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We prove that the H p -corona problem has a solution for two generators in convex domains of finite type in C n , n ≥ 2.

Introduction and main result

Let D be a domain in C n and f 1 , . . . , f k be k functions in H ∞ (D), the algebra of bounded holomorphic functions on D. Assume that for all z ∈ D, the following inequality holds true for some δ > 0

k j=1 |f j (z)| 2 ≥ δ 2 .
To solve the H ∞ -Corona Problem on D is then to find k functions g 1 , . . . , g k in H ∞ (D) such that for all z ∈ D,

k j=1 g j (z)f j (z) = 1.
The H ∞ -Corona Problem is solved by Carleson in [START_REF] Carleson | Interpolations by bounded analytic functions and the corona problem[END_REF] when D is the unit disc of C but is still an open question when n ≥ 2, even if D is the ball or the polydisc. On the other side, Sibony in [START_REF] Sibony | Problème de la couronne pour des domaines pseudoconvexes à bord lisse[END_REF] and Fornaess and Sibony in [START_REF] Fornaess | Smooth pseudoconvex domains in C 2 for which the corona theorem and L p estimates for ∂ fail[END_REF] construct bounded pseudoconvex domains with smooth boundary and data f 1 , . . . , f k , such that the Corona Problem has no solution.

It is an interesting question to know for which domains in C n the Corona Problem may have a solution. As pointed out by Amar in [START_REF] Amar | On the corona problem[END_REF], being able to solve the H p -Corona Problem is a necessary condition to solve the H ∞ -Corona Problem. Let us state the H p -Corona Problem.

We write D as the set D = {z ∈ C n , r(z) < 0} where r is a smooth function on C n such that dr = 0 on the boundary of D. For ε ∈ R, we denote by bD ε the boundary of D ε := {z ∈ C n , r(z) < ε}, and by dσ ε the euclidean area measure on bD ε .

The Hardy space H p (D), p > 0, is the set of holomorphic functions f on D such that

f H p (D) = sup ε>0 bD -ε |f (z)| p dσ -ε (z) 1 p < +∞.
By passing to the (almost everywhere) radial limit function, we may see the space H p (D) as a closed subspace of L p (bD) (see [START_REF] Krantz | Function theory of several complex variables[END_REF]).

To solve the H p -Corona Problem is to find for any h ∈ H p (D), k functions h 1 , . . . , h k ∈ H p (D) such that k j=1 h j f j = h. Amar solves in [START_REF] Amar | On the corona problem[END_REF] the H p -Corona Problem on the ball of C n , n ≥ 2, and for two generators (i.e. k = 2), for all 1 < p < ∞. It is also solved by Andersson and Carlsson for 2 generators in [START_REF] Andersson | Wolff type estimates and the H p corona problem in strictly pseudoconvex domains[END_REF] and for k generators in [START_REF]H p -estimates of holomorphic division formulas[END_REF][START_REF]Estimates of solutions of the H p and BMOA corona problem[END_REF] on strictly pseudoconvex domains. In [START_REF] Lin | The H p -corona theorem for the polydisc[END_REF], Lin proves that the H p -Corona Problem has a solution for k generators, k ≥ 2, on the polydisc of C n , n ≥ 2, 1 < p < +∞.

In this article, we solve the H p -Corona Problem for 2 generators on convex domains of finite type.

