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Quantitative reconstruction values are often miscalculated in Cone Beam Computed Tomography (CBCT)

due to the presence of secondary radiation originating from scattering of photons inside the object and

detector under consideration. The effect becomes more prominent and challenging in case of X-ray

source of high energy (over a few 100 keV) which is used in industrial Non-Destructive Testing (NDT),

due to higher scatter to primary ratio (SPR). This paper describes a scatter correction algorithm for

correcting the combined scattering due to the object and the detector based on variations in Scatter

Kernel Superposition (SKS) method. Scatter correction is performed for homogeneous and heterogeneous

objects in a robust iterative manner suitable for high SPR, using pencil beam kernels which are simulated

in computed tomography (CT) module of the CIVA software for NDT simulations. Two methods for scatter

correction using SKS approach are discussed and compared in the paper. In the first method, we use a

discrete approach in which kernels for only few thicknesses are used. In the second method a continuous

approach is proposed where the kernels are analytically parameterised for all thicknesses. The results

obtained after scatter correction are well within the expected reconstruction values. The continuous

method produces better edge enhanced corrected projections and the method results in improved

reconstruction values than the discrete method.

1. Introduction

Compared to highly collimated fan beam computed tomo-

graphy (CT), cone-beam computed tomography (CBCT) is based on

2D detectors of larger area, which makes CBCT bear a high level of

X-ray scatter. Inadequate modeling of this scatter leads to cupping

and streaking artifacts [1] and to a global degradation of image

quality in CBCT.

There are various existing CBCT scatter correction methods which

can be summed up mainly into two categories: pre-processing meth-

ods, and post-processing methods. Pre-processing methods modify the

X-ray system and are able to separate the scatter from the primary

photons based on the difference of their incidence angles, but require a

higher dose. These include anti-scatter grids method (which make use

of highly attenuating grids which are mounted directly on the top of the

detector) [2] and the airgap method [3]. The post-processing methods

estimate the scatter signal from the scatter-contaminated projection

using some prior knowledge of the scatter distribution. These include

measurement based methods such as beam stop array [4,5] where a

high atomic number material like lead (strip or a disc) is inserted

between the X-ray source and the imaged object. Such methods cause

increased X-ray exposure due to more than one scans per projection,

prolong the scanning time and are also subject to error due to object

motion. Many other software based post-processing have been pro-

posed for scatter estimation and correction [6,7].

In this paper we propose to focus on Scatter Kernel Super-

position (SKS) method [8–11] in which the scatter signal is mod-

eled as the sum of the scatter contributions from a group of pencil

beams passing through the object. It approximates the scatter

distribution, as the convolution of primary signal with scatter

kernels. This method requires no additional hardware, scanning

time and additional dose. Pencil beam kernels are thickness

dependent kernels and there is an appreciable change in the

amplitude and shape of these kernels with respect to small var-

iation in the thickness of the object. The scatter correction meth-

ods are based on a discrete set of thickness-dependent kernels and

for a range of thickness only one kernel is used. This method gives

satisfactory results in many applications. However, when a high

range is considered (typically [300,500] keV), the SPR is expected

to be very large and the different steps of the SKS correction

algorithm have to be reconsidered. In particular a better sampling

of the kernels with respect to the thickness of the object is

required to get an accurate model of variability in shape and in

amplitude of the scatter kernels over the whole thickness range.

When the scatter level is not negligible with respect to the pri-

mary radiations, the robustness and the convergence of the
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iterative correction scheme become critical since a slight over-

estimation of the scatter radiation level might lead to large

negative values of the primary transmittance.

We propose in this paper a twofold modification of Sun and

Starlack [11] SKS approach to tackle X-ray imaging with larger SPR:

an analytical parameterization of the scatter kernel is derived in

terms of material thickness and a multiplicative iteration approach

is implemented. We begin by describing the methodology of

scatter correction with pencil beam kernels. This is followed by the

description of generation of kernels and development of the

analytic expression for continuous kernel map. The modeling of

the kernels for heterogeneous object is described in detail. We

then describe the iterative scheme followed for the scatter cor-

rection. Afterwards the acquisition set up and objects used are

described in detail. Finally the results obtained after the recon-

struction performed using FDK algorithm are compared for dis-

crete set of kernels and continuous map of kernels for homo-

geneous and heterogeneous object.

