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Spray flames are complex combustion configurations that require the consideration of com-
peting processes between evaporation, mixing and chemical reactions. The classical mixture-
fraction formulation, commonly employed for the representation of gaseous diffusion flames,
cannot be used for spray flames due to its non-monotonicity. This is a consequence of the pres-
ence of an evaporation source term in the corresponding conservation equation. By addressing
this issue, a new mixing-describing variable, called effective composition variable η, is defined
to enable the general analysis of spray-flame structures in composition space. This quantity
combines the gaseous mixture fraction Zg and the liquid-to-gas mass ratio Zl, and is defined

as: dη =
√

(dZg)2 + (dZl)2. This new expression reduces to the classical mixture-fraction defi-
nition for gaseous systems, thereby ensuring consistency. The versatility of this new expression
is demonstrated in application to the analysis of counterflow spray flames. Following this anal-
ysis, the effective composition variable η is employed for the derivation of a spray-flamelet
formulation. The consistent representation in both effective-composition space and physical
space is guaranteed by construction and the feasibility of solving the resulting spray-flamelet
equation in this newly defined composition space is demonstrated numerically. A model
for the scalar dissipation rate is proposed to close the derived spray-flamelet equations.The
laminar one-dimensional counterflow spray flamelet equations are numerically solved in the
η-space and compared to the physical-space solutions. It is shown that the hysteresis and
bifurcation characterizing the flame structure response to variations of droplet diameter and
strain rate are correctly reproduced by the proposed composition-space formulation.

Keywords: Laminar counterflow spray flames; Flamelet formulation; Mixture fraction;
Effective composition; Bifurcation; Hysteresis

1. Introduction

Motivated by the utilization of liquid fuels for transportation and propulsion sys-
tems, considerable progress has been made on the analysis of spray flames [1–6].
While gaseous diffusion flames are characterized by the competition between scalar
mixing and chemistry, spray flames require the continuous supply of gaseous fuel
via evaporation and transport to the reaction zone to sustain combustion. Because
of this complexity, the investigation of spray flames in canonical combustion config-
urations, such as mixing layers, coflow and counterflow flames, represents a viable
approach to obtain physical insight into the behavior of spray flames [7–11].
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Counterflow spray flames have been the subject of intensive research, and con-
siderable numerical and experimental studies have been performed by considering
laminar conditions [7, 12–17]. Theoretical investigations provided understanding
about underlying physical processes, flame stabilization and extinction processes
of spray flames [11, 18–20]. Experiments in counterflow flames have been per-
formed to examine extinction behavior of mono- and polydisperse spray flames
through strain variation and vortex interaction [21, 22]. More recently, bistable
flame structures of laminar flames were considered for examining the bifurcation
in three-dimensional turbulent counterflow spray flames [23]. As such, these studies
demonstrated that the structure of spray flames is of fundamental relevance for a
wide range of operating regimes.

In the context of laminar gaseous diffusion flames, the flame structure is typi-
cally examined in composition space by introducing the gaseous mixture fraction
Zg as an independent variable [24]. For a given strain rate, the flame structure is
then fully parameterized in terms of the gaseous mixture composition, providing
a unique mapping between physical and composition space. This mixture-fraction
formulation is also used in turbulent combustion models, enabling the representa-
tion of the turbulence-chemistry interaction through presumed probability density
function models [25, 26]. Another significant advantage of a mixture-fraction repre-
sentation arises from the computationally efficient solution of the resulting flamelet
equations in composition state. Therefore, extending the mixture-fraction concept
to spray flames is desirable and enables the utilization of analysis tools that have
been developed for gaseous flames.

Unfortunately, this extension is non-trivial, since the classical gaseous mixture-
fraction definition looses its monotonicity due to evaporation [27, 28]. With the
exception of pre-vaporized flames and other simplifying assumptions, the structure
of spray flames cannot be studied in the classical mixture-fraction space.

Previous works have dealt with the extension of the mixture fraction definition
to spray flames. Sirignano [29] and Bilger [30] have investigated the definition of
mixing-describing variables for two-phase combustion. Their works apply to the
characterization of the mixture evolution from the droplet (or ligament) surface to
the far field. Such an approach is only applicable if the diffusive layer around each
droplet is small compared to the droplet interspacing. In cases where the droplet
interspacing is too small compared to flame and diffusive scales, a mesoscopic point
of view should be adopted and a continuum representation is required with regard
to the mixture-fraction field [3]. Although Bilger’s approach is able to recover the
mesoscopic limit, the detailed representation of these scales is computationally ex-
pensive. In this scenario, extending the mixture fraction concept to spray flames is
not straightforward. This issue was mentioned in [31], and a total mixture fraction
was introduced to account for both gas and liquid contributions. Luo et al. [32] ex-
tended the classical mixture fraction flamelet transformation to spray flames, but
only for pre-vaporized conditions that serve the definition of the boundary condi-
tions for the gaseous flamelet equations. Olguin and Gutheil [27, 33], Greenberg
et al. [11, 18–20] and Maionchi and Fachini [34] directly solved the spray flame
equations in physical space and subsequently represented the flame structure in
the Zg-space; for example by separating the purely gaseous region of the flame
from the evaporation zone [27, 33]. However, due to the non-monotonicity, the
classical gaseous definition cannot be used to solve the spray flamelet equations in
composition space.

By addressing these issues, this work proposes a new composition-space variable
that enables the description of spray flames. The key idea for this formulation con-
sists in identifying a monotonic representation of a mixing-describing coordinate
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for spray flames. This new coordinate, referred to as effective composition variable
η, is both useful for analyzing the flame structure and for effectively solving the
corresponding spray flamelet equations. In addition, the effective composition vari-
able η is defined in such a way that it extends the classical flamelet formulation for
gaseous diffusion systems [24, 35–37], thereby ensuring consistency. Compared to
a non-monotonic definition, the use of the proposed effective composition variable
for spray flames exhibits the following advantages:

• it allows a mathematical well-posed definition of the transformation from phys-
ical to composition space, thereby providing a theoretical foundation for one-
dimensional laminar spray flamelet formulations.

• it enables the representation of the system in composition space, eliminating the
explicit dependence on the spatial coordinate, thereby providing a computation-
ally more efficient solution.

• it allows the analysis of spray flames in analogy to the work on gaseous flames
based on a mixture-fraction formulation [36, 38].

• it provides direct insight of the flame structure without any additional postpro-
cessing that is otherwise required, for example, when using the classical gaseous
Zg-space.

The remainder of this paper is organized as follows. The spray-flamelet equations
in physical space and composition space are presented in Sec. 2. The effective
composition formulation and its mathematical properties are discussed in Sec. 3.
The versatility of this effective composition space formulation is demonstrated by
considering two applications. The first application (Sec. 4) is concerned with the
analysis of the spray-flame structure in composition space. The second application
concerns the use of η to directly solve the spray-flame system in composition space.
For this, the spray-flamelet equations in η-space are formulated in Sec. 5, and a
closure model for the scalar dissipation rate is proposed in App. C. Comparisons
of simulation results with solutions obtained in physical space are performed and
different levels of model approximations are assessed. It is shown that the proposed
formulation is able to reproduce the bifurcation and hysteresis, characterizing the
flame-structure response to strain-rate and droplet-diameter variations. The paper
finishes by offering conclusions and perspectives.

2. Governing equations

In the present work, we consider a mono-disperse spray flame in a counterflow con-
figuration, and the governing equations are formulated in an Eulerian framework.
In this configuration, fresh air is injected against a stream consisting of a fuel spray
and pure air. Consistent with the classical analysis of gaseous flames, the following
assumptions are invoked [24, 35, 37]:

(1) Steady-state solution and low-Mach number limit.
(2) Unconfined flame and constant thermodynamic pressure.
(3) Single-component fuel.
(4) Unity Lewis number. Equal but not necessarily constant diffusivities are

assumed for all chemical species and temperature: Dk = Dth = λ/(ρcp) ≡
D. Ficks’ law without velocity correction is used for diffusion velocities [37].

(5) Calorically perfect gas: cp,k = cp = constant.

In this context, it is noted that the composition variable and formulation proposed
in this paper are not restricted to these assumptions and can equally be extended
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in analogy to the theory for gaseous flames, and guidance on the extension to
non-unity Lewis numbers is provided in App. E.

Under these assumptions, the transport equations for gaseous and liquid phases
in physical space are introduced next. From this, we derive the general spray
flamelet formulation, which serves as foundation for the following analysis.