Theorem 1.1. Let D ⊂ C n , n ≥ 2, be a bounded convex domains of finite type with smooth boundary. Let f 1 , f 2 in H ∞ (D) and δ in R be such that |f 1 | 2 + |f 2 | 2 ≥ δ 2 > 0 on D. Then for all 1 < p < ∞, all h ∈ H p (D), there exist

h 1 , h 2 ∈ H p (D) such that h = h 1 f 1 + h 2 f 2 .
In order to establish Theorem 1.1, as Amar [START_REF] Amar | On the corona problem[END_REF] and Andersson-Carlsson [START_REF] Andersson | Wolff type estimates and the H p corona problem in strictly pseudoconvex domains[END_REF] do, we follow Wolff's proof of the one variable Corona Theorem. We first put

g i = f i |f 1 | 2 + |f 2 | 2 , i = 1, 2, ω = f 1 ∂ f 2 -f 2 ∂ f 1 (|f 1 | 2 + |f 2 | 2 ) 2 . It follows that f 1 g 1 + f 2 g 2 = 1, ∂g 1 = -f 2 ω, ∂g 2 = f 1 ω and ∂ω = 0.
For h holomorphic in D, we have ∂(hω) = 0. So one can find u such that ∂u = hω. Setting

h 1 = hg 1 + uf 2 , h 2 = hg 2 -uf 1 , we have h = f 1 h 1 + f 2 h 2 , ∂h 1 = h∂g 1 + f 2 ωh = 0, ∂h 2 = h∂g 2 -f 1 ωh = 0.
Moreover, since g 1 , g 2 , f 1 and f 2 are bounded on D, if h belongs to H p (D), h 1 and h 2 will also be in H p (D) provided that u belongs to L p (bD). So the proof of Theorem 1.1 is reduced to find u ∈ L p (bD) such that ∂u = hω, i.e. to solve a ∂-equation with boundary estimates.

As in [START_REF] Carleson | Interpolations by bounded analytic functions and the corona problem[END_REF], [START_REF] Amar | On the corona problem[END_REF], [START_REF] Andersson | Wolff type estimates and the H p corona problem in strictly pseudoconvex domains[END_REF], Carleson measures are in the present paper an essential tool in order to the solve the H p -Corona Problem. They are defined using the homogeneous structure of the boundary of the domain. For convex domains, one should use McNeal polydiscs defined in [START_REF] Mcneal | Convex domains of finite type[END_REF][START_REF]Estimates on the Bergman kernels of convex domains[END_REF][START_REF]Invariant metric estimates for ∂ on some pseudoconvex domains[END_REF]. Since we need many objects in order to define them, we postpone the definition of the set of Carleson measures W 1 (D) and the set of (p, q)-Carleson currents W 1 p,q (D) to Section 2. We also define, in Section 3, BM O(bD), the space of functions of bounded mean oscillation on bD. We denote by W 0 (D) the set of bounded measures and by W 0 p,q (D) the set of (p, q)-currents with bounded measure coefficients. Then, for α ∈]0, 1[, W α (D) is the complex interpolate space [W 0 (D), W 1 (D)] α and W α p,q = [W 0 p,q (D), W 1 p,q (D)] α . If hω was in W 1-1 p 0,1 (D), the existence of u and thus Theorem 1.1 would be a consequence of Theorem 2.10 of [START_REF] Alexandre | A Berndtsson-Andersson operator solving ∂-equation with W α -estimates on convex domains of finite type[END_REF]. But in general, this is not the case. One has to construct more elaborate functions g 1 , g 2 and ω such that hω belongs to W 1-1 p 0,1 (D). This construction is done by Carleson in the one variable case, but it seems too difficult to carry it out in several variables. Instead, we use Wolff's approch who notices that |r||ω| 2 and |r||∂ω| are Carleson measures in the 1-dimensional case.

We use results of Jasiczak [START_REF] Jasiczak | Carleson embedding theorem on convex finite type domains[END_REF] in order to prove (see Subsection 4.1) that ∂(hω) satisfies the hypothesis of Theorem 1.2 below. In this theorem and in the sequel, A B means there exists a constant c > 0 such that A ≤ cB and A B that A B and B A both hold. , uniformly with respect to θ.

So Theorem 1.2 gives us a function v such that ∂∂v = ∂(hω). Since

∂(∂v -hω) = ∂∂v -∂(hω) = 0, ∂(∂v -hω) = ∂ 2 v -∂(hω) = 0,
the 1-form ∂v -hω is d-closed and we can solve the d-equation for ∂v -hω : there exists a unique function w such that dw = ∂v -hω and w(0) = v(0), where 0 is any point in D.

