ∇A(x)λ = −∇f(x)

(I ⊗ Λ)∇A(x)>d + (A(x)⊗ I)λ = −ρλ (14)

where ρ is a positive real number and λ = vec(Λ).

In the next section we prove that in fact d consti-

tutes an uniformly feasible directions field in the sense

of definition 5.

We introduce now the following assumption on Λ.

Assumption 5 At each iteration the current values of

Λ and A(x) commute.

The pair (d, λ) obtained by the linear system (14)

can also be computed solving

Bd1 + ∇A(x)λ1 = 0

(I ⊗ Λ)∇A(x)>d1 + (A(x)⊗ I)λ1 = −λ (15)

and taking,

d = d0 + ρd1 (16)

λ = λ0 + ρλ1. (17)

The descent direction d0 verifies d>0 ∇f(x) < 0. For

a given ξ ∈ (0, 1), we get an upper bound for ρ such

that

d>∇f(x) 6 ξdT0∇f(x). (18)

Consequently, the feasible direction d will be a descent

direction also.

In fact, if d>1 ∇f(x) > 0, we take

ρ 6 (ξ − 1)
d>0 ∇f(x)

d>1 ∇f(x)
.

Otherwise, we choose

ρ 6 ϕ‖d0‖2,

for some fixed parameter ϕ > 0.

Once we have computed a descent and feasible di-

rection d, we can determine the next iterate performing

a line search along d to get feasibility and an appropri-

ate reduction of the objective function.

We shall prove global convergence to a stationary

point, for any way of updating B and Λ, provided they

are positive definite and Λ satisfies assumption 5.

3.2 The Algorithm for SDP

Now we write down the specific steps of the present

algorithm for semidefinite programing:

Parameters. ξ ∈ (0, 1), η ∈ (0, 1), ϕ > 0 and ν ∈
(0, 1).

Initial data. x ∈ int(Ωa), Λ ∈ Sq++ commuting

with A(x)and B ∈ Sn++.

Step 1. Computation of the feasible descent search

direction d.

(i) Solve the linear systems (11) and (15):

If d0 = 0, stop.

(ii) Compute the positive scalar ρ such that

ρ = min

{
ϕ‖d0‖2, (ξ − 1)

d>0 ∇f(x)

d>1 ∇f(x)

}
(19)

if d>1 ∇f(x) > 0. Otherwise:

ρ = ϕ‖d0‖2. (20)

(iii) Compute the search direction d as

d = d0 + ρd1. (21)

Step 2. Line Search.

Find t, the first element of {1, v, v2, v3 . . . } such that

f(x+ td) 6 f(x) + tηd>∇f(x) (22)

and

A(x+ td) ≺ 0. (23)

Step 3. Updates.

(i) Set x := x+ td.

(ii) Update B ∈ Sn++.

(iii) Define new value for Λ ∈ Sq++ commuting with

A(x).

(iv) Go to Step 1.

�
The line seearch is performed adapting Armijo’s al-

gorithm to constraint optimization problems. Exten-

sions of Wolfe or Goldstein line search criteria [9] can

be also employed.

The update of B and Λ computed in Step 3. must

verify the following assumptions:

Assumption 6 There exist positive numbers λI and

λS such that

λII 4 Λ 4 λSI

Assumption 7 There exist positive numbers σ1 and

σ2 such that

σ1I 4 B 4 σ2I

6

4 Global convergence

This section is devoted to prove the convergence of the

present algorithm for any initial point x0 ∈ int(Ω). If

assumptions 1 to 7 previously introduced are verified at

each step, we show that the present algorithm generates

a sequence {(xk, Λk
0)} converging to (x∗, Λ∗0) where x∗

is a stationary point of problem (2).

First we prove that all the steps of the algorithm

are well posed. In particular we show that the linear

systems has an unique solution. Then it is shown that

at each iteration d0 and d are descent directions of f at

x and d(x) constitutes an uniformly feasible directions

field in Ωa. Finally we state that any sequence gener-

ated by the algorithm converges to a stationary point

of (2).

Theorem 1 Assume that x ∈ Ωa is a regular point

of problem (2), B ∈ Sn++, Λ ∈ Sq++ and Λ and A(x)

commute. Then, the following matrix is regular,

W (x,B,Λ) =

[
B ∇A(x)

(I ⊗ Λ)∇A(x)> A(x)⊗ I

]
(24)

Proof It is enough to prove that, if for some v ∈ Rn+q2

it is W (x,B,Λ)v = 0, then v = 0. Let v> = [r>, y>],

r ∈ Rn, y ∈ Rq2 . Thanks to B ∈ Sn++ and using Gaus-

sian elimination we have:

r =−B−1∇A(x)y (25)

My = 0 (26)

where M is the Schur complement:

M = ∇A(x)>B−1∇A(x)− (I ⊗ Λ)−1(A(x)⊗ I).