2.1 Spray flame equations in physical space

Gas-phase equations The gaseous phase is described by the transport equations
for momentum, species mass fractions, temperature and mixture fraction Zg:

ρui
∂uj
∂xi

=
∂

∂xi

(
µ
∂uj
∂xi

)
− ∂p

∂xj
+ (uj − ul,j)ṁ− fj , (1a)

ρui
∂Yk
∂xi

=
∂

∂xi

(
ρD

∂Yk
∂xi

)
+ ω̇k + (δkF − Yk)ṁ , for k = 1, . . . , Ns (1b)

ρui
∂T

∂xi
=

∂

∂xi

(
ρD

∂T

∂xi

)
+ ω̇T + ṁ

(
Tl − T −

q

cp

)
, (1c)

ρui
∂Zg
∂xi

=
∂

∂xi

(
ρD

∂Zg
∂xi

)
+ (1− Zg)ṁ , (1d)

where ρ is the density, p is the pressure, and uj is the jth component of the velocity

vector. The production rate of species k is denoted by ω̇k, ω̇T = −
∑Ns

k=1 ω̇kWkhk/cp
is the heat released by combustion, Wk is the molecular weight of species k, hk is
the sensible and chemical enthalpy of species k, cp is the heat capacity of the
gaseous mixture, q is the ratio between heat transfer and mass transfer rates from
the gas to each droplet, δij is the Kronecker delta, and Ns is the total number
of species. The total mass vaporization rate is ṁ, T is the temperature, µ is the
dynamic viscosity of the gas mixture, and fj is the jth component of the drag
force, which is here modeled by the Stokes law [39]. Subscript l is used to identify
quantities of the liquid phase and the subscript F refers to the fuel. The gaseous
non-normalized mixture fraction is here formulated with respect to the carbon-
containing species [40]:

Zg =
WF

nCFWC

Ns∑
k=1

nC,k
YkWC

Wk
, (2)

where Yk is the mass fraction of species k, nC,k is the number of carbon atoms in
species k and WC is the carbon molecular weight.

Liquid-phase equations As we are considering spray combustion, the liquid phase
is composed of a set of droplets. The following assumptions are made:

• Monodisperse/Monokinetic/Mono-temperature spray: all the droplets in the
same vicinity have the same diameter, velocity and temperature.

• Dilute spray: the spray volume fraction is negligible compared to that of the gas
phase. Consequently, the gas phase volume fraction is assumed to be one in the
gas phase equations.

• The only external force acting on the particle trajectory is the drag force.

• One-way coupling and no droplet/droplet interaction or secondary break-up are
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considered.

Consequently, the balance equations for the total liquid mass, the individual
droplet mass, the liquid momentum, and the enthalpy of the liquid phase dhl =
cldTl read as [7]:

∂(ρlαlul,i)

∂xi
= −ṁ , (3a)

nlul,i
∂md

∂xi
= −ṁ , (3b)

∂(ρlαlul,iul,j)

∂xi
= −fj − ṁul,j , (3c)

∂(ρlαlul,ihl)

∂xi
= −ṁ(hl − q + Lv) , (3d)

where αl = nlπd
3/6 is the liquid volume fraction, md = ρlπd

3/6 is the individual
droplet mass, ρl is the liquid density, d is the droplet diameter, nl is the liquid
droplet number density, cl is the liquid heat capacity, and Lv is the latent heat of
evaporation. By introducing the liquid-to-gas mass ratio:

Zl =
αlρl

(1− αl)ρ
≈ αlρl

ρ
, (4)

Eqs. (3) can be written in non-conservative form:

ρui
∂Zl
∂xi

=
∂[ρ(ui − ul,i)Zl]

∂xi
− ṁ (1 + Zl) , (5a)

ρui
∂md

∂xi
= − ρ

nl
ṁ+

∂[ρ(ui − ul,i)md]

∂xi
, (5b)

ρui
∂(ul,jZl)

∂xi
=
∂[ρul,j(ui − ul,i)Zl]

∂xi
− fj + ṁul,j (1 + Zl) , (5c)

ρui
∂(Zlhl)

∂xi
=
∂[ρhl(ui − ul,i)Zl]

∂xi
− ṁ(1 + Zl)hl + ṁ(Lv − q) . (5d)

In the following, Eqs. (1) and (5) are used to derive the spray flamelet equations.

2.2 General spray flamelet formulation

The general spray flamelet equations can be derived in analogy to the analy-
sis for counterflow gaseous flames [24]. The physical coordinate along the flame-
normal direction can be expressed in terms of a generic variable ζ, which is as-
sumed to monotonically increase from the oxidizer side to the spray injection
side. By introducing the transformation from physical space to composition space,
(x1, x2, x3)→ (ζ(xi), ζ2, ζ3), all spatial derivatives can be written as:

∂

∂x1
=

∂ζ

∂x1

∂

∂ζ
, (6a)

∂

∂xi
=

∂

∂ζi
+
∂ζ

∂xi

∂

∂ζ
for i = 2, 3. (6b)
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It is important to note that the strict monotonicity of the quantity ζ is essential to
guarantee the mathematical well-posedness of the transformation in Eq. (6), which
is not defined for ∂xi

ζ=0.
Peters assumed [24] that derivatives along the ζ-direction are much larger com-

pared to those along the tangential directions (ζ2 and ζ3). By neglecting these
high-order contributions, the following operators are obtained:

ρui
∂φ

∂xi
= Ξζ

∂φ

∂ζ
, (7a)

∂

∂xi

(
ρD

∂φ

∂xi

)
=
∂φ

∂ζ

[
ρD

2

∂

∂ζ

( χζ
2D

)
+
χζ
2D

∂ρD

∂ζ

]
+
ρχζ
2

∂2φ

∂ζ2
, (7b)

∂

∂xi

(
µ
∂φ

∂xi

)
=
∂φ

∂ζ

[
µ

2

∂

∂ζ

( χζ
2D

)
+
χζ
2D

∂µ

∂ζ

]
+
µ

D

χζ
2

∂2φ

∂ζ2
, (7c)

where

Ξζ = ρui
∂ζ

∂xi
(8)

is the material derivative of ζ, and χζ is the scalar dissipation of the variable ζ:

χζ = 2D
∂ζ

∂xi

∂ζ

∂xi
. (9)

With this, the equations for the gas phase, Eqs. (1), can be rewritten as:

duj
dζ

(
Ξζ −

µ

2

d

dζ

( χζ
2D

)
−
χζ
2D

dµ

dζ

)
=
µ

D

χζ
2

d2uj
dζ2

+ (uj − ul,j)ṁ− fj + Jj
dp

dζ
,

(10a)

dYk
dζ

(
Ξζ −

ρD

2

d

dζ

( χζ
2D

)
−
χζ
2D

d(ρD)

dζ

)
=
ρχζ
2

d2Yk
dζ2

+ (δkF − Yk)ṁ+ ω̇k, (10b)

dT

dζ

(
Ξζ −

ρD

2

d

dζ

( χζ
2D

)
−
χζ
2D

d(ρD)

dζ

)
=
ρχζ
2

d2T

dζ2
+ ṁ

(
Tl − T −

q

cp

)
+ ω̇T ,

(10c)

dZg
dζ

(
Ξζ −

ρD

2

d

dζ

( χζ
2D

)
−
χζ
2D

d(ρD)

dζ

)
=
ρχζ
2

d2Zg
dζ2

+ (1− Zg)ṁ , (10d)

where Jj = − ∂ζ
∂xj

. The equations for the liquid phase are:

Ξζ
dZl
dζ

= −ṁ (1 + Zl) + Ψ [Zl] , (11a)

Ξζ
dmd

dζ
= −ṁ ρ

nl
+ Ψ [md] , (11b)

Ξζ
d (ul,jZl)

dζ
= −ṁul,j(1 + Zl)− fj + Ψ [ul,jZl] , (11c)

Ξζ
d (Zlhl)

dζ
= −ṁ(1 + Zl)hl + ṁ(L− q) + Ψ [hlZl] , (11d)
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where Ψ[φ] is defined as the contribution to the slip velocity due to the drag force:

Ψ [φ] =
∂ζ

∂xi

∂

∂ζ
[ρφ(ui − ul,i)] . (12)

In accordance with Peters’ theory for gaseous flames, the flamelet transformation
assumes that the flame structure is locally one-dimensional. The formulation of an
appropriate mixing-describing variable ζ is discussed in the following section.

3. Composition-space definition for counterflow spray flames

The spray flamelet equations, Eqs. (10) and (11), are derived by invoking two
assumptions, namely the presence of a one-dimensional flame structure and the
strict monotonicity of ζ with respect to the spatial coordinate. The last constraint
is required to guarantee the existence of the derivative and that the solution remains
single-valued. Identifying an appropriate definition of ζ that meets this last criterion
is the central focus of this paper. Before introducing this variable, we will review
previously suggested formulations from the literature.

Gaseous mixture fraction The first candidate is the classical gaseous non-
normalized mixture fraction,

ζ = Zg , (13)

which is defined in Eq. (2) and the corresponding conservation equation is given
by Eq. (1d). This definition was used previously to parameterize the spray-flamelet
equations [27]. As discussed in [27, 28, 41], the presence of a source term results
in a non-conserved quantity for counterflow spray flames1. Furthermore, due to
competing effects between evaporation and mixing, Zg becomes non-monotonic,
resulting in the multi-valued representation of the flame structure in Zg-space.
While this prevents the direct solution of the spray flamelet equations in compo-
sition space, Zg has been used for the parameterization of spray flames using two
different approaches:

• Separating the spray zone and the purely gaseous zone to identify two distinct
regions where Zg is monotonic as done in [8]. However, it will be shown in the
subsequent section that this approach does not always guarantee monotonicity in
these phase-separated regions when diffusion and evaporation are not spatially
separated.