2. Method and materials

2.1. Scatter correction using pencil beam kernels

The measured signal at the detector Iðm;nÞ has two compo-

nents: Pðm;nÞ is the primary signal contributed by the photons

passing directly without any attenuation or scattering and Sðm;nÞ

is the signal contribution of the scattered photons from the object

and the detector. Therefore, the measured signal is given by:

Iðm;nÞ ¼ Pðm;nÞþSðm;nÞ ð1Þ

where m and n correspond to the pixel position on the detector.

The scatter signal can be modeled as the sum of the scatter

contributions from a group of pencil beams passing through the

object and the detector. For each pencil beam input, a resulting

kernel which has the weight of the scatter to primary ratio is

determined. The total scatter signal Sðm;nÞ can then be modeled

as:

Sðm;nÞ ¼
X

k

X

l

Pðk; lÞhTðk;lÞðm�k;n� lÞ ð2Þ

where, hT is the thickness (T) dependent kernel, with amplitude

equal to the ratio of the scattered signal at the current pixel to the

primary signal, at the pencil beam centered pixel. The thickness is

calculated with the Beer Lambert law

Tðk; lÞ �
1

μ
ln

Oðk; lÞ

Pðk; lÞ
ð3Þ

with μ being the attenuation constant of the object under con-

sideration at the mean energy of the spectrum used. The pencil

beam kernel hT can be fitted into the equation formed by an

amplitude factor Cðk; lÞ (which is a function of the primary signal

Pðm;nÞ and the un-attenuated air intensity Oðm;nÞ) and a form-

function Gðm�k;n� lÞ consisting of two circularly symmetric

Gaussian functions describing the shape of the kernel:

hT ðm�k;n� lÞ ¼ Cðk; lÞGðm�k;n� lÞ ð4Þ

Cðk; lÞ ¼
Pðk; lÞ

Oðk; lÞ

� �α

ln
Oðk; lÞ

Pðk; lÞ

� �β

ð5Þ

Gðm�k;n� lÞ ¼ A exp �
ðm�kÞ2þðn� lÞ2

2σ2
1

!

þB exp �
ðm�kÞ2þðn� lÞ2

2σ2
2

!

ð6Þ

Eq. (2) then becomes

Sðm;nÞ ¼
X

k

X

l

Pðk; lÞCðk; lÞGðm�k;n� lÞ ð7Þ

In the discrete kernel approach, a few thickness ranges are

selected from zero to maximum thickness of the object and a

single average value for fitting parameters α;β;A;B;σ1;σ2 is

obtained for one particular thickness range. The superposition

convolution equation is thus modified to the form

Sðm;nÞ ¼
X

i

X

k

X

l

Pðk; lÞRiðk; lÞCiðk; lÞGiðm�kÞðn� lÞ ð8Þ

Riðk; lÞ ¼
1; if T iðk; lÞrTðk; lÞoT iþ1ðk; lÞ

0; otherwise

(

ð9Þ

where i gives the number of thickness groups and T i and T iþ1 are

the lower and upper bound thicknesses of the ith group.

In the continuous approach, the fitting parameters are also

interpolated with respect to the thicknesses to form a con-

tinuously varying profile of kernels. Hence Eq. (8) is modified to:

Sðm;nÞ ¼
X

k

X

l

Pðk; lÞCðk; l; Tðk; lÞÞGðm�k;n� l; Tðk; lÞÞ ð10Þ

2.2. Generation and fitting of kernels

Monte Carlo (MC) simulations were performed in the CT

module of CIVA software [12] for the generation of kernels.

Developed by CEA LIST, CT module of CIVA combines deterministic

and MC approach for the generation of primary and secondary

radiation in tomography [13].