Since M is symmetric, to conclude that is nonsin-

gular, we show that it is positive definite.

Performing the product y>My we have

y>My = y>
(
∇A(x)>B−1∇A(x)

)
y (27)

− y>(I ⊗ Λ)−1(A(x)⊗ I)y

Since B−1 is positive definite,

y>
(
∇A(x)>B−1∇A(x)

)
y > 0 (28)

By hypothesis and lemma 6

−y>(I ⊗ Λ)−1(A(x)⊗ I)y > 0 (29)

concluding that y>My > 0.

Now, suppose that y>My = 0. We must prove that

y = 0. From (27), (28) and (29) we have

y>∇A(x)>B−1∇A(x)y = 0 (30)

and

y>(I ⊗ Λ)−1(A(x)⊗ I)y = 0. (31)

Since B is positive definite, from equation (30) we

have

∇A(x)y = 0. (32)

Due to lemma 5 and from equation (31),

(A(x)⊗ I)y = 0. (33)

Since x is a regular point we have y = 0. ut

As a consequence of the last theorem, since Ωa, Λ

and B are bounded, we have that the values of d0, λ0,

d1 and λ1 are bounded also.

If in Step 1 d0 = 0, we have λ0 = 0 and ∇f(x) = 0.

Then, the computed iterate is a local interior optimal

solution and the algorithm stops. If not, we are going

to show that d0 is a descent direction.

Lemma 7 The vector d0 computed by the algorithm is

a descent direction and

d>0 ∇f(x) 6 −d>0 Bd0.

Proof Multiplying the first equation of (11) by d>0 ,

d>0 ∇f(x) = −d>0 Bd0 − d>0 ∇A(x)λ0.

In view of the second equation of (11),

−d>0 ∇A(x)λ0 = λ>0 (A(x)⊗ I)(I ⊗ Λ)−1λ0.

Then,

d>0 ∇f(x) = −d>0 Bd0 + λ>0 (A(x)⊗ I)(I ⊗ Λ)−1λ0.

Thanks to assumptions 5 and 7, (I ⊗Λ)−1(A(x)⊗ I) ∈
Sq

2

− and B ∈ Sn++ then,

d>0 ∇f(x) 6 −d>0 Bd0.

As a consequence, d0 6= 0 is a descent direction of f at

x. ut

Lemma 8 The vector d computed by the algorithm is

a descent direction and satisfies

d>∇f(x) 6 ξd>0 ∇f(x). (34)

Proof see [1]. ut

Lemma 9 There exists δ > 1 and ϕ0 > 0 such that the

search direction d and the parameter ρ computed by the

algorithm verify:

ϕ0‖d0‖2 6 ρ 6 ϕ‖d0‖2 (35)

and

‖d‖ 6 δ‖d0‖. (36)

7

Proof see [1] ut

As a consequence of (35) and (36), ρ and ‖d‖2 have

the same order of magnitude. Thus, there exist ϕ0 > 0

and ϕ > 0 such that

ϕ0‖d(x)‖2 6 ρ(x) 6 ϕ‖d(x)‖2, x ∈ Ωa. (37)

Lemma 10 It follows from assumption (3) that there

exists a positive real number L such that

A(y) 4 A(x) +DA(x)(y − x) + L‖y − x‖2I (38)

where x, y ∈ Ω.

Proof See [1]. ut

In [6], it was shown the existence of τf > 0 such

that at any x ∈ Ωa, condition (22) is verified for any

t ∈ [0, τf].

Proposition 1 For all x ∈ Ωa such that ‖d(x)‖ ≥
M > 0 there exist τ > 0 such that:

A(x+ td(x)) 4 0 (39)

for all t ∈ [0, τ].

Proof see [1]. ut

It will be proved latter that, as a consequence of propo-

sition 1, if x∗ ∈ Ωa is an accumulation point of a

sequence {xk}k∈N generated by the algorithm, then

‖d(x∗)‖ = 0. Let us consider now the following result,

Proposition 2 Let be {xk}k∈N a sequence given by the
algorithm converging to x∗ with ‖d(x∗)‖ = 0. There

exist δ > 0 and τ > 0 such that, if xk ∈ B(x∗, δ) ∩Ωa,

then

A(xk + td(xk)) 4 0 (40)

for all t ∈ [0, τ].