• Separating the flame structure at the tangent point dxZg = 0 [27]. Although
this method provides a valid representation of the flame structure, the location
of this inflection point is not know a priori and can therefore not be used in a
straightforward manner as a separation indicator.

Total mixture fraction An alternative to using Zg as describing composition vari-
able is to also consider the contribution from the two-phase region in the definition
of ζ. A possible definition of such a quantity was first proposed in [31], and further

1Since the definition of mixture fraction is reserved for a conserved quantity, Zg from Eq. (1d) does not
strictly represent a mixture fraction. However, for consistency reasons with previous works, we follow this
convention.
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investigated in [28, 41] as:

ζ = Zt = Zg + Zl . (14)

This definition can be considered as an extension of Eq. (2). In this context it
is noted that the consistency of this formulation is guaranteed by the fact that
Zg ≡ YF for pure fuel. The conservation equation in physical space is given by
[28, 41]:

ρui
∂Zt
∂xi

=
∂

∂xi

(
ρD

∂Zg
∂xi

+ ρ(ui − ul,i)Zl
)
− Ztṁ . (15)

The evaporation source term in this equation is negative, leading to a decreasing
Zt along the material derivative. Consequently, this term will not affect the mono-
tonicity. However, due to the differential diffusion between liquid and gaseous phase
and the presence of the slip velocity, the monotonicity of Zt is not guaranteed. This
issue was discussed in [28, 41] and demonstrated in [28].

Conserved mixture fraction Another definition of a mixture fraction can be ob-
tained by eliminating the evaporation source term, which is achieved through the
following definition:

ζ = Zc =
Zg + Zl
1 + Zl

, (16)

with corresponding conservation equation in physical space is then:

ρui
∂Zc
∂xi

=
1

1 + Zl

∂

∂xi

(
ρD

∂Zg
∂xi

)
+

1− Zc
1 + Zl

∂

∂xi
[ρ(ui − ul,i)Zl] . (17)

This definition also suffers from contributions by slip velocity and differential dif-
fusion between gaseous and liquid phase.

Effective composition variable A composition variable that is strictly monotonic
for counterflow spray flames can be obtained by restricting the two-dimensional
space (Zg, Zl) to the 1D manifold to which the solution belongs to. By doing so,
one can define a composition space variable η as the metric of the 1D manifold,
i.e. its tangent in the (Zg, Zl)-space:

(dζ)2 = (dη)2 = (dZg)
2 + (dZl)

2 , (18)

from which follows:

dη =
√

(dZg)2 + (dZl)2 , (19)
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where the sign is determined subject to the local flow structure. By combining
Eqs. (19) and (5a) with Eq. (1d), the transport equation for η can be written as:

ρui
∂η

∂xi
= sgn(uη)

√(
ρui

∂Zg
∂xi

)2

+

(
ρui

∂Zl
∂xi

)2

= sgn(uη)

√(
∂

∂xi

(
ρD

∂Zg
∂xi

)
+ (1− Zg)ṁ

)2

+

(
∂[ρ(ui − ul,i)Zl]

∂xi
− ṁ(1 + Zl)

)2

,

(20)

where uη = ui∂xi
η/
√

(∂xj
η)2 is the gas velocity projected along the gradient of

η. Note that this definition of η reduced to the classical gaseous mixture fraction
expression in the absence of a liquid phase, guaranteeing the consistency with the
single-phase flamelet formulation [24]. This follows by imposing the condition:

sgn(uη) = sgn
(
ui∂xi

Zg/
√

(∂xj
Zg)2

)
if Zl = 0 . (21)

In this context, it is noted that the definition (19) of η is based on mathematical
arguments and requirements of monotonicity, positivity and degeneracy. As such, it
is not directly based on physical interpretation following classical mixture-fraction
argumentation. However, the mathematical definition of Eq. (19) enables compar-
isons with measurements, and a link between η, Zg and Zl is provided under the
assumption of separating mixing and evaporation zones (App. B).

The particular advantage of definition (19) is that it enables a direct solution of
the flamelet equations in composition space. Further, with regards to application
to tabulation methods, it overcomes the ambiguity that is associated with the
construction of different chemistry libraries to represent gaseous and two-phase
zones. It has to be noted that the evaporation process contributes twice to the
evolution of η, as it acts both on Zg and Zl. This double contribution is necessary
for cases where the evaporation process does not happen in the mixing layer. This
situation occurs for instance if a premixed two-phase flame propagates towards
the fuel injection, if the liquid fuel vaporized prior to injection, or if preferential
concentration occurs before the mixing layer. In this context it is also noted that
η contains a source term and is therefore not a conserved scalar. Moreover, η, as
defined in Eq. (19), is non-normalized. However, this does not represent an issue
for numerical simulations since the resulting flamelet equations are numerically
well behaved. In fact, this property is strictly not necessary to correctly identify
the flame-normal direction, which only requires to monotonically increase from the
oxidizer side to the spray injection side (or vice versa). The maximum value of
η, found for the limiting case with separated mixing and evaporation zones, as
provided in App. B, could be used to normalize this quantity, when necessary.

4. Analysis of spray flame structure

This work considers a counterflow configuration, which consists of two opposed
injection slots that are separated by a distance L = 0.02 m along the x1-direction,
see Fig. 1. On the fuel side, a mono-disperse kerosene (C10H20) spray is injected
with air. On the oxidizer side, pure air is injected. Similar to the works by Dvor-
jetski and Greenberg [19] and Lerman and Greenberg [11], the gaseous flow field
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is assumed to be described by a constant strain rate:1 u1 = −ax1 and u2 = ax2.
Compared to gaseous flames, the boundary conditions are not imposed at infinity
in order to take into account the effect of evaporation on the mixing and reaction2.
The following gaseous boundary conditions are imposed at both sides: T 0 = 600 K,
Y 0

O2
= 0.233, Y 0

N2
= 0.767. For the liquid phase at the spray side, the liquid-to-gas

mass ratio is Z0
l = 0.2. In the present study, we examine effects of the droplet

diameter of the injected spray, d0, and the strain rate, a, on the flame structure.
To focus on the coupling between mass transfer, mixing and reaction processes,
approximations on the evaporation model, the liquid velocity and the temperature
have been invoked for the numerical solutions of the spray flame equations. These
assumptions and the resulting system of equations are presented in App. A. The
reaction chemistry developed in [42] for kerosene/air flames is used in the following.

Figure 1.: Schematic of the laminar counterflow spray flame.

4.1 Choice of composition-space variable

The solution of the counterflow spray flame at atmospheric pressure for d0 = 40 µm
and a = 100 s−1 in physical space is shown in Fig. 2. The gaseous fuel from the
droplet evaporation is consumed in the reaction zone, which is characterized by
the high temperature region and product concentration. As a result of the fuel-rich
injection condition, all oxygen that is injected at the fuel side is consumed.

The excess fuel is eventually consumed in the diffusion region, where it reacts
with the oxygen that is provided from the oxidizer stream. In the following, the
evaporation zone (Zl > 0) identifies the spray side of the flame, and the gas side
of the flame coincides with the region where Zl = 0.

The different definitions for mixture fraction are evaluated and compared in
Fig. 2(b). This comparison shows that gaseous (Zg), total (Zt) and conserved (Zc)
mixture fractions are not monotonic, which is a result of the slip velocity, the
evaporation and differential diffusion effects1 between liquid and gaseous phases. It
is noted that such non-monotonic character is not due to the constant strain rate
assumption, and the same effect has been observed for variable strain rate spray
flames in [28].

1Despite the fact that this assumption is not exact for variable-density flows, it reduces the computational
complexity of the counterflow while retaining the main physics. This approximation is often used as a
simplified model for two-phase flame analysis.
2For L→∞, the pre-evaporated case is retrieved.
1The liquid phase does not have a diffusion term, and is therefore characterized by an infinite Lewis
number.
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(a) Temperature and species mass fraction. (b) Gaseous, total and conserved mixture fractions.

Figure 2.: Flame structure in physical space for d0 = 40 µm and a = 100 s−1:
a) temperature and species mass fraction, and b) gaseous, total and conserved
mixture fractions, liquid-to-gas mass ratio and effective composition variable.

As shown in Fig. 3(a), the spray flame structure can not be easily studied in
the classical mixture-fraction space. The potential of representing the spray flame
structure in Zg-space is assessed by separating the solution into two parts following
two distinct approches: by distinguishing between gas and spray regions [8] or
by using the maximum value of Zg as a separation threshold [27]. However, as
shown in Fig. 3(b), representing the flame structure in the Zg-space by separating
the solution into gas and spray regions is not adequate since the solution is not
necessarily unique due to the non-monotonicity of Zg in the spray region. The
second strategy circumvents this issue (cfr. Fig. 3(c)), but unfortunately, the a
priori evaluation of the maximum value of Zg is not possible, so that this separation
strategy cannot be used in a straightforward manner.