Since, ∂v -hω is a (0, 1)-form, we have ∂w = 0 and ∂w = ∂v -hω.

Therefore w is holomorphic and u = v -w satisfies

∂u = ∂v -∂ w = hω.
Moreover, since v already belongs to L p (bD), u is in L p (bD) if and only if w belongs to H p (D). We will prove that this is indeed the case in Subsection 4.2 by a method similar to Amar and Andersson-Carlsson's method. This will solve the H p -Corona Problem for 2 generators in convex domains of finite type.

If one wants to solve the H p -Corona Problem for k generators, k > 2, one has to solve a sequence of ∂-equations ∂w j-1 = u j , j = 1, . . . , q, where the u j 's are (0, j)-forms. This sequence of ∂-equations is given for example by the Koszul complexe (see [START_REF]Estimates of solutions of the H p and BMOA corona problem[END_REF]). The solution of the Corona Problem will then be given using w 0 which must belong to H p (D). One begins by proving that |r| q-1 u q belongs to W α 0,j (bD), α = 1 -1 p . Repeated applications of Theorem 2.8 of [START_REF] Alexandre | A Berndtsson-Andersson operator solving ∂-equation with W α -estimates on convex domains of finite type[END_REF] then prove that |r| j-1 u j is a W α 0,j (D)-current and that w j-1 is a W α 0,j-1 (D)-current for j = 2, . . . , q. The main difficulty occurs for the last equation because u 1 depends on w 1 , which by induction is a W α 0,1 (bD)-current, plus another term v 1 which is of the same nature than hω, i.e. which is not a W α 0,1 (bD)-current. Theorem 2.10 of [START_REF] Alexandre | A Berndtsson-Andersson operator solving ∂-equation with W α -estimates on convex domains of finite type[END_REF] can handle the w 1 part of u 1 but it seems very difficult to handle the v 1 part. One has to show that T v 1 is in H p (D) where T is the operator of Theorem 2.10 of [START_REF] Alexandre | A Berndtsson-Andersson operator solving ∂-equation with W α -estimates on convex domains of finite type[END_REF], perhaps by using some "Wolff's trick" (see [START_REF] Gamelin | Wolff 's proof of the corona theorem[END_REF]) in order to conclude.

Many of the proofs in the present paper rely on interpolation, in particular between H 1 (D) and BM OA(D). We thus have to know what are the intermediate spaces between them. We will prove in Section 3 that when D is a convex domain of finite type,

[H 1 (D), BM OA(D)] 1-1 p = H p (D), 1 < p < +∞.
This result is also true when D is strictly pseudoconvex and we prove it in the same way. However, the proof requires some regularity conditions on the tools, in our case the ε-extremal basis, which define the homogeneous structure of the boundary of the domains, itself used to define BM O(bD) and BM OA(D). When D is strictly pseudoconvex, the basis used are smooth, but not McNeal's ε-extremal basis. We overcome this difficulty by using the Bergman metric. I want to thank Éric Amar and Pierre Portal for helping me to understand the proof of the interpolation between H 1 (D) and BM OA(D) when D is strictly pseudoconvex.

The article is thus organised as follows : in Section 2, we introduce the tools and objects relative to the structure of homogeneous spaces of D. In Section 3, we prove the interpolation results we need. In Section 4, we prove that hω satisfies the hypothesis of Theorem 1.2 and that w belongs to H p (D). In Section 5, we prove Theorem 1.2.