Proof See [1] ut

Since Ωa is a compact, the sequence {xk}k∈N ∈
int(Ωa) generated by the algorithm has an accumula-

tion point x∗ ∈ Ωa. The sequences Λk, Bk,A(xk) and

ρk are bounded. Then, there exists K1 ⊂ N such that

{d0(xk), d(xk), ρ(xk), Λ0(xk), Λ(xk),A(xk)}k∈K1
con-

verge to {d0(x∗), d(x∗), ρ(x∗), Λ0(x∗), Λ(x∗),A(x∗)}.

Theorem 2 If x∗ is an accumulation point of the se-

quence {xk} generated by the algorithm, then x∗ is a

stationary point of problem (2).

Proof Let be the set K1 ⊂ K ⊂ N previously defined.

It follows from propositions 1 and 2 that there exists

K2 ⊂ K1 such that tk goes to t∗ > 0 for k ∈ K2.

We prove by contradiction that ‖d(x∗)‖ = 0. If we

assume that ‖d∗‖ > ηd > 0, it follows from the line

search condition (22),

f
(
xfol(k)

)
6 f(xk) + η tk(dk)>∇f(xk).

where fol(k) is the element that follows k in K2. Taking

the limits for k →∞,

f(x∗) 6 f(x∗) + η t∗(d∗)>∇f(x∗).

Then,

0 6 (d∗)>∇f(x∗). (41)

But, from lemma 8, when k →∞, we obtain

(d∗)>∇f(x∗) 6 ξ(d∗0)>∇f(x∗)

and from lemma 7 we have, for k →∞,

(d∗0)>∇f(x∗) 6 −(d∗0)>B∗d∗0.

Since B∗ is positive definite, we have (d∗)>∇f(x∗) < 0.

This result is in contradiction with (41). Thus, d∗ = 0.

Let λ∗0 = vec(Λ∗0), from (11) we have that

∇f(x∗) +∇A(x∗)λ∗0 = 0 (42)

(A(x∗)⊗ I)λ∗0 = 0. (43)

Then Λ∗0A(x∗) = 0. Therefore (x∗, λ∗0) is a station-

ary point of our problem.

ut

5 Implementation details

5.1 Solving the linear systems

We discuss some issues about the numerical resolution

of the internal linear systems in order to take advantage

of the structure of A. In the particular case of structural

optimization we have than the stiffness and mass ma-

trices have a particular structure that is very efficiently

treated by finite element codes.

It follows from equations (11) that:

λ0 = −(A(x)⊗ I)−1(I ⊗ Λ)∇A(x)>d0 (44)

Let U = (A(x) ⊗ I)−1(I ⊗ Λ)∇A(x)>, U ∈ Rq2×n.

Then, we obtain the symmetric linear system :

[B −∇A(x)U]d0 = −∇f(x) (45)

8

In consequence of Lemma 1:

U = (A(x)−1 ⊗ Λ)∇A(x)>. (46)

Let Uk be the k − th column of U . Thus, we have

vec(Λ
∂A
∂xk

(x)A(x)−1) = Uk. (47)

Then Uk can be obtained by solving the following q

linear systems,

A(x)mat(Uk) =
∂A
∂xk

(x)Λ (48)

The consequence is that the computation of U needs

to solve q × n linear systems of dimension q, all with

the same symmetric negative definite matrix A(x).

The factorization to solve the symmetric system

(45) requires 1
6n

3 floating point operations (flops).

In the case when A(x) is a band matrix with

bandwidth b, the Cholesky factorization needs about
1
2 (b(b+ 3)q) flops, see [11]. Note than in structural op-

timization applications in general we have b << q. Since

the forward and backward substitution for each system

requires about (2b + 1)q flops, to compute U we need

about q2n(2b+ 1) + 1
2 (b(b+ 3)q) flops. The calculus of

λ0 in (44) requires about 2n q2 flops.

In another approach, we can solve the Schur com-

plement problem:

(∇A(x)>B−1∇A(x)− (A(x)⊗ Λ−1))λ0 = (49)

−∇A(x)>B−1∇f(x).

In theorem (1) it was proven that the matrix of the sys-

tem (49) is symmetric and positive definite. Then some

preconditioned conjugate gradient method can be ap-

plied to solve this system. The resolution of this q2 lin-

ear system using a conjugate gradient method requires
about 2k q4 where k is the numbers of iterations.

Solving the dual system each iteration requires the

product of the coefficient matrix by a vector. Employing

limited memory quasi-Newton formulation, this prod-

uct can be done without storing the coefficient matrix,

[?].