For the simulation of the kernels, imaging geometry corre-

sponding to the acquisition set up was modeled in CIVA. Pencil

beam source was impinged on slabs of same material as the object

under study and discrete set of point spread 2D kernels were

obtained on the flat panel detector. Eq. (4) was fit on these kernels

Fig. 1. Picture of sample of the iron hub [5].

Aluminium cylinder( diameter= 60 mm )

Iron cylinder( diameter= 20 mm )

Fig. 2. Set-up of heterogeneous object consisting of a 60 mm diameter cylinder of

aluminum containing a 20 mm diameter cylinder of iron.
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using non-linear least square fitting and the values for parameters

α;β;A;B;σ1;σ2 were calculated for these discrete sets of kernels.

To obtain the continuous kernel map, we analytically calculated

the expression for the parameters α;β;A;B;σ1;σ2 in terms of the

thickness of the object. To obtain these expressions, the values of

the parameters obtained for discrete set of kernels were fitted

with respect to the thickness using non-linear least square curve

fitting technique. The analytical models for the kernels parameters

with respect to the material thickness are polynomials and Morse

potential functions, with different constrain on the degrees of

freedom for some. The two point-spread functions (PSF) in Eq. (6)

are defined by standard deviations σ1 and σ2. These two PSF are

representative of scattering of object and detector

1. σ1 defines the higher order scattering from the object which is

expected to increase with increasing the thickness of the object.

Fig. 3. (a) Plot profile of the simulated kernels using MC simulation in CIVA for different aluminium slab thickness. (b) Plot profile of the simulated kernels normalised to the

maximum value of kernel for detector kernel (0 mm thickness).

Fig. 4. Fitting of parameters α; β;A;B; σ1; σ2 with thickness.
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2. σ2 defines the first order scattering dominated from the

detector and is expected to be a constant with varying the

thickness of the object.

2.3. Modelling for heterogeneous objects

When dealing with heterogeneous samples, the thickness map T

ðk; lÞ computed from Eq. (3) gives an estimate of the kernel-material

equivalent thickness, that sometimes is called WET (water-equivalent

thickness) when water is used to compute the kernels [10]. Within

the energy range used, Compton scattering is the most dominant

interaction process. The likelihood of interaction is proportional to

electron density and is independent of the atomic number of the

material. Therefore equivalent thickness (TA) of one material A, for a

given thickness (TB) of material B, can be calculated in terms of their

electron density functions using the following relationship:

TA � ρe;A ¼ TB � ρe;B ð11Þ

Fig. 5. Comparison of aluminum slab kernels with equivalent thickness iron slab kernels.
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where ρe;A and ρe;B is the electron density for material A and B
respectively. Given γ be the ratio between these densities, we have

γ ¼
ρe;A

ρe;B

¼
ρAZAAB

ρBZBAA
ð12Þ

where ρ is the mass density, Z is the atomic number and A is mass

number. Using Eqs. (11) and 12 we get

TB ¼ γTA ð13Þ

This property can be exploited for the scatter correction of

heterogeneous objects. As the kernels for a particular thickness of

a material do not depend on the atomic number of the material

but only on its electron density. Kernels of single material can be

used for the scatter correction of heterogeneous objects.

2.4. Iterative scatter correction

At high energies, the combined scatter of the object and the

detector can be much higher than the true primary itself due to

high SPR. In such case when a simple additive iteration approach is

applied (Eq. (14)) to calculate the new primary estimate, negative

values of the primary estimate can be obtained due to over-

estimation of scatter:

Pnþ1ðm;nÞ ¼ Pnðm;nÞþλðSnðm;nÞ�Snþ1
ðm;nÞÞ ð14Þ

λrepresents the relaxation parameter. It is difficult in the first place

to estimate the value of λ that ensures positive primary estimate.

Moreover, even if a suitable λ value is chosen to ensure the first

scatter estimate to be lower than the measured signal, this type of

iteration scheme gives no guarantee that the primary estimate will

be positive at every iteration step.