Notations

For z near bD, ε > 0 and v ∈ C n , v = 0, we denote by τ (z, v, ε) the distance from z to {r = r(z) + ε} in the complex direction v :

τ (z, v, ε) := sup{t > 0, |r(z + λv) -r(z)| < ε, ∀λ ∈ C, |λ| < t},
Using these distances, we define ε-extremal basis w * 1 , . . . , w * n at the point z, as given in [START_REF] Bruna | Zero varieties for the Nevanlinna class in convex domains of finite type in C n[END_REF] : w * 1 = η z is the outer unit normal to bD r(z) at z and if w * 1 , . . . , w * i-1 are already defined, then w * i is a unit vector orthogonal to w * 1 , . . . , w * i-1 such that τ (z,

w * i , ε) = sup v⊥w * 1 ,...,w * i-1 v =1 τ (z, v, ε). When D is strictly convex, w *
1 is the outer unit normal to bD r(z)

and we may choose any basis of T C z bD r(z) for w * 2 , . . . , w * n . Therefore, when D is strictly convex, an ε-extremal basis at z can be chosen smoothly depending on the point z. Unfortunately, this is not the case for convex domains of finite type (see [START_REF] Hefer | Hölder and L p estimates for ∂ on convex domains of finite type depending on Catlin's multitype[END_REF]). We put τ i (z, ε) = τ (z, w * i , ε), for i = 1, . . . , n. We have for a strictly convex domain τ 1 (z, ε) ε and τ j (z, ε) ε 1 2 for j = 2, . . . , n. For a convex domain of finite type m, we only have ε

1 2 τ n (z, ε) ≤ . . . ≤ τ 2 (z, ε) ε 1 m
, uniformly with respect to z and ε. The McNeal polydisc centered at z of radius ε is the set

P ε (z) := ζ = z + n i=1 ζ * i w * i ∈ C n , |ζ * i | < τ i (z, ε), i = 1, . . . , n .
Using McNeal's polydiscs we define the pseudodistance δ. We set for ζ, z near bD δ(z, ζ) := inf{ε > 0, ζ ∈ P ε (z)}.

Definition 2.1. We say that a positive finite measure µ on D is a Carleson measure and we write µ

∈ W 1 (D) if µ W 1 (D) := sup z∈bD ε>0 µ(P ε (z) ∩ D) σ(P ε (z) ∩ bD) < ∞.
Now we defined the notion of Carleson current already used in [START_REF] Alexandre | A Berndtsson-Andersson operator solving ∂-equation with W α -estimates on convex domains of finite type[END_REF] and [START_REF]Zero sets of H p functions in convex domains of finite type[END_REF]. For z ∈ C n and v a non zero vector we set (see [START_REF] Bruna | Zero varieties for the Nevanlinna class in convex domains of finite type in C n[END_REF])

k(z, v) := |r(z)| τ (z, v, |r(z)|)
.

For a fixed z, the convexity of D implies that the function defined by v → k(z, v) if v = 0, 0 otherwise, is a kind of non-isotropic norm which will play for us the role of weight in the definition of Carleson currents.

Definition 2.2. We say that a (p, q)-current µ of order 0 with measure coefficients is a (p, q)-Carleson current if

µ W 1 p,q := sup u 1 ,...,u p+q 1 k(•, u 1 ) . . . k(•, u p+q ) |µ(•)[u 1 , . . . , u p+q ]| W 1 < ∞,
where the supremum is taken over all smooth vector fields u 1 , . . . , u p+q which never vanish and where |µ(•)[u 1 , . . . , u p+q ]| is the absolute value of the measure µ(•)[u 1 , . . . , u p+q ].

We denote by W 1 p,q (D) the set of all (p, q)-Carleson currents.

Let W 0 be the set of positive bounded measures on D. For µ ∈ W 0 , we put µ W 0 := µ(D). Analogously to W 1 p,q (D) we define W 0 p,q (D):

Definition 2.3. We say that µ is a (p, q)-current with bounded measure coefficients and we write µ ∈ W 0 p,q (D) if

µ W 0 p,q := sup u 1 ,...,u p+q 1 k(•, u 1 ) . . . k(•, u p+q ) |µ(•)[u 1 , . . . , u p+q ]| W 0 < ∞,
where the supremum is taken over all smooth vector fields u 1 , . . . , u p+q which never vanish and where |µ(•)[u 1 , . . . , u p+q ]| is the absolute value of the measure µ(•)[u 1 , . . . , u p+q ].