5.2 Updating the dual matrix

Another crucial matter is the updating of the matrix Λ.

To have global convergence of the presented algorithm

Λ must satisfy assumptions 5 and 6. This is the case if

Λ = µI, µ > 0. (50)

However, to keep good local convergence properties of

Newton like methods, we should take Λk+1 = Λk
0 . Un-

fortunately Λk
0 is not symmetric and the assumptions

5 and 6 would not be always verified. We propose the

following updating rule for Λ,

i) Compute λ0min, the minimum eigenvalue of

sym(Λ0).

ii) If λ0min > λI then, set Λ = sym(Λ0).

iii) Else, set Λ = sym(Λ0) +
(
λI − λ0min

)
I. ut

With this rule Λ meets assumption 5, but assump-

tion 6 is true only at the limit. To ensure global con-

vergence with this rule, we restart periodically with

Λ = µI. Λ is also restarted if the search direction is

not descent or feasible, [1].

In (49) the calculus of Λ−1 is required. A Choleski

decomposition of Λ can be obtained in a procedure sim-

ilar to Levenberg-Marquardt technique, [10].

5.3 Quasi-Newton formulation

The quasi-Newton matrix B must verify assumption

7. We employ the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) updating rule with Powell’s correction to en-

sure positive definiteness of B [12], with B = I as

initial value. For linear SDP problems, we have that

∇xxL(x, λ) ≡ 0. We take B = 10−6I.

6 A general algorithm for nonlinear and SDP

In this section we extend the domain of application of

the previous algorithm to problem (1), including in-

equality and equality vector constraints.

Inspired on techniques proposed in [6], we look for

solutions of first order optimality conditions:

∇f(x) +∇g(x)γ +∇h(x)µ+∇A(x)λ = 0

G(x)γ = 0

h(x) = 0

ΛA(x) = 0

g(x) ≤ 0

A(x) 4 0

γ ≥ 0

Λ 4 0

(51)

where λ = vec (Λ), Λ ∈ Sq+, γ ∈ Rm
+ . We denote ∇g(x)

and ∇h(x) the transposed of the Jacobian matrices

of g and h respectively and Gij(x) = δijgi(x); i, j =

1, 2, ...,m.

9

A Newton like iteration to solve the present problem

is defined as follows:
B ∇g(x) ∇h(x) ∇A(x)

Γ∇g(x)> G(x) 0 0

∇h(x)> 0 0 0

(I ⊗ Λ)∇A(x)> 0 0 A(x)⊗ I

x0 − x
γ0 − γ
µ0 − µ
λ0 − λ

(52)

= −

∇f(x) +∇A(x)λ

ΓG(x)

h(x)

vec(ΛA(x))

where (x, γ, µ, Λ) ∈ int(Ωa) × Rm × Rp × Sq++ is the

current point and (x0, γ0, µ0λ0) ∈ Rn ×Rm ×Rp ×Rq2

are the new estimates.

In a similar way as in [6], we introduce the following

potential function for the line search:

ϕc(x) = f(x) +

p∑
i=1

ci | hi(x) | (53)

where ci are positive constants.

Solving the following linear systems we obtain d0, a

descent direction of ϕc, as well as a restoring direction

d1 and estimations of the dual variables,

B ∇g(x) ∇h(x) ∇A(x)

Γ∇g(x)> G(x) 0 0

∇h(x)> 0 0 0

(I ⊗ Λ)∇A(x)> 0 0 A(x)⊗ I

d0 d1
γ0 γ1
µ0 µ1

λ0 λ1

(54)

=

−∇f(x) 0

0 −γ
−h(x) −ω

0 −λ

Let ∆ = {x ∈ Ω such that h(x) ≤ 0} and int{∆}

the interior of ∆ which is assumed to be not void. The

proposed algorithm for Problem (2) is described now:

The algorithm for general SDP

Parameters. ξ ∈ (0, 1), η ∈ (0, 1), ϕ > 0 and ν ∈
(0, 1).

Initial data. x ∈ int(∆), Λ ∈ Sq++ commuting with

A(x), γ > 0, ω = (1, ..., 1) ∈ Rp ,B ∈ Sn++ and c ∈ R+
p.

Step 1. Computation of the search direction d.

(i) Solve the first linear system in (54).

If d0 = 0, stop.

(ii) Solve the second linear system in (54).

(iii) If ci < −1.2µ0i, then set ci = −2µ0i, i = 1, ..., p.