The newly proposed composition variable η addresses both issues, and the flame
structure as a function of η is shown in Fig. 3(d). Compared to the mixture-fraction
parameterization with respect to Zg and Zt, the solution is guaranteed to have a
unique value for any given η. Moreover, compared to the two-zone separation, this
parameterization eliminates the need for a separation criterion. The flame structure
on the spray side can be correctly represented when working in physical space or
in η-space.

4.2 Flame structure in effective composition space

The counterflow spray-flame equations (Eq. (A3)) are solved in physical space
and the effective composition variable η is used to analyze the flame structure for
different values of d0 and a. The solutions for Zg and Zl are compared with results
from an asymptotic analysis. The derivation of the analytical solution is provided in
App. B, and is obtained under the assumption that evaporation and diffusion occur
in two distinct regions. The analytic solutions for Zg and Zl present piecewise linear
behaviors with respect to η when the evaporation is completed without interaction
with the diffusion process. The gaseous mixture fraction reaches its maximum value
Z∗g = Z0

l /(1+Z0
l ) = 0.166 at Zl = 0. The spray side is then located at η > Z∗g and is

mainly governed by evaporation. In contrast, the gas side (η ≤ Z∗g ) is characterized
by diffusion. By construction, η coincides with Zg on the gas side, thereby retaining
consistency with the mixture-fraction formulation for purely gaseous flames.

Results for different initial droplet diameters and strain rates are illustrated
in Figs. 4 and 5, showing the solution in physical space (left) and in effective
composition space (middle). The location separating the evaporation and mixing



July 20, 2017 Combustion Theory and Modelling CTM˙sprayflamelet

12 B. Franzelli, A. Vié, M. Ihme

(a) Representation in Zg-space. (b) Representation in Zg-space separating the spray
and gas zone.

(c) Representation in Zg-space separating the solu-
tion at maximum value of Zg .

(d) Representation in η-space.

Figure 3.: Flame structure for d0 = 40 µm and a = 100 s−1.

regions, is indicated by the vertical blue line. To assess the significance of the
diffusion process at the spray side, a budget analysis of the Zg-transport equation
(1d) is performed. In this budget analysis, the contribution of each term appearing
in Eq. (1d), i.e. advection, diffusion and evaporation, is evaluated. Compared to
the work of [33], the contribution of the evaporation to the budget of Zg is not
split, since both terms in Eq. (1d) relate to the sole evaporation process.

These results are presented in the right column of Figs. 4 and 5. The comparison
of the results with the asymptotic solutions also allows to quantify the diffusion
contribution at the spray side without looking at the budget analysis. Discrepancies
with the asymptotic solutions will occur when the diffusion and evaporation zones
overlap. Indeed, diffusion contributions in the spray region are apparent in Figs. 4
and 5 as deviation from the linear behavior of Zg with respect to η on the spray
side. The region where diffusion affects the results is then presented in gray in all
figures based on the Zg-profiles. The blue vertical line separates the spray side from
the gas side based on the Zl-profiles.

4.2.1 Effects of droplet diameter on spray-flame structure

Results for a constant strain rate of a = 100 s−1 and three different initial droplet
diameters of d0 = {20, 40, 80} µm are presented in Fig. 4. For d0 = 20 µm
(Fig. 4(a)), the liquid fuel fully evaporates before reaching the flame reaction zone,
and the high temperature region is confined to the gas region of the flame. By
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(a) Initial droplet diameter: d0 = 20 µm.

(b) Initial droplet diameter: d0 = 40 µm.

(c) Initial droplet diameter: d0 = 80 µm.

Figure 4.: Flame structure obtained from the solution in physical space for a =
100 s−1 as a function of different initial droplet diameters d0: solution in x-space
(left), η-space (middle), and budget analysis (right) of Zg-conservation equation
(Eq. (1d)); the gray area corresponds to the diffusion zone; the blue vertical line
separates the spray side from the gas side. For comparison, asymptotic solutions
for Zg and Zl are shown by symbols.

considering the budget analysis, it can be seen that the diffusion contribution on
the spray side is negligible for small droplet diameters. This is further confirmed by
comparisons with the asymptotic solution for the gaseous mixture fraction (shown
by symbols), which is in very good agreement with the simulation results.

By increasing the initial droplet diameter to d0 = 40 µm, shown in Fig. 4(b), it
can be seen that a small amount of liquid fuel reaches the preheat zone of the flame.
The evaporation is not separated anymore from the diffusion region: as shown in the
right panel of Fig. 4(b), the diffusive part of the budget can no longer be neglected
close to the maximum value of Zg. This may also be recognized by comparing the
numerical results with the asymptotic profiles. Here, the maximum values for η
and Zg are small compared to the analytic solution, provided that the underlying
modeling hypothesis of distinct evaporation and mixing zones is invalid.

For the case with d0 = 80 µm (Fig. 4(c)) liquid fuel is penetrating into the re-
action zone, and a high temperature region and a second heat-release region on
the spray side can be observed. This complex flame structure is clearly visible in
the η-space. Moreover, as evidenced by the overlap between the gray region and



July 20, 2017 Combustion Theory and Modelling CTM˙sprayflamelet

14 B. Franzelli, A. Vié, M. Ihme

(a) Strain rate: a = 200 s−1.

(b) Strain rate: a = 400 s−1.

(c) Strain rate: a = 600 s−1.

Figure 5.: Flame structure obtained from the solution in physical space for d0 =
40 µm as a function of different strain rates: solution in x-space (left), η-space
(middle), and budget analysis (right) of Zg-conservation equation (Eq. (1d)); the
gray area corresponds to the diffusion zone; the blue vertical line separates the
spray side from the gas side. For comparison, asymptotic solutions for Zg and Zl
are shown by symbols.

the liquid volume fraction Zl, as well as by the budget analysis, both diffusive
and evaporative contributions are mixed. These interaction processes are not rep-
resented by the asymptotic solution, which relies on the spatial separation between
both processes.

Considering the η-space, the effect of the droplet diameter on the flame structure
is clearly identified. For all three cases considered, the first temperature peak is
located on the gas side at stoichiometric condition. However, with increasing initial
droplet diameter, a second temperature peak is formed on the spray side, which
identifies the transition from a single-reaction to a double-reaction flame structure
for large droplets, as observed in [16, 23]. Moreover, by comparing profiles of Zg
and Zl with the analytic solution, the diffusive contribution on the spray side
can be clearly recognized. By increasing the droplet diameter, diffusion effects
become increasingly important in the spray region, and the diffusive processes
overlap with evaporation. These effects are not reproduced by the analytic solution
that is derived in App. B.
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4.2.2 Effects of strain rate on spray-flame structure

Results for different strain rates a = {200, 400, 600} s−1 and fixed initial droplet
diameter of d0 = 40 µm are presented in Fig. 5. Compared to the results in physical
space for a strain rate of a = 100 s−1 (Fig. 4(b)), the flame structure in Fig. 5(a)
is confined to a narrow region for a = 200 s−1. However, the representation of
the flame structure with respect to the effective composition variable η provides
a clear description of the different regions that are associated with heat release
and diffusion. The comparison with the analytic profiles provides an assessment of
competing effects between diffusion, advection, and evaporation.

The flame structure for a strain rate of a = 400 s−1 is shown in Fig. 5(b). For this
condition, a double-flame structure is observed in which the primary heat-release
zone is formed on the spray side and the unburned vaporized fuel is consumed in
a secondary reaction zone on the gaseous side of the flame. This result is similar
to that presented in [28], but has the opposite behavior compared to the findings
of [33], for which a double-flame structure is observed for low strain rates. Since,
however, this study used methanol or ethanol, for which the latent heat is twice
larger than that of kerosene used here and in [28], there is no contradiction be-
tween the three studies. The different reaction zones are conveniently identified in
composition space, and the budget analysis provides a clear description of the con-
tributions arising from a balance between diffusion and advection in the absence
of evaporation effects.

By further increasing the strain rate to a value of a = 600 s−1 a high-temperature
region is observed on the spray side (Fig. 5(c)). However, compared to the case with
a = 400 s−1 the two heat-release zones are closer without exhibiting a significant
reduction in temperature. At this condition, the flame on the gas side is highly
strained, leading to a reduction of the maximum temperature (from 2400 to 2000 K)
and both temperature peaks are located on the spray side. In comparison, the
maximum temperature on the spray side is less affected by variations in strain
rate.

5. Derivation of spray flamelet equations in effective composition space

One of the main motivations for introducing the monotonic composition-space
variable η is to enable the direct solution of Eqs. (10) and (11) in composition
space.