For all α ∈]0, 1[ the space W α p,q (D) will denote the complex interpolate space between W 0 p,q (D) and W 1 p,q (D). One can "understand" these spaces by the work of Amar and Bonami who proved in [START_REF] Amar | Mesures de Carleson d'ordre α et solutions au bord de l'équation ∂[END_REF] Proposition 2.4. A measure µ belongs to W α (D), α ∈]0, 1[, if and only if there exists a Carleson measure µ 1 and f ∈ L 1 1-α (bD, dµ 1 ) such that µ = f dµ 1 .

The interpolation space [H 1 (D), BM OA(D)] θ

Let us first define the spaces BM O(bD) and BM OA(D). For f ∈ L 1 loc (bD), we set

f BM O(bD) = sup z∈bD,r>0 1 Vol(bD ∩ P r (z)) bD∩Pr(z) f (ζ) -f bD∩Pr(z) dσ(ζ)
where, for U ⊂ bD, f U = 1 Vol(U ) U f (ζ)dσ(ζ) and Vol(U ) is the euclidean volume of U . Reminding that H 1 (D) is a closed subset of L 1 (bD), the space BM OA(D) is the set :

BM OA(D) = {f ∈ H 1 (D) / f BM O(bD) < +∞}. It is well known that • BM O(bD) is not a norm because f BM O(bD) = 0 if f is con- stant.
Therefore, as in [START_REF] Krantz | Duality theorems for Hardy and Bergman spaces on convex domains of finite type in C n[END_REF], we equip BM OA(D) with the following norm defined for f ∈ BM OA(D) by

f BM OA(D) = f 1 + f BM O(bD) .
Let us recall the definition of the interpolation space

[H p (D), BM OA(D)] θ , p ≥ 1, θ ∈]0, 1[. First we equip H p (D) + BM OA(D) = {φ 0 + φ 1 / φ 0 ∈ H p (D), φ 1 ∈ BM OA(D)} with the norm : φ H p (D)+BM OA(D) = inf{ φ 0 H p (D) + φ 1 BM OA(D) / φ 0 ∈ H p (D), φ 1 ∈ BM OA(D), φ = φ 0 + φ 1 }. Then an element f of [H p (D), BM OA(D)] θ is a complex valued function such that there exists an application Φ : {z ∈ C / 0 ≤ z ≤ 1} → H p (D) + BM OA(D) which satisfies (i) f = Φ(θ), (ii) Φ is continuous, (iii) Φ is analytic on {z ∈ C / 0 < z < 1} (iv) t → Φ(it) and t → Φ(1 + it) are continuous from R to H p (D) and BM OA(D) respectively, (v) lim |t|→+∞ Φ(it) H p (D) = 0 and lim |t|→+∞ Φ(1 + it) BM OA(D) = 0. The norm of f ∈ [H p (D), BM OA(D)] θ is f [H p (D),BM OA(D)] θ = inf Φ max sup R Φ(it) H p (D) , sup R Φ(1 + it) BM OA(D)
where the infimum is taken over all Φ satisfying (i-v) (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]). We will prove in this section the following result : Theorem 3.1. Let D be a convex domain of finite type and q be in ]1, +∞[. Then

H q (D) = [H 1 (D), BM OA(D)] 1-1 q with equivalent norms.
We prove Theorem 3.1 by showing that [H p (D), BM OA(D)] 1-p q = H q (D) when 1 < p < q < +∞ and by extending this result to the case p = 1 using Wolff's note [START_REF] Wolff | A note on interpolation spaces[END_REF].