(iv) Compute the parameter ρ such that

ρ = min

{
ϕ‖d0‖2, (ξ − 1)

d>0 ∇ϕc(x)

d>1 ∇ϕc(x)

}
(55)

if d>1 ∇ϕc(x) > 0. Otherwise:

ρ = ϕ‖d0‖2. (56)

(v) Compute the search direction d as

d = d0 + ρd1. (57)

Step 2. Line Search.

Find t, the first element of {1, v, v2, v3 . . . } such that

ϕc(x+ td) 6 ϕc(x) + tηd>∇ϕc(x) (58)

gi(x+ td) < 0, i = 1, ..., q (59)

h(x+ td) < 0 and

A(x+ td) ≺ 0. (60)

Step 3. Updates.

(i) Take the new point x := x+ td.

(ii) Define new value for B ∈ Sn++.

(iii) Define new value γi > 0, i = 1, ..., q.

(iv) Define new value for Λ ∈ Sq++ commuting with

A(x).

(v) Go to Step 1.

�

For c large enough, the potential function (53) is

in fact an exact penalty function for the equality con-

straints, see [8]. But ϕc is not differentiable in points

where the equality constraint are active. The present

algorithm takes iterates at int(∆), where smooth opti-

mization techniques can be employed.

If x ∈ ∆ and c is such that ci+µ0i > 0; i = 1, .., p the

search direction d is a descent direction for ϕc because:

d>∇ϕc(x) 6 ξd>0 ∇ϕc(x) 6 −d>0 Bd0. (61)

Moreover, d is also a feasible direction for the inequality

constraints and the constraints hi(x) 6 0; i = 1, .., p.

The line search of Step 2 ensures a decrease of the

potential function ϕc. The proof of these assertions are

similar to the proof of lemmas 7 and 8.

Since we assume that Ωa is a compact, the global

convergence of the presented algorithm for general and

non linear SDP constraint can be proved using the same

arguments that where used in section 4.

10

7 Applications in Structural Optimization and

numerical tests

The present method is a very reliable tool for Struc-

tural Optimization. Several objective functions and

constraints can be included in the optimization model.

We mention weight, cost or compliance and also

local constraints, like mechanical stresses or nodal

displacements. Matrix constraints can be employed

to include constraints on fundamental frequencies or

stability.

Material optimization is a relevant application for

our technique, since the elasticity matrices are required

to be positive definite.

Thanks to the fact that all the iterates are feasible,

the line search can be implemented so as a positive

definite stiffness matrix is first obtained and the

structural analysis is latter performed.

In this section, three trusses commonly studied in

the literature [4] are selected to test the ability of the

proposed algorithm on structural optimization prob-

lems with static and dynamics constraints. We also con-

sider a L-shape 2D membrane.

The truss optimization problem of minimum weight

subject to static and dynamics constraints can be for-

mulated as follows:

min
A

W (A) =
ne∑
i=1

ρiAiLi

s.t. A− ≤ Ai ≤ A+ ; i = 1, . . . , ne

σ− ≤ σi ≤ σ+ ; i = 1, . . . , ne

σib ≤ σi ; i = 1, . . . , ne

u− ≤ ui ≤ u+ ; i = 1, . . . , ndg

K(A)− (λ−)M(A) < 0

(62)

where W is the structural weight, ne is the number of

bars and ndg, the number of reduced degrees of free-

dom.

To each element corresponds the material density

ρi, the cross-sectional area Ai, the length Li and the

stress σi. The Euler buckling compressive stress limit is

σib. The nodal displacement along the i− th degree of

freedom is denoted as ui. Lower and upper constraints

on a generic function ϕi are denoted as ϕ− and ϕ+,

respectively. We call K, the reduced structural stiffness

matrix and M , the reduced structural mass matrix. It

can be proved that, if K(A) − (λ−)M(A) < 0 is true,

then λ− is a lower bound on the generalized eigenvalues

of K(A) − λM(A). In consequence, the last condition

implies on a lower bound of the fundamental frequencies

of the structure.

Eulers buckling compressive stress is taken as:

σib = −CEEAi

L2
i

(63)

where CE represents Euler buckling coefficient.

The structural optimization problem of minimum

volume for L-shape plate subject to static and dynamics

constraints is formulated as follows:

min
A

V (h) =
ne∑
i=1

hiAi

s.t. hi ≥ 0 ; i = 1, . . . , ne

σMi ≤ σ+
M ; i = 1, . . . , ne

u− ≤ ui ≤ u+ ; i = 1, . . . , ndg

K(h)− (λ−)M(h) < 0

(64)

where V is the total volume of L-shape plate, hi is the

thickness of element i and σ+
M is the upper bound on

Von Mises stress σMi.