Therefore we adopt a multiplicative iteration scheme given by

Eq. (15) which ensures positive primary values.

The iterative scatter correction scheme consists of the following

steps:

1. The measured projection is taken as the first estimate of the

primary.

2. Equivalent thickness is calculated for each pixel by using Eq. (3).

3. Pixel wise convolution is performed by choosing the suitable

kernel for the respective thicknesses.

4. Scatter is estimated either using Eq. (8) for the discrete

approach or by using Eq. (10) for the continuous approach.

5. The primary estimate is updated using

Pnþ1ðm;nÞ ¼ P0ðm;nÞ �
Pnðm;nÞ

Pnðm;nÞþSnðm;nÞ
ð15Þ

Steps 1–5 are repeated until convergence is achieved.

2.5. Validation on homogeneous object

For the acquisition set up, the source to detector distance was

kept 371 cm and the distance between source and axis of rotation

was kept at 353 cm. The set up mainly consisted of a X-ray source,

an object rotational table and a flat panel detector.

The X-ray source unit used was a 400 kV X-ray generator

manufactured by Philips (model MG450). The maximum tube

current was 15 mA. Two focal spot sizes were available: 1.5 mm

and 4.5 mm and angle of the target, made of tungsten, was 26°. A

filtration of 4 mm of Pb þ 1 mm of Cd was used in order to rea-

sonably remove the beam hardening effect. With this filtration the

total number of X-ray photons with energy less than 200 keV

Fig. 6. Plot of relative absolute error with respect to thickness between (a) CIVA 2D kernels and analytical models, (b) aluminium-equivalent kernels and iron kernels.
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Fig. 8. Sample projection of iron hub sample.
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represented the 4% of the X-ray beam spectrum while it was 92%

without filtration [5].

The flat panel detector called FlashScan 33 developed by Thales

Electron Devices consisted of Gadolinium Oxysulfide (Tb) scintillator

screen for the X-ray conversion. The detector was based on amor-

phous silicon TFTs array and was designed to work on a wide kV

range (from 25 kV to few MeV). The active area consisted of 2240

� 3200 pixels of 127 μm size [5].

Acquisitions were performed on an iron hub sample as given in

Fig. 1. The sample is 32 mm in height and 52 mm in the external

diameter.

2.6. Validation on heterogeneous object

In order to check the feasibility of the algorithm for hetero-

geneous objects, projections were simulated in CIVA for an object,

consisting of a 60 mm diameter cylinder of aluminum containing a

20 mm diameter cylinder of iron inspected at 450 keV mono-

chromatic source and a flat panel detector of 750�750 pixels with

220 μm size. Fig. 2 shows the set up of the object.

3. Results

3.1. Analytical fitting of kernels for continuous kernel map

Fig. 3(a) shows the 1D profile of the kernels obtained by MC

simulation in CIVA and 3(b) shows the kernels normalised to the

maximum value of the detector kernel (0 mm thickness).

The fitting of parameters α;β;A;B;σ1;σ2 with respect to

thickness using least square fitting is shown in Fig. 4. The SPR first

decreases and then increases for thicknesses above 20 mm due to

higher attenuation of primary as seen in Fig. 3(a). Fig. 3(b), how-

ever, clearly shows that with increasing the thickness of the object

the higher order scattering increases and broadens the shape of

the kernels. Parameters A and B, which are representing the

amplitude of the shape of the kernels, first decrease up to a

thickness of 20 mm and slowly increase beyond 20 mm. For fitting

this, we used Morse potential energy function. Parameter α which

Scatter calculated with continuous approach
Scatter calculated with discrete approach

Discrete correction
Continuous correction

Uncorrected

Scatter calculated with continuous approach
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Continuous correction
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Fig. 9. (a) Horizontal profile. (b) Vertical profile of uncorrected and corrected projection by continuous and discrete method.

Fig. 10. Reconstruction slice of (a) Uncorrected projections, (b) Corrected projections by discrete method, (c) Corrected projections by continuous method.