Lemma 3.2. Let D be a convex domain of finite type, 1 < p < q < +∞. Then H q (D) ⊂ [H p (D), BM OA(D)] 1-p q and for f ∈ H q (D), f [H p (D),BM OA(D)] 1-p q f H q (D) , uni-
formly with respect to f . Proof : Let f be an element of H q (D) and let f ∈ L q (bD) be its boundary value. Since

L q (bD) = [L p (bD), L ∞ (bD)] 1-p q , there exists Ψ : {z ∈ C / 0 ≤ z ≤ 1} → L p (bD) + L ∞ (bD) such that f = Ψ(1 -p q ), Ψ is analytic on {z ∈ C / 0 < z < 1}, t → Ψ(it) is continuous from R to L p (bD), t → Ψ(1 + it) is continuous from R to L ∞ (bD)
and both tends to 0 when |t| goes to +∞. Now let S be the Szegö projector (see [START_REF] Krantz | Function theory of several complex variables[END_REF]). The Szegö projector is linear thus Φ = S • Ψ is holomorphic on {z ∈ C / 0 < z < 1}. From [START_REF] Mcneal | The Szegö projection on convex domains[END_REF], Theorem 3.4 and 5.1, S : L p (bD) → H p (D) is continuous for all 1 < p < +∞ and from [START_REF] Krantz | Duality theorems for Hardy and Bergman spaces on convex domains of finite type in C n[END_REF], Theorem 5.6, S :

L ∞ (bD) → BM OA(D) is also continuous. Therefore Φ is continuous, t → Φ(it) and t → Φ(1 + it) are continuous from R to H p (D) and BM OA(D) respectively, lim |t|→+∞ Φ(it) L p (bD) = 0 and lim |t|→+∞ Φ(1 + it) L ∞ (bD) = 0. Morevover, since f is already holomorphic and since f is the boundary value of f , f = S( f ) = Φ(1 -p q ). Thus f belongs to [H p (D), BM OA(D)] 1-p q
. Moreover, the continuity of S gives, uniformly with respect to Ψ :

f [H p (D),BM OA(D)] 1-p q ≤ max sup t∈R S • Ψ(it) H p (D) , sup t∈R S • Ψ(1 + it) BM OA(D) max sup t∈R Ψ(it) L p (bD) , sup t∈R Ψ(1 + it) L ∞ (bD) .
Taking the infimum among all Ψ, we get

f [H p (D),BM OA(D)] 1-p q f [L p (bD),L ∞ (bD)] 1-p q = f L q (bD) = f H q (D) .
We need to prove the converse inclusion which is more involved. We consider the following maximal functions. For f ∈ L 1 loc (bD) and z ∈ bD, we set

f # (z) = sup ζ∈bD, ε>0 / z∈Pε(ζ) 1 Vol(P ε (ζ) ∩ bD) Pε(ζ)∩bD |f -f Pε(ζ)∩bD |dσ.
We aim at proving that # : [H p (D), BM OA(D)] 1-p q → L q (bD) is continuous when 1 < p < q < +∞. In order to establish the continuity of # , we introduce the maximal function M . For f ∈ L 1 loc (bD) and z ∈ bD, we set

M (f )(z) = sup ζ∈bD, ε>0 / z∈Pε(ζ) 1 Vol(P ε (ζ) ∩ bD) Pε(ζ)∩bD |f |dσ.
We control f L q (bD) by f # L q (bD) with the following lemma :

Lemma 3.3. Let 1 < q < +∞.
The following inequality holds uniformly with respect to

f ∈ L q (bD) : f L q (bD) ≤ f # L q (bD) + 1 Vol(bD) bD f dσ Proof : Lebesgue's differentiation theorem implies that |f | ≤ M f almost everywhere so f L p (bD) ≤ M f L p (bD) . (1) 
From [START_REF] Burger | Espace des fonctions à variation moyenne bornée sur un espace de nature homogène[END_REF], Theorem 2, for all g ∈ L 1 loc (bD) such that bD gdσ = 0, we have

M g L p (bD) ≤ g # L p (bD) . For f ∈ L 1 loc (bD) and g = f -1 Vol(bD) bD f dσ, we have g # = f # so M g L p (bD) ≤ g # L p (bD) = f # L p (bD) . Since M f ≤ M g + 1 Vol(bD) bD f dσ , M f L p (bD) f # L p (bD) + 1
Vol(bD) bD f dσ , which with (1), proves Lemma 3.3.