Rewriting Eq. (8) by introducing the effective composition space variable η and
the transformation operators (7), the term Ξη (corresponding to the advection term
in Eq. (20)) can be written as:

Ξη = sgn(uη)

√(
ρui

∂Zg
∂xi

)2

+

(
ρui

∂Zl
∂xi

)2

, (22)

= sgn(uη)

{(
dZg
dη

[
ρD

2

d

dη

( χη
2D

)
+
χη
2D

d(ρD)

dη

]
+
ρχη
2

d2Zg
dη2

+ (1− Zg)ṁ
)2

+

(√
χη
2D

d[ρZl(ui − ul,i)]
dη

− ṁ (1 + Zl)

)2
}1/2

. (23)

By assuming a constant pressure along the η-direction, we obtain the complete
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spray-flamelet equations:

Ξ∗η
duj
dη

=
µ

D

χη
2

d2uj
dη2

+ (uj − ul,j)ṁ− fj , (24a)

Ξ†η
dYk
dη

=
ρχη
2

d2Yk
dη2

+ (δkF − Yk)ṁ+ ω̇k , (24b)

Ξ†η
dT

dη
=
ρχη
2

d2T

dη2
+ ṁ

(
Tl − T −

q

cp

)
+ ω̇T , (24c)

Ξ†η
dZg
dη

=
ρχη
2

d2Zg
dη2

+ (1− Zg)ṁ , (24d)

Ξη
dZl
dη

= −ṁ (1 + Zl) + Ψ [Zl] , (24e)

Ξη
dmd

dη
= −ṁ ρ

nl
+ Ψ [md] , (24f)

Ξη
d(ul,jZl)

dη
= −fj − ṁul,j(1 + Zl) + Ψ [ul,jZl] , (24g)

Ξη
d(Zlhl)

dη
= −ṁhl(1 + Zl) + ṁ(Lv − q) + Ψ [hlZl] , (24h)

where the following quantities are introduced:

Ξ∗η =Ξη −
[
µ

2

d

dη

( χη
2D

)
+
χη
2D

dµ

dη

]
, (25a)

Ξ†η =Ξη −
[
ρD

2

d

dη

( χη
2D

)
+
χη
2D

d(ρD)

dη

]
, (25b)

Ψ [φ] =
∂η

∂xi

∂

∂η
[ρφ(ui − ul,i)] , (25c)

χη =2D

(
∂η

∂xi

)2

. (25d)

To confirm consistency, it can be seen that the spray-flamelet formulation (24)
reduces to the classical gaseous mixture-fraction formulation in the absence of a
liquid phase. Moreover, its consistency is guaranteed by construction, since no
assumption has been applied to rewrite the general equation system, Eqs. (10) and
(11), into the formulation (24), except for dηp = 0.

To solve Eqs. (24) in the effective composition space, closure models are required
for the terms ∂xi

η and (∂xi
η)2 that appear in the expressions for the slip velocity

and the scalar dissipation rate (Eqs. (25c) and (25d)). Before discussing in Sec. 5.2
the validity of the closure models developed in Apps. C and D, we will first verify
the feasibility of directly solving Eqs. (24) in composition space through direct
comparisons with spray-flame solutions from physical space. For this, the spray-
flamelet equations (24) are solved using expressions for χη and Ψ that are directly
extracted from the physical-space spray-flame solutions. In the following, the as-
sumptions described in App. A will be used to simplify the numerical simulations.
However, it is noted that the spray flamelet equations (24) are general and do not
rely on such assumptions.
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5.1 Feasibility of η-space simulations

A spray-flamelet formulation has been proposed in Zg-composition space by [27].
However, due to the non-monotonicity of Zg, the system could not be directly
solved in composition space. Instead, the system was solved in physical space and
contributions of each term from the solution of the counterflow spray flame was
post-processed in the Zg-space.

In contrast, the introduction of η enables the direct solution of the spray-flamelet
equations in composition space. To demonstrate the consistency of the spray-
flamelet formulation, one-dimensional counterflow spray flames are solved in η-
space by invoking the assumptions that were introduced in App. A.

A direct comparison of the solutions obtained in physical space using 400 mesh
points with adaptive refinement (solid lines) and in composition space with 100
mesh points with equidistant grid spacing (symbols) are shown in Fig. 6. The
operating conditions correspond to the case discussed in Sec. 4 (d0 = 40 µm and
a = 100 s−1). The excellent agreement between both solutions confirms the validity
of the newly proposed spray-flamelet formulation for providing a viable method for
the flame-structure representation and as method for solving the spray-flamelet
equations in composition space.

(a) Temperature, fuel and liquid-to-gas mass frac-
tions.

(b) Mass fractions of CO2 and CO.

Figure 6.: Comparison of spray-flame structure for d0 = 40 µm and a = 100 s−1

obtained from the solution in physical space (symbols) and in η-composition space
(solid lines). To facilitate a direct comparison, χη is extracted from the x-space
solution.

5.2 Closure models for χη and Ψ

In this section, the performance of the closure model for the scalar dissipation
rate χη on the simulation results is assessed. Here, we consider the formulation of
χη developed in App. C. This closure model is based on the linearization of the
evaporation model, controlled by the constant vaporization time τv, and the spatial
separation of evaporation and diffusion. A model for the slip-velocity term Ψ, under
consideration of the small Stokes-number limit based on the drag Stokes number
Std = aτd, is also provided in App. D. Since the numerical simulation considers the
limiting case of zero slip velocity, the only unclosed term is the scalar dissipation
rate χη. This term is essential not only to characterize the gas side of the flame
structure, but also to account for effects of advection, mixing, and evaporation
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on the liquid spray side. To ensure consistency with the assumptions that were
introduced in developing the closure for χη in App. C, we utilize the linearized
evaporation model, which introduces a constant evaporation time τv (see Eq. (B2)
in App. B). The solution of the spray-flame equations in physical space is then
compared against the solution obtained by solving the spray-flamelet equations in
η-space, for which χη is either directly extracted from the solution in physical space
or from the analytical expression given by Eq. (C5). Two cases are considered here:
τv = 0.005 s and τv = 0.02 s. Comparing the flame structure with results obtained
in physical space for the evaporation model of Sec. 4, these cases are representative
for conditions of d0 = 20 µm and d0 = 60 µm, respectively.

(a) Temperature, fuel and liquid-to-gas mass frac-
tions.

(b) Mass fractions of CO2 and CO.

Figure 7.: Comparison of spray-flame solution in η-space using the linearized evap-
oration model for τv = 0.005 s. The solution obtained in physical space is projected
onto the η-space (solid lines), spray-flamelet solution in η-space with χη extracted
from x-space solution (stars) and from analytic closure model (open circles). The
strain rate is a = 100 s−1.

(a) Temperature, fuel and liquid-to-gas mass frac-
tions.

(b) Mass fractions of CO2 and CO.

Figure 8.: Comparison of spray-flame solution in η-space using the linearized evap-
oration model for τv = 0.02 s. The solution obtained in physical space is projected
onto the η-space (solid lines), spray-flamelet solution in η-space with χη extracted
from x-space solution (stars) and from analytic closure model (open circles). The
strain rate is a = 100 s−1.



July 20, 2017 Combustion Theory and Modelling CTM˙sprayflamelet

A monotonic mixture fraction definition for the flamelet formulation of spray flames 19

The comparison of the flame structures for τv = 0.005 s is presented in Fig. 7.
The maximum value of η is slightly overestimated when using the analytical ex-
pression for χη, resulting in a small shift of the flame-structure profile in effective
composition space. This can be attributed to the fact that evaporation and dif-
fusion overlap in a small region. However all solutions give comparable results,
confirming the validity of the model for small Stokes numbers.

The flame structure for τv = 0.02 s is analyzed in Fig. 8. The flame structure is
substantially different from the other case, showing the presence of a double-flame
and an overlap of the evaporation and diffusion regions. The results in effective
composition space are in good agreement with the physical-space solution, but
some differences can be seen in the region where evaporation and diffusion overlap.
Radicals and intermediate species are expected to be more sensitive to strain rate
and, consequently, to be more sensitive to the closure model for χη. This can be
observed by comparing the CO mass fraction in Figs. 7(b) and 8(b). For τv = 0.005
s, the assumptions underlying the χη closure model are verified, leading to a good
agreement between the physical results and the two composition-space solutions.
In contrast, for τv = 0.02 s diffusion and evaporation overlap, violating the as-
sumptions that we invoked in the development of the closure for χη. Indeed, some
discrepancies for the CO-profile are noted for the calculation with the analytical
closure model, whereas the calculation using χη extracted from the x-space solu-
tion is still in good agreement with the physical space solution. Nevertheless, the
overall agreement remains satisfactory for all simulations.

The same analysis was performed using the d2-evaporation model of App. A
(Eq. (A1)) and variable density. Results show the same trend discussed for constant
τv, and this will be further examined in the following section. Although further
improvements for the closure model of χη are desirable to extend its applicability
to larger values of τv, results obtained from the η-space solution are in satisfactory
agreement with the x-space solutions.

5.3 Effect of droplet diameter and strain rate: bifurcation and hysteresis

Effects of droplet diameter and strain rate on the flame structure are examined
by solving the spray flamelet equations (Eqs. (A6)) in η-space using the analyti-
cal closure for χη and the d2-evaporation model that we introduced in App. A1.
Starting from the solution for d0 = 10 µm and a = 100 s−1, the droplet diameter
at injection is successively increased until d0 = 80 µm at an increment of 10 µm.