If the inequality and matrix constraints are not ver-

ified by the initial points, a feasible initial point was

found with the help of the auxiliary mathematical pro-

gram

min
x,z

z

s.t. g(x) ≤ z
A(x)− zI 4 0

(65)

where z is a scalar auxiliary variable.

In all the examples the material density is 0.1 lb/in3

(2768 Kg/m3) and the modulus of elasticity is 10000 Ksi

(68.95 × 103 MPa).

All the problems were solved with the same set of
parameters: ξ = 0.7, η = 0.1, ϕ = 1, ν = 0.7. The initial

values were Λ = I, γi = 1; for i = 1, . . . ,m, B = I and

ci = 0; for i = 1, . . . , p. Armijo’s line search is employed

in all the cases.

7.1 Ten-bar truss problem

Consider the 2D structure shown in Fig. 1 submitted

to a single loading case given in Table 1. The cross-

sectional area of each bar is considered as an indepen-

dent variable. The initial cross-sectional of each bar is

30 in2. The stress limit is ± 25 Ksi (172.375 MPa) and

displacements of nodes 1, 2, 3 and 4 are limited to ±2 in

(±5.08 cm) in the y direction. Buckling constraints are

not considered. The lower bounds on cross-sectional ar-

eas are 0.1 in2 (0.6452 cm2) for all members. The value

of λ− is 23700 rad2/s2 (24.5 Hz).

The number of iterations necessary to obtain an ini-

tial feasible point is nine.

11

2

1

1 3 5

4 6
L L

L

3 4

1 2

6 5

9 8 7 10

Fig. 1 Example 1. A ten-bar planar truss: L = 360 in (914.4
cm)

Table 1 Nodal load components Kips (KN) for example 1.

Load case Node Fy
1 2 -100 (-445)

4 -100 (-445)

Fig. 2 Example 1. Optimal design

Table 2 Optimal results for example 1.

Design variables Optimized solution
A1 32.6484
A2 0.1000
A3 24.1002
A4 13.6312
A5 0.1000
A6 0.2813
A7 7.8205
A8 23.7204
A9 23.7204
A10 23.7204

Weight (lbm) 5111.47
ω1 (Hz) 24.50

Figure 2 shows the optimum design of the structure

and optimized results of the design variables are listed

in Table 2.

Figure 3 shows the iteration history of the structural

weight of the ten-bar truss.

7.2 25-bar truss problem

Let be the three-dimensional truss shown in Fig. 4 sub-

mitted to two load cases listed in Table 4. The members

are divided into eight design groups according to Table

3. The initial cross-sectional of each bar is 3 in2 (19.356

0 5 10 15 20 25 30 35
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Iteration

W
ei

gh
t (

lb
)

Fig. 3 Convergence curve for the ten-bar truss

cm2). The stress limit is ±40 Ksi (172.375 MPa) for

each member and displacements of nodes 1 and 2 are

limited to ±0.35 in (±0.889 cm) in the x, y and z di-

rections. The lower bounds on cross-sectional areas are

0.01 in2 (0.06452 cm2) for all members. The values of

Euler buckling coefficient and λ− are 39.274 [13] and

23700 rad2/s2 (80 Hz), respectively.

The number of iterations necessary to obtain an ini-

tial feasible point is 11.

trelica25
PESO:

A4

FOLHA 1 DE 1ESCALA:1:100

DES. Nº

TÍTULO:

MATERIAL:

DATAASSINATURANOME

 LINEAR:
 ANGULAR:

QUALID

MANUF.

APROV.

VERIF.

DES.

1
2

5

4
3

6

10

9

7

8

8a

3a
3a

3a

x

y

z

4a

4a

Fig. 4 Example 2. A 25-bar space truss: a = 25 in (63.5 cm)

Fig. 5 shows the optimum design of the structure

and optimized results of the design variables are listed

in Table 5.

Figure 6 shows the iteration history of the structural

weight of the ten-bar truss.

12

Table 3 Design variable linking for example 2.

Desig variables Members Connective of node
1 1 1–2
2 2–5 1–4, 2–3, 1–5, 2–6
3 6–9 2–4, 2–5, 1–3, 1–6
4 10,11 3–6, 4–5
5 12,13 3–4, 5–6
6 14–17 3–10, 6–7, 4–9, 5–8
7 18–21 4–7, 3–8, 5–10, 6–9
8 22–25 6–10, 3–7, 4–8, 5–9

Table 4 Nodal load components Kips (KN) for example 2.