Table 1

Mean and standard deviation values for aluminium and iron region for uncorrected

and corrected reconstruction slices.

Mean (cm�1) Std. dev.

Uncorrected Air 0.0240 70.0022

Iron 0.1960 70.0068

Discrete corrected Air 0.0028 70.0056

Iron 0.6340 70.0046

Continuous corrected Air 0.0012 70.0059

Iron 0.8000 70.0086

Mean spectrum value Air 0.0001

Iron 0.836
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is dependent on the attenuation, increases linearly with the

thickness. Following the same argument parameter β, on the other

hand, decreases with increasing the thickness. As mentioned in

Section 2.2, σ2 defining the scattering from the detector remains a

constant with varying material thickness and σ1 defining the

higher order scattering from the object increases along with the

thickness of the object. The relative absolute error with respect to

thickness between CIVA 2D kernels and analytical models is

between 6 and 8% as shown in Fig. 6(a).

The kernels for aluminum and the equivalent thickness of iron

using γ ¼ 2:8, computed from Eq. (12), for the geometry described

in Section 2.6 are compared in Fig. 5 for different slab thicknesses.

It can be seen from the comparison of the kernels (Fig. 5) that

scatter to primary ratio is almost identical for aluminum slab and

its equivalent thickness of iron slab. The relative absolute error

with respect to thickness aluminium-equivalent kernels and iron

kernels is between 5 and 8% as shown in Fig. 6(b). This allows us to

evaluate the scatter correction of projections using only aluminum

slab kernels. The results obtained are shown in Section 3.4.

3.2. Multiplicative iteration vs additive iteration

To check the efficiency of multiplicative iteration approach Vs

additive iteration approach, we randomly initialized the scatter

estimate maps N (¼50 in our case) times for each type of iteration

process. We then calculate the mean of the error in the con-

vergence value from the true value, for these N initial estimates at

each iteration step. We plot the error Vs Number of iteration plot

for multiplicative approach and additive approach for different

values of λ. The result obtained is given in Fig. 7.

In our case, we choose the maximum value of λ¼ 0:45 to

ensure that the first estimate of scatter is lower than the measured

signal. From Fig. 7, it can be seen that additive approach is sensi-

tive to the value of λ converges with a higher error as compared to

multiplicative scheme, due the presence of negative primary

estimates within the iteration steps. The multiplicative approach,

however, ensures positive primary estimate at each iteration step

as well as converges with a faster rate (in this case iteration

step 20).

3.3. Scatter correction on homogeneous object

Fig. 8 displays a sample projection of the iron-hub. To evaluate

the performance of continuous and discrete scatter correction on

the projections, the vertical and horizontal profiles of the cor-

rected and uncorrected normalized projections are plotted in

Fig. 9. Fig. 9 also displays calculated scatter profiles with discrete

and continuous approach.

On the vertical profile of corrected projection 9(b), we can see

that the continuous method performs better edge enhancement of

the object than the discrete method. This is due to better sampling

of the kernels with respect to thickness at the edges.

Fig. 10 displays reconstruction slices of the top tip of the iron

hub obtained for uncorrected and corrected projections using

continuous and discrete methods. Table 1 displays the mean and

standard deviation of the reconstructed values for corrected and

Fig. 11. Plot profile of the reconstruction slice of (a) Uncorrected projections,

(b) Corrected projections by discrete method, (c) Corrected projections by con-

tinuous method.

Fig. 12. Plot profiles of scatter and corrected projections for the heterogeneous

object. (a) Plot profile of the scatter obtained using continuous and discrete

approach. (b) Horizontal profile of corrected projection using continuous and dis-

crete approach. (c) Vertical profile of corrected projection using continuous and

discrete approach.
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uncorrected data in air and iron region calculated using

binary masks.