Results for d0 = {20, 40, 80} µm are presented in Fig. 9. It can be seen that for
small droplet diameters a single-reaction structure is observed whereas for larger
droplet diameters (d0 > 50 µm) the flame is characterized by a double-reaction
structure. Starting from the solution for d0 = 80 µm, the droplet diameter at injec-
tion is incrementally decreased until d0 = 10 µm. The double-reaction structure is
retained until d0 = 40 µm with a transition from double- to single-reaction struc-
ture occurring at d0 = 30 µm. Hence, for a droplet diameter between d0 = 40 µm
and d0 = 60 µm, depending on the initial condition two different flame structures
are found. This is shown for the case of d0 = 40 µm in Fig. 9(b), obtained when
increasing the droplet diameter, and in Fig. 9(d), corresponding to the transition
from double- to single-reaction structure. The occurrence of this bifurcation was
suggested by Continillo and Sirignano [7] and confirmed by Gutheil [16], and is

1To take into account the variability of the evaporation time, the vaporization Stokes number is approxi-
mated by Stv = aτv,ref (d/dref)

2 where τv,ref = 0.04 s and dref = 40 µm.
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(a) Increasing droplet diameter: d0 = 20µm. (b) Increasing droplet diameter: d0 = 40µm.

(c) Increasing droplet diameter: d0 = 80µm. (d) Decreasing droplet diameter: d0 = 40µm.

Figure 9.: Counterflow flame structure in η-space for a) d0 = 20µm, b) d0 = 40µm
for increasing droplet diameter, and c) d0 = 80µm and d) d0 = 40µm for decreasing
droplet diameter. Spray-flamelet equations are solved in η-space using the analytic
closure for χη developed in App. C (symbols). The gray area corresponds to the
diffusion zone; the blue vertical line separates the spray side from the gas side.

attributed to the increased nonlinearity that is introduced through the evapora-
tion term. Capturing this phenomenon is a confirmation of the suitability of our
flamelet formulation for the description of the physics of spray flames.

The behavior of the flame to a variation in the droplet diameter strongly depends
on the evaporation model and the reaction chemistry. Vié et al. [23] identified a
hysteresis for droplet diameter variations, which was characterized by a double-
branch structure. Following this analysis, the mean flamelet temperature is used
as a robust metric to distinguish between single- and double-reaction structures:

T =
1

max(η)

∫ max(η)

0
T (η) dη . (26)

In the following, the mean flame temperature is normalized by the corresponding
value for d0 = 10 µm and a = 100 s−1. Results for variations in droplet diameter are
shown in Fig. 10 to represent the hysteresis loop. Results from the physical space
are also included in Fig. 10 for comparison. The hysteresis behavior is captured by
both formulations, and slightly higher values for the double-reaction structure are
obtained from the solution in physical space.

The effect of the strain rate is further investigated. Starting from the solution
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(a) Variations in droplet diameter. (b) Variations in strain rate.

Figure 10.: Counterflow solution in η-space for a) variations in droplet diameter
at a fixed strain rate of a = 100 s−1 and b) variations in strain rate for a fixed
droplet diameter of d0 = 40 µm. Solution from η-space formulation is shown by
open squares and corresponding reference solution in physical space is shown by
blue closed circles. Arrows indicate the direction of the parametric variation.

for d0 = 40 µm and a = 100 s−1 at the lower branch in Fig. 10(a). The strain
rate is initially increased in increments of ∆a = 50 s−1 until a = 600 s−1. Results
for a = {200, 400, 600} s−1 are illustrated in Fig. 11. These results reproduce the

(a) a = 200 s−1. (b) a = 400 s−1. (c) a = 600 s−1.

Figure 11.: Counterflow flame structure in η-space for d0 = 40 µm and increasing
strain rates of a) a = 200 s−1, b) 400 s−1 and c) 600 s−1. Solution obtained in
η-space using the closure for χη developed in App. C. The gray area corresponds
to the diffusion zone; the blue vertical line separates the spray side from the gas
side.

behavior of the x-space solution from Sec. 4, with a transition from a single- to a
double-reaction structure at a = 350 s−1. However, when starting from a double-
reaction solution for a > 350 s−1 and decreasing the strain rate, the flame retains
its double-reaction structure. Moreover, it has been verified that when starting
from the double-reaction solution for d0 = 40 µm and a = 100 s−1, the double-
reaction structure is retrieved both by increasing and by decreasing the droplet
diameter. Consequently, a stable branch is identified for which the flame structure
is of double-reaction type, whereas the solution stays on the lower single-reaction
structure branch of Fig. 10(b) as long as the strain rate remains below 350 s−1. This
type of bifurcation was also observed in [23], where two branches were identified
without the occurrence of an hysteresis1. It may also be noted that the temperature

1It is noted that the flame transition from single- to double-reaction and vice versa is sensitive to the
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is overestimated for the highest values of the strain rate when solving the system
in η-space. This is due to the fact that the assumptions underlying the closure
for χη are not valid for high strain rate values, as discussed in Sec. 4.2. However,
the proposed closure for χη is a first attempt to model the scalar dissipation rate
of spray flame. With its shortcomings, the proposed η-space formulation is able
to reproduce effects of droplet diameter and strain rate on the spray flame struc-
ture. This capability of the spray-flamelet formulation was further demonstrated
by showing that it captures the hysteresis process.

6. Conclusions

An effective composition variable η was proposed to study the structure of spray
flames in composition space in analogy with the classical theory for purely gaseous
diffusion flames. Unlike previous attempts [27, 32] that have been used to describe
a mixture-fraction variable, the newly proposed effective composition variable is
monotonic, thereby enabling the solution of spray flame in composition space.
Furthermore, since this new definition is also based on the liquid-to-gas mass ratio,
it can capture the evolution of the disperse phase even if no evaporation occurs,
which is not the case for purely gaseous-based definitions.

This new composition space was used to analyze counterflow spray flames that
were simulated in physical space, showing its ability to represent the spray-flame
structure. Subsequently, a flamelet formulation was derived and solved, showing
the practical feasibility of directly evaluating the resulting spray flamelet equations
in η-space. From these flamelet equations arises the necessity of closures for the
scalar dissipation rate and the slip velocity. A simplified model was proposed and
the potential of the closure for χη was verified against solutions in physical space.
The complete flamelet formulation is used to investigate effects of strain rate and
droplet diameter on the flame behavior, reproducing the bifurcation and hysteresis
of the flame structure.

The proposed spray flamelet formulation represents a theoretical tool for the
asymptotic analysis of spray flames [11] in composition space. Formulation in an
Eulerian form can be extended to polydisperse flow fields, by using for instance
a multifluid formulation [43] for the droplet phase. This enables the consideration
of the liquid mixture fraction as the sum of all liquid size volume fractions, where
the polydispersity only acts on the overall vaporization rate. Another interesting
extension could be to take into account large Stokes-number effect such as droplet
velocity reversal [6], which can be done by introducing additional droplet classes
and adding each droplet class contribution to the mixture fraction definition. This
work is also a first step towards the development of spray-flamelet based turbulent
models, which will require development of subgrid scales model for the composition
space variable η as well as evaporation source terms.
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Appendix A. One-dimensional counterflow spray flames equations

A.1 Modeling approach

The counterflow spray flame equations are solved on the axis of symmetry x2 = 0,
from the fuel to the oxidizer side. To focus on the coupling between mass transfer,
mixing, and reaction, the following simplifying assumptions are invoked for the
numerical solution of the governing equations:

• A constant strain rate is assumed [19, 20]: u1 = −ax1 and u2 = ax2.

• For evaporation, a simplified d2-model is considered by fixing the droplet tem-
perature1 Tl = Tb, where Tb is the boiling temperature of the fuel species. Con-
sequently, the evaporation model writes [6]:

ṁ = 2πnldρD ln

(
cp
Lv

(T − Tl)
)
H(T − Tl) , (A1)

q = Lv , (A2)

where H(·) is the Heaviside function. The liquid fuel properties for kerosene are
Tb = 478 K and Lv = 289.9 kJ/kg.

• The liquid velocity is assumed to be the same as that of the gas velocity. This
assumption is valid for small Stokes-number droplets based on the gaseous flow
strain rate Std = aτd (where τd = ρld

2/(18µ) is the particle relaxation time
[39]). It has to be noted that such a system cannot capture droplets with a
Stokes number greater than 1/4 that could potentially cross the stagnation and
exhibit velocity reversal. Capturing such a behaviour should be handled by using
more velocity moments [44] or by introducing additional droplet classes [6].

• Constant thermo-diffusive properties2 with ρD = 2 × 10−5 kg/(m s) and cp =
1300 J/(kg K).