From [START_REF] Coifman | Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières[END_REF], M is of weak-type (1, 1) and (∞, ∞). By Marcinkiewicz's theorem, M :

L p (bD) → L p (bD) is continuous for all 1 < p < +∞ which implies that M f L p (bD)
f L p (bD) uniformly with respect to f . We also have

f # ≤ 2M f , thus f # L p (bD) f H p (D) , 1 < p < +∞, (2) 
and, by definition,

f # L ∞ (bD) f BM OA(D) . (3) 
Therefore, if # was linear, its continuity (established in Lemma 3.7) would just be a simple consequence of interpolation. Then, using Lemma 3.3, we would get

f H q (D) f # L q (bD) f [H p (D),BM OA(D)] 1-p q
as we need. However, the operator # is only sub-linear and it does not seem possible to get the continuity of # : [H p (D), BM OA(D)] 1-p q → L q (bD) that way. In [START_REF] Fefferman | H p spaces of several variables[END_REF] Without restriction, we assume that 0 belongs to D and we set

p(ζ) = inf{µ > 0 / ζ ∈ µD},
the gauge function of D, and r = p -1. We have p(λζ) = λp(ζ) for all λ > 0. Therefore, for all ε > 0, all v ∈ C n , |v| = 1, all λ > 0, we have τ (λζ, v, λε) = λτ (ζ, v, ε). We set, for ζ near bD and ε > 0 small, λ(ζ, ε) :=

1 p(ζ)-ε . When ζ is near bD, p(ζ) is near 1 so λ(ζ, ε) is well defined. Moreover, we have |r λ(ζ, ε)ζ | = λ(ζ, ε)ε, thus τ λ(ζ, ε)ζ, v, |r λ(ζ, ε)ζ | = λ(ζ, ε)τ (ζ, v, ε).
We now recall the definition and some properties of the Bergman metric that we will need (see [START_REF] Range | Holomorphic functions and integral representations in several complex variables[END_REF]). Let B(ζ, z) denote the Bergman kernel, holomorphic with respect to z, antiholomorphic with respect to ζ and let b(z) = (b ij (z)) i,j=1...,n be the matrix given by b i,j (z) = ∂ 2 ∂z i ∂z j ln B(z, z). The Bergman metric • B,z for z ∈ D is the hermitian metric induced by b, i.e. the Bergman norm of v = n i=1 v i e i , where e 1 , . . . , e n is the canonical basis of C n , is given by v

B,z = n i,j=1 b ij (z)v j v i 1 2 .
The two following propositions are proved in [START_REF] Mcneal | Convex domains of finite type[END_REF] and [START_REF]Invariant metric estimates for ∂ on some pseudoconvex domains[END_REF] respectively. Proposition 3.4. Let ζ ∈ D be a point near bD, ε > 0, w * 1 , . . . , w * n a ε-extremal basis at ζ and v = n j=1 v * j w * j a unit vector. Then, uniformly with respect to ζ, v and ε we have

1 τ (z, v, ε) n j=1 |v * j | τ j (z, ε) .
Proposition 3.5. There exists 0 < c < C such that for all z ∈ D near bD, all unit vector

v in C n c τ (z, v, |r(z)|) v B,z C τ (z, v, |r(z)|)
.