Uncorrected value of 0.196 cm�1 for the linear attenuation coef-

ficient of iron is estimated by the discrete approach at 0.634 cm�1

whereas it is estimated at 0.80 cm�1 by the continuous approach. In

the considered energy range, the value of linear attenuation constant

per cm for mean energy 319 keV is 0.836 cm�1, which is in agree-

ment with the obtained result. The continuous method presents

improved reconstruction values with respect to the discrete approach

as can be seen in Fig. 11, which gives the plot profile of the recon-

struction slice shown in Fig. 10, which exhibits better edge

enhancement by the continuous approach.

The obtained result of the scatter profile and reconstruction

values is in agreement with the correction performed using beam

stop arrays method by Peterzol [5], which requires many acquisi-

tions for the correction leading to higher dose.

3.4. Scatter correction on heterogeneous object

Fig. 12(a) shows the profile of the scatter obtained by simula-

tion in CIVA. It is compared with the scatter profile obtained by the

continuous and the discrete corrections. The relative error profiles

of continuous scatter and discrete scatter with respect to the true

value obtained from CIVA are also plotted. Clearly at the edges of

the object continuous approach has lesser relative error as com-

pared to discrete approach.

Fig. 12(b) and (c) show horizontal and vertical profile of the

projection without scatter obtained in CIVA compared with cor-

rected projection profile using the continuous and the discrete

approach and their relative error profiles.

Fig. 13 displays reconstruction slices obtained for uncorrected

and corrected projections using the continuous and the discrete

method. Table 2 displays the mean and standard deviation of the

reconstructed values for corrected and uncorrected data for alu-

minium and iron region.

The plot profile of the uncorrected and corrected reconstruction

slices is shown in Fig. 14. The algorithm performs efficiently using

only aluminum slab kernels. The linear attenuation coefficient

obtained for iron and aluminum is 0.718 cm�1 and 0.249 cm�1

respectively for the continuous approach, which is in agreement with

the expected linear attenuation value of 0.247 cm�1 for aluminium

and 0.720 cm�1 for iron at 450 keV monochromatic source.

4. Discussion and conclusion

Scatter Correction using pencil beam kernels produces sig-

nificant improvement in the quantitative reconstruction values for

the homogeneous object like iron hub. We adopted a continuous

kernel approach by interpolating the kernels for each thickness.

This approach offers superior improvement in the edges of the

object after correction due to extended number of kernels. The

reconstruction values are also improved in the continuous

approach with respect to the discrete one especially for areas in

the reconstruction slices where thin and thick structures are

connected such as the tips of the iron hub.

We adopted a multiplicative iteration scheme which offers

better convergence and ensures positive primary estimates at each

iteration step as compared to additive iteration scheme which

does not ensure positive primary estimates for higher SPR. As a

result, multiplicative approach gives lesser error from the true

value as compared to additive iteration approach.

The algorithm has been also tested for heterogeneous object. At the

energy range used, Compton scattering is the most dominant inter-

action. The likelihood of interaction is proportional to electron density

and is independent of the atomic number of the material. Therefore,

Fig. 13. Reconstruction slice of (a) Uncorrected projections. (b) Corrected projections by discrete method. (c) Corrected projections by continuous method.

Table 2

Mean and standard deviation values for aluminium and iron region for uncorrected

and corrected reconstruction slices.

Mean

(cm�1)

Std. dev Relative absolute

error (%)

Uncorrected Aluminium 0.268 70.0012 8.5

Iron 0.560 70.0058 22

Discrete corrected Aluminium 0.252 70.0090 2.0

Iron 0.713 70.0046 0.9

Conitinuous

corrected

Aluminium 0.249 70.0074 0.8

Iron 0.718 70.0042 0.2

Theoretical values Aluminium 0.247

Iron 0.720

Fig. 14. Plot profile of the reconstruction slice obtained with (a) Projection without

scatter from CIVA, (b) Uncorrected projections, (c) Corrected projections by discrete

method, (d) Corrected projections by continuous method.
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kernels corresponding to a single material can be utilized for the

correction of heterogeneous object projections. The obtained results

are well within the expected reconstruction values proving the effi-

ciency of the algorithm for heterogeneous objects.
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