With these assumptions, the system of equations that is solved in physical space
takes the following form:

−axdYk
dx

= ρD
d2Yk
dx2

+ ṁ(δkF − 1) + ω̇k , (A3a)

−axdT

dx
= ρD

d2T

dx2
+ ṁ

(
Tl − T −

Lv
cp

)
+ ω̇T , (A3b)

−axdZl
dx

= −ṁ(Zl + 1) , (A3c)

−axdmd

dx
= −ṁ ρ

nl
, (A3d)

where the density is calculated from the species mass fractions, the temperature,
and the constant thermodynamic pressure using the ideal gas law.

1The assumption of constant liquid temperature is not valid for real applications [3], the transient heating
time being of primary importance. However, since the main concern about the definition of a composition
space is the effect of the vaporization rate, this assumption has no consequence on the suitability of our
methodology when liquid temperature variations are taken into account.
2It is worth mentioning that this assumption could be relaxed to take into account density effects on
the flow structure, by using the Howarth-Dorodnitzyn approximation under the classical boundary layer
approximation [35].
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In this configuration, the equation for η is:

− axdη

dx
= sgn(uη)

√(
−axdZg

dx

)2

+

(
−axdZl

dx

)2

. (A4)

To construct a monotonic composition space, we thus impose:

− axdη

dx
= sgn(−ax)

√(
−axdZg

dx

)2

+

(
−axdZl

dx

)2

. (A5)

The corresponding spray-flamelet system in composition space reads as:

Ξ†η
dYk
dη

=
ρχη
2

d2Yk
dη2

+ (δkF − Yk)ṁ+ ω̇k , (A6a)

Ξ†η
dT

dη
=
ρχη
2

d2T

dη2
+ ṁ

(
Tl − T −

Lv
cp

)
+ ω̇T , (A6b)

Ξη
dZl
dη

= −ṁ (1 + Zl) , (A6c)

Ξη
dmd

dη
= −ṁ ρ

nl
, (A6d)

with

Ξη =

[
1− 2H

(
Zg −

Z∗g
2

)]{(
dZg
dη

ρD

2

d

dη

( χη
2D

)
+
ρχη
2

d2Zg
dη2

+ (1− Zg)ṁ
)2

+ (ṁ (1 + Zl))
2

}1/2

,

(A7a)

Ξ†η =Ξη −
ρD

2

d

dη

( χη
2D

)
, (A7b)

and
[
1− 2H

(
Zg − Z∗g/2

)]
is introduced to model sgn(uη) = − sgn(x) as shown in

App. B. It is noted that Ξ†η is equal to zero on the gas side.
For the limit of small Stokes numbers, all droplets evaporate before crossing

the stagnation plane, which corresponds to the region of negative velocity. The
assumption could be violated for larger droplets if their Stokes number Std =
aτp is higher than 1/4 [6], requiring a closure model that accounts for the slip
velocity between the gas and liquid phase. However, it is also noted that even
droplets with a high Stokes number could evaporate before reaching the stagnation
plane. This is likely to occur for hydrocarbon fuels, for which the latent heat of
vaporization is small compared to those fuels that are commonly used to study
droplet crossings [6, 27]. Moreover, a closure model accounting for effects of the
slip velocity on the flame structure is proposed in App. D, under the assumption
of small Std. For high values of Std, the transport equation for the liquid velocity
(Eq. (24f)) may also be added to the system. As result of the zero-slip velocity
assumption, that is ui = ul,i, χη is the only unclosed term in the spray-flamelet
equations (A6). This term is directly evaluated from the x-space solution in Sec. 5.1.
Subsequently, this approximation is relaxed in Secs. 5.2 and 5.3 and a model for
the scalar dissipation rate is developed in App. C.
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A.2 Numerical method

To solve Eqs. (A3) and (A6) in their respective physical and effective composition
spaces, four numerical ingredients are used:

• An adaptive mesh refinement method is used based on the gradients of η in
physical space.

• Diffusive operators, i.e. second order derivatives, are discretized using a central
finite difference scheme. Considering a non-uniform mesh spacing of elements
∆xi, the second order derivative of a quantity Φ at the location i is:

d2Φ

dx2

∣∣∣∣
i

≈ ∆xi−1Φi+1 − (∆xi−1 + ∆xi)Φi + ∆xiΦi−1

∆xi−1∆xi
∆xi−1 + ∆xi

2

. (A8)

• Convective operators, i.e. first order derivatives, are discretized using an upwind
finite difference scheme:

U
dΦ

dx

∣∣∣∣
i

≈ max(0, Ui)
Φi − Φi−1

∆xi−1
+ min(0, Ui)

Φi+1 − Φi

∆xi
. (A9)

• Steady-state is reached through a pseudo-time advancement with explicit Euler
scheme. Considering τ as the increment of the pseudo-time variable and n as the
time iteration:

dΦ

dτ

∣∣∣∣n
i

≈
Φn+1
i − Φn

i

τ
. (A10)

Appendix B. Analytical solution for Zg, Zl and η

The analytical profiles for the gaseous and liquid-to-gas mass ratio in η-space are
here derived for the 1D laminar counterflow flame, described in App. A (Eqs. (A3)).
To obtain a closed-form solution, the following assumptions are introduced:

• Consistent with the modeling of the scalar dissipation rate of gaseous flames [24],
a constant density ρ = ρ0 is considered so that D = D0.

• Starting from a d2-evaporation law, for which the evaporation rate is proportional

to the droplet diameter (that is d ∝ Z1/3
l ):

ṁ =
ρ0

τv
(Z0

l )2/3Z
1/3
l , (B1)

a linearized evaporation model at Z0
l is derived:

ṁ

aρ0
=

1

3Stv

(
2Z0

l + Zl
)

=
1

α

(
2Z0

l + Zl
)
, (B2)

where α = 3Stv, Stv = aτv is the evaporation Stokes number, and τv is the
constant evaporation time.
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The equations for the liquid-to-gas mass ratio and the gaseous mixture fraction,
Eqs. (1d) and (5a), are then given in non-dimensional form as:

ξ
dZl
dξ

=
1

α

(
2Z0

l + Zl
)

(1 + Zl) , (B3a)

d2Zg
dξ2

+ 2ξ
dZg
dξ

=
2

α

(
2Z0

l + Zl
)

(Zg − 1) , (B3b)

where ξ = x/δD, and δD =
√

2D0/a is the diffusion layer thickness. Profiles of
mixture-fraction distributions are schematically illustrated in Fig. B1.

(a) Physical space; small vaporiza-
tion time τv .

(b) Physical space; large vaporiza-
tion time τv .

(c) Effective composition space;
large vaporization time τv .

Figure B1.: Schematic representation of gaseous mixture fraction and liquid-to-
gas mass ratio profiles in physical space for (a) small vaporization times τv and
(b) large values of τv (corresponding to the limit of the present model), and (c)
representation in effective composition space. The gray zone identifies the diffusion
layer. The blue vertical line separates the gas side from the spray side.

An analytic solution for Zl can be obtained by solving Eq. (B3a); however, we
were not able to find a closed-form solution for Eq. (B3b). An analytical solu-
tion can be obtained for the asymptotic limit in which effects of evaporation and
species diffusion are spatially separated. For this case, the gaseous mixture frac-
tion increases on the spray side until reaching its maximum; once the evaporation
is completed (Zl = 0), the diffusion becomes relevant and the spatial evolution of
Zg is described by the purely gaseous mixture-fraction equation (see Figs. B1(a)
and B1(b)). It is important to recognize that this zonal separation is different from
a pre-vaporized spray flame, in which liquid fuel is evaporated before diffusion and
combustion occur, and combustion is confined to the gaseous side. The present
formulation is not restricted to this special case and allows for the spatial superpo-
sition of evaporation and combustion. With this, the flame can be separated into
two regions:

(1) Spray side for ξ > ξv: The liquid volume fraction starts evaporating close
to the injection ξ = L/(2δD) and completely disappears at ξ = ξv. The
main contribution in this region is assumed to arise from the evaporation,
so that contributions from diffusion in the Zg-equation can be neglected:

ξ
dZl
dξ

=
1

α

(
2Z0

l + Zl
)

(1 + Zl) , (B4a)

ξ
dZg
dξ

=
1

α

(
2Z0

l + Zl
)

(Zg − 1) . (B4b)
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The analytic solutions for Zl and Zg can be written as:

Zl(ξ) =− 2Z0
l

1− (ξ/ξv)
β

2Z0
l − (ξ/ξv)β

, (B5a)

Zg(ξ) =−
1− 2Z0

l

1 + Z0
l

1

1− 2Z0
l (ξ/ξv)−β

+ 1 , (B5b)

where β = (2Z0
l − 1)/α, and the value for ξv is obtained by imposing the

boundary condition Zl(L/(2δD)) = Z0
l in Eq. (B5a):

ξv =
L

2δD

(
3

2(1 + Z0
l )

)1/β

. (B6)

The extension of this region depends on the evaporation time τv through
the parameter β: increasing the evaporation time leads to a broadening of
the evaporation zone, and the limiting case of this model is represented in
Figs. B1(b) and B1(c).