Now we put for ζ near bD, ε > 0

Q ε (ζ) = ζ + µv / µ ∈ C, v ∈ C n , µv B,λ(ζ,ε)ζ < 1 ,
and, for α > 0 and w * 1 , . . . , w * n an ε-extremal basis at ζ,

αP ε (ζ) =    z = ζ + n j=1 z * j w * j / |z * j | < ατ j (ζ, ε)    .
Note that the factor α in front of P ε (ζ) means blowing up the polydisc around its center and not just multiplying each point by α. Now we prove Proposition 3.6. There exist 0 < k < K such that for all ζ ∈ C n near bD, all ε > 0 small enough :

kP ε (ζ) ⊂ Q ε (ζ) ⊂ KP ε (ζ). Proof : We only prove the inclusion kP ε (ζ) ⊂ Q ε (ζ), the other one is similar. Let v ∈ C n , |v| = 1, µ ∈ C be such that ζ + µv belongs to kP ε (ζ), k > 0 to be determined. From Proposition 3.4, we get |µ| τ (ζ, v, ε) k. Now τ (λ(ζ, ε)ζ, v, λ(ζ, ε)ε) = λ(ζ, ε)τ (ζ, v, ε) and |r(λ(ζ, ε)ζ)| = λ(ζ, ε)ε so |µ| τ (λ(ζ, ε)ζ, v, |r(λ(ζ, ε)ζ)|) k λ(ζ, ε) .
Therefore, by Proposition 3.5

µv B,λ(ζ,ε)ζ k λ(ζ, ε) . Since λ(ζ, ε) is near 1, if k is small enough, uniformly in ζ and ε, we have µv B,λ(ζ,ε)•ζ < 1 and so ζ + µv belongs to Q ε (ζ).
Now we have all the tools we need in order to prove the continuity of # .

Lemma 3.7. For all 1 < p < q < +∞, the operator

# : [H p (D), BM OA(D)] 1-p q → L q (bD) is continuous. Proof : Let f * be defined by f * (z) = sup Qε(ζ) z 1 Vol(Q ε (ζ) ∩ bD) Qε(ζ)∩bD f -f Qε(ζ)∩bD dσ.
We show that the functions f * and f # are comparable. Let C > c > 0, depending only on the constants k and K given by Proposition 3.6, be such that for all ζ and ε > 0,

P cε (ζ) ⊂ kP ε (ζ) ⊂ Q ε (ζ) ⊂ KP ε (ζ) ⊂ P Cε (ζ). We have 1 Vol(Q ε (ζ) ∩ bD) Qε(ζ)∩bD f -f Qε(ζ)∩bD dσ ≤ 1 Vol(Q ε (ζ) ∩ bD) Qε(ζ)∩bD f -f P Cε (ζ)∩bD dσ + f P Cε (ζ)∩bD -f Qε(ζ)∩bD Since Vol(Q ε (ζ) ∩ bD) Vol(P ε (ζ) ∩ bD) Vol(P Cε (ζ) ∩ bD) and since Qε(ζ)∩bD |f - f P Cε (ζ)∩bD |dσ P Cε (ζ)∩bD |f -f P Cε (ζ)∩bD |dσ, we get 1 Vol(Q ε (ζ) ∩ bD) Qε(ζ)∩bD f -f P Cε (ζ)∩bD dσ f # (z). (4) 
Now, using (4), we get

f P Cε (ζ)∩bD -f Qε(ζ)∩bD = 1 Vol(Q ε (ζ) ∩ bD) Qε(ζ)∩bD (f -f P Cε (ζ)∩bD )dσ ≤ 1 Vol(Q ε (ζ) ∩ bD) Qε(ζ)∩bD f -f P Cε (ζ)∩bD dσ f # (z)
which implies, again with (4), that f * (z) f # (z). The converse inequality is analogue. Now, since Q ε (ζ) depends smoothly on ζ and ε, we can proceed as in [START_REF] Fefferman | H p spaces of several variables[END_REF] and linearize the maximal operator * . Let X be the set of couples