Load case Node Fx Fy Fz
1 1 1 (4.45) 10 (44.5) -5 (-22.25)

2 0 10 (44.5) -5 (-22.25)
3 0.5 (2.225) 0 0
6 0.5 (2.225) 0 0

2 1 0 20 (89) -5 (-22.25)
2 0 -20 (-89) -5 (-22.25)

Fig. 5 Example 2. Optimal design

Table 5 Optimal results for example 2.

Design variables Optimized solution
A1 0.0100
A2 2.1653
A3 2.2947
A4 0.5149
A5 0.0322
A6 0.6884
A7 2.0322
A8 3.4364

Weight (lbm) 599.927
ω1 (Hz) 80

7.3 72-bar truss problem

Let be the three-dimensional truss shown in Fig. 7 sub-

mitted to two load cases listed in Table 6. The members

are divided into eight design groups according to Table

7. The initial cross-sectional of each bar is 1 in2 (6.452

cm2). The stress limit is ±25 Ksi (172.375 MPa) for

each member and displacements of nodes 1, 2, 3 and

0 5 10 15 20 25 30 35
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Iteration

W
ei

gh
t (

lb
)

Fig. 6 Convergence curve for the 25-bar truss

4 are limited to ±0.25 in (±0.635 cm) in the x and y

directions. The lower bounds on cross-sectional areas

are 0.1 in2 (0.6452 cm2) for all members. The values of

Euler buckling coefficient and λ− are 39.274 and 98700

rad2/s2 (50 Hz), respectively.

The number of iterations necessary to obtain an ini-

tial feasible point is 56.

trelica72
PESO:

A4

FOLHA 1 DE 1ESCALA:1:1

DES. Nº

TÍTULO:

REVISÃONÃO MUDAR A ESCALA DO DESENHO

MATERIAL:

DATAASSINATURANOME

DEBUR AND
BREAK SHARP
EDGES

ACABAMENTO:SE NÃO ESPECIFICADO:
DIMENSÕES EM MILÍMETROS
ACABAM. SUPERFÍCIE:
TOLERÂNCIAS:
 LINEAR:
 ANGULAR:

QUALID

MANUF.

APROV.

VERIF.

DES.

19

18

17

20

3

4

6

5

1

2

10

9

8

7

11

13

12

14

15

16

8a

2b

2b

b

b

b

b

x

y

z

Fig. 7 Example 2. A 72-bar space truss: b = 60 in (152.4
cm)

Fig. 8 shows the optimum design of the structure

and optimized results of the design variables are listed

in Table 8.

13

Table 6 Nodal load components Kips (KN) for example 3.

Load case Node Fx Fy Fz
1 1 5 (22.25) 5 (22.25) -5 (-22.25)
2 1 0 0 -5 (-22.25)

2 0 0 -5 (-22.25)
3 0 0 -5 (-22.25)
4 0 0 -5 (-22.25)

Table 7 Design variable linking for example 3.

Desig variable Members Connective of node
1 1–4 1–5, 2–6, 3–7, 4–8
2 5–12 2–5, 1–6, 3–6, 2–7,

4–7, 3–8, 1–8, 4–5
3 13–16 1–2, 2–3, 3–4, 4–1
4 17,18 1–3, 2–4
5 19–22 5–9, 6–10, 7–11, 8–12
6 23–30 6–9, 5–10, 7–10, 6–11,

8–1, 7–12, 5–12, 8–9
7 31–34 5–6, 6–7, 7–8, 8–5
8 35,36 5–7, 6–8
9 37–40 9–13, 10–14, 11–15, 12–16
10 41–48 10–13, 9–14, 11–14, 10–15,

12–15, 11–16, 9–16, 12–13
11 49–52 9–10, 10–11, 11–12, 12–9
12 53,54 9–11, 10–12
13 55–58 13–17, 14–18, 15–19, 16–20
14 59–66 14–17, 13–18, 15–18, 14–19,

16–19, 15–20, 13–20, 16–17
15 67–70 13–14, 14–15, 15–16, 16–13
16 71,72 13–15, 14–16

Fig. 8 Example 3. Optimal design

Figure 9 shows the iteration history of the structural

weight of the ten-bar truss.

Table 8 Optimal results for example 3.