The maximum value of the gaseous mixture fraction Z∗g , found at ξ = ξv,
is calculated using Eqs. (B5) and (B6):

Z∗g =
Z0
l

(1 + Z0
l )
≡ 1

K1
. (B7)

From Eqs. (B5) a relation between Zg and Zl can be derived for the evap-
oration region:

Zl = Z0
l − (1 + Z0

l )Zg ,
dZl
dξ

= − K1

(K1 − 1)

dZg
dξ

. (B8)

(2) Gas side for ξ ≤ ξv: In this region, the liquid volume fraction is zero and
the expression for Zg reduces to the classical equation for gaseous flames.

Zl = 0 , (B9a)

Zg =
Z∗g
2

(1 + erf(ξ)) , (B9b)

where the last equation is obtained by setting the right-hand-side of
Eq. (B3b) to zero and using the boundary conditions Zg(−∞) = 0 and
Zg(ξv) = Z+∞

g . It is noted that Zg asymptotically reaches the value Z∗g
at ξ = ξv, since our model implies ξv ≥ 2δD. From Eq. (B9b), it is found
that the stagnation point required to evaluate the function sgn(x) = sgn(ξ)
corresponds to Zg = Z∗g/2.
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The analytic formulation for η is then obtained by combining Eqs. (B5) and
(B9):

η(ξ) =


ξ∫
−∞

√(
dZg

dξ

)2
dξ =

Z∗g
2

(1 + erf(ξ)) if ξ ≤ ξv ,

Z∗g +
ξ∫
ξv

√(
dZg
dξ

)2

+

(
dZl
dξ

)2

dξ = Z∗g +K2Z
0
l −K2(1 + Z0

l )Zg(ξ) if ξ > ξv ,

(B10)

where K2 =
√

(1− Z∗g )2 + 1. Through the spatial separation of the evaporation

and diffusion regions of the flame, it can be seen from Eq. (B10) that η is only
a function of Z0

l and Stv. The maximum value of the effective mixture fraction is
evaluated as:

ηmax = η(ξ = L/(2δD)) =
Z0
l

1 + Z0
l

(
1 +

√
2 + 2Z0

l + (Z0
l )

2
)
, (B11)

which is only a function of the liquid mass fraction at injection.
Invoking the linear dependence of liquid and gaseous mixture fractions on the ef-

fective composition variable (see Fig. B1(c)), Zg and Zl can be written as functions
of η:

Zg(η) =

η if η ≤ Z∗g ,
η − ηmax

1− ηmax/Z∗g
if η > Z∗g ,

(B12)

and

Zl(η) =


0 if η ≤ Z∗g ,

Z0
l

(
η − Z∗g

ηmax − Z∗g

)
if η > Z∗g .

(B13)

As discussed in Sec. 4.2, the validity of the analytical solution relies on the assump-
tion that mixing and evaporation occur in two distinct regions.

Appendix C. Closure model for the scalar dissipation

A closure model for the scalar dissipation rate χη can be derived using the analytic
expressions for Zg and Zl that were derived in the previous section. For this, we
decompose Eq. (25d) into liquid and gaseous contributions:

χη = χZg
+ χZl

, (C1)

and corresponding expressions directly follow from the definition of the effective
composition variable.

The scalar dissipation of the liquid-to-gas mass ratio is evaluated from the ana-
lytic solution of Zl (Eq. B5a):

χZl
= K3(2Z0

l + Zl)
2+2/β(1 + Zl)

2−2/β , (C2)
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where K3 = (2Z0
l )−2/β 8D0

α2L2

[
2(1+Z0

l )
3

]2/β
.

To derive the gaseous scalar dissipation rate χZg
, the diffusion and the evapo-

ration contributions are considered separately: χZg
= χZevap

g
+ χZmix

g
. The scalar

dissipation of the gaseous mixture fraction on the gas side in the absence of liquid
volume fraction, is given in analogy with a purely gaseous flame (Eq. B9b):

χmix
Zg

=
a(Z∗g )2

π
exp

(
−2

[
erf−1

(
2Zg
Z∗g
− 1

)]2
)
. (C3)

The scalar dissipation of the gaseous mixture fraction on the spray side is obtained
from Eq. (B5b):

χevap
Zg

= K3(2Z0
l + Zl)

2+2/β(1 + Zl)
−2/β(1− Zg)2. (C4)

The individual contributions are combined to describe the dissipation rate of the
effective composition variable in the gaseous and liquid regions of the flame:

χη =

{
χmix
Zg

if η ≤ Z∗g ,
χevap
Zg

+ χZl
if η > Z∗g .

(C5)

The analytical closure is compared to the χη-profile from the solution in physical
space for the case with τv = 0.005 s from Sec. 5.2. Results from this comparison
are shown in Fig. C1. For this case, diffusion and evaporation occur in two distinct
regions and the analytical closure model is able to reproduce χη in both regions.
Extending the closure model to more general cases for which evaporation and
diffusion are not separated is feasible for instance by directly evaluating χη from
the simulation or by combining the contributions from χmix

Zg
, χevap

Zg
and χZl

in the

region where diffusion and evaporation occur simultaneously. This zone may be
identified by evaluating the non-linear behavior of Zg in the η-space as discussed
in Sec. 4.

Figure C1.: Effective composition dissipation rate as a function of η. Result from
the physical solution for τv = 0.005 s in Sec. 5.2 (line) is compared to the analytical
model (symbols).
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Appendix D. Analytic model for slip velocity

The assumptions of App. A are here retained to derive a model for the slip velocity
contribution Ψd [φ] for a counterflow spray flame. For this, we follow the work of
Ferry and Balachandar [45] and evaluate the velocity of the liquid phase from the
gaseous velocity:

ul,i = ui −
Dui
Dt

τd +O(τ2
d ) , (D1)

where D
Dt is the material derivative of the gas phase. Under the assumption of

constant strain rate and potential flow solution [11, 19], the liquid velocity can be
written as:

ul,i = ui (1− Std) +O(St2
d) . (D2)

By considering the limit of small Stokes number, higher-order terms are truncated,
and the following expression for the slip-velocity contribution is obtained:

Ψd [φ] = ρuStd
dη

dx

dφ

dη
− 2

3

φ

Zl

Std
1− Std

ṁ . (D3)

This closure model can be used to take into account the effect of a slip velocity
between liquid and gaseous phases on the flame structure.

The flame structure defined by the 1D spray-flamelet formulation given in
Eqs. (24) depends on the liquid and gaseous velocities through the quantities Ξη
and Ψd. However, when using Eq. (D2), the dependence on the velocity of both
phases is eliminated and only the dependence on the droplet Stokes number is
retained:

Ξ†η
dYk
dη

=
1

2
ρχη

d2Yk
dη2

+ (δkF − Yk)ṁ+ ω̇k , (D4a)

Ξ†η
dT

dη
=

1

2
ρχη

d2T

dη2
+ ω̇T + ṁ

(
Tl − T −

q

cp

)
, (D4b)

Ξη(1− Std)
dZl
dη

= − 2Std
3(1− Std)

ṁ− ṁ (1 + Zl) , (D4c)

Ξη(1− Std)
dmd

dη
= − 2Std

3(1− Std)Zl
ṁ
nl
ρ
− ṁ ρ

md
. (D4d)

In the limit of small Stokes number Std → 0, the liquid and gaseous velocities are
identical, so that the spray-flamelet formulation simplifies to the system given by
Eqs. (A6).

Appendix E. Non-unity Lewis number flows

In the present work, we invoked the unity Lewis assumption, which is a classical
assumption for the development of flamelet methods. However it is well known that
hydrocarbon liquid fuels, such as dodecane or kerosene, have a Lewis number above
2. Here we kept the unity Lewis number assumption for the sake of simplicity and
clarity, since the focus of the work is on the formulation of an effective composition
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space. Nevertheless, extending this formulation to a non-unity Lewis-number sys-
tems is possible. For this, we recall the equation of the gaseous mixture fraction,
but in the case of non-unity Lewis Number:

ρui
∂Zg
∂xi

=
∂

∂xi

(
ρD

∂Zg
∂xi

)
+ (1− Zg)ṁ ,

+
WF

nC,FWC

Ns∑
k=1

nC,kWC

Wk

∂

∂xi

(
ρ(Dk −D)

∂Yk
∂xi

)
, (E1)

where D is a mean diffusion coefficient and Dk is the diffusion coefficient of species
k. As shown for instance in [28], such a definition of the mixture fraction is not
monotonic even for gaseous flames, and thus can not be used as a proper compo-
sition space variable. However, if we look at the purely gaseous case, and use our
composition space variable η:

dη

dt
= sgn

(
dη

dt

)√(
dZg
dt

)2

, (E2)

any variation of Zg will lead to a monotonic variation of η on either fuel or oxidizer
sides of the flow. Consequently, our η-space formulation can handle non-unity Lewis
number assumption.

Another possible solution is to use the strategy proposed by Pitsch and Peters
[46], who introduces a mixture fraction that is not linked to the species in the flow,
and is by definition a passive scalar. This way, even if this formulation cannot be
linked to physical quantities, it can be used as a composition space variable.