Design variables Optimized solution
A1 0.1990
A2 0.3482
A3 0.2156
A4 0.3765
A5 0.5526
A6 0.3956
A7 0.1000
A8 0.1000
A9 1.7779
A10 0.7935
A11 0.1000
A12 0.1000
A13 3.3604
A14 1.1447
A15 0.1000
A16 0.1000

Weight (lbm) 476.93
ω1 (Hz) 50

0 5 10 15 20 25 30 35
0

1000

2000

3000

4000

5000

6000

Iteration

W
ei

gh
t (

lb
)

Fig. 9 Convergence curve for the 72-bar truss

7.4 L-shape plate problem

Consider the 2D shape that is shown in Fig. 10 submit-

ted to a total vertical of 110 Kips (489.3 KN) applied

on the right side in form of punctual forces acting over

the distinct nodes existing on that face and fixed in

the bottom side (see Table 9). The thickness of each

element is considered as an independent variable.

Table 9 Nodal load components Kips (KN) for example 4.

Load case Node Fy
1 1 -10 (44.5)

...
...

11 -10 (44.5)

The shape is divided in 300 elements with 4 nodes

quadrilateral element. The initial thickness of each el-

14

1

2L

L

2
3
4
5
6
7
8
9
10
11

‘

Fig. 10 Example 4. L-shape plate

ement is 1 in (25.4 mm) and the initial area for each

element is 4 in2 (101.6 mm2). The Von Mises stress limit

is 50 Ksi (345 MPa) for each element and displacement

of node 11 is limited to ±1.5 in (±38.1 mm) in the y

direction. The value of λ− is 4× 106 rad2/s2 (318 Hz).

The number of iterations necessary to obtain an ini-

tial feasible point is 18.

Fig. 11 shows the optimum design of the L-shape

plate.

0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 11 Example 4. Optimal design of L-shape plate

Fig. 12 shows the iteration history volume of the

L-shape plate.

0 20 40 60 80 100 120 140
200

300

400

500

600

700

800

900

1000

1100

1200

Iteration

V
ol

um
e

[in
3]

Fig. 12 Convergence curve for the L-shape plate

8 Conclusions

In this paper, a new approach for general nonlinear and

semidefinite programming is presented for weight mini-

mization of truss structures in terms of sizing variables

with static and dynamics constraints.

The test problems were solved very efficiently with

the same set of parameters.

The number of iterations in the line search was very

small. The line search required one, two or three eval-

uations of the objective function and the constraints.

9 Acknowledgments

The authors thank the Brazilian Research Councils

CAPES, CNPq, FAPERJ, the institutions support-

ing the program Ciência Sem Fronteiras of Brazil, the

French Research Councils CNRS and INRIA and the

Brazilian-French Network in Mathematics for the finan-

cial support.

References

1. Miguel Aroztegui, Jos Herskovits, JeanRodolphe Roche,
and Elmer Bazán. A feasible direction interior point algo-
rithm for nonlinear semidefinite programming. Structural
and Multidisciplinary Optimization, pages 1–17, 2014.

2. F.J. Bonnans and A. Shapiro. Perturbation Analysis of
Optimization Problems. Springer Verlag, 2000.

3. Etienne de Klerk. Aspects of Semidefinite Program-
ming: Interior Point Algorithms and Selected Applica-
tions. Kluwer, 2002.

4. R. Haftka and Z. Gurdal. Elements of Structural Opti-
mization. Kluwer Academic Publishers, 3 edition, 1992.

5. R. E. Hartwig. A note on the partial ordering of positive
semi-definite matrices. Linear and Multilinear Algebra,
6:223–226, 1978.

15

6. J. Herskovits. A feasible directions interior point tech-
nique for nonlinear optimization. Journal of Optimiza-
tion Theory and Applications, 99:121–146, 1998.

7. R. A. Horn and C. R. Johnson. Matrix Analysis. Cam-
bridge University Press, 1985.

8. David G. Luenberger. Linear and Nonlinear Program-
ming. Addison Wesley, 1984.

9. David G. Luenberger and Yinyu Ye. Linear and Nonlin-
ear Programming. Springer, 2008.

10. J.J. More. The levenberg-marquardt algorithm: imple-
mentation and theory. Lecture Notes in Mathematics,
pages 105–116, 1978.

11. A. Pissanetzky. Sparce matrix technology. 1984.
12. M. J. D. Powell. The Convergence of Variable Metric

Methods for Nonlinearly Constrained Optimization Cal-
culations, in Nonlinear Programming 3. Academic Press,
London, 1978.

13. S. Rao. Engineering Optimization. Theory and Practice.
John Wiley & Sons, Inc., 4 edition, 2009.

14. Alexander Shapiro. First and second order analysis of
nonlinear semidefinite programs. Mathematical Program-
ming, 77:301–320, 1994.

15. Alexander Shapiro. On uniqueness of lagrange multipli-
ers in optimization problems subject to cone constraints.
SIAM Journal on Optimization, 7:508 518, 1997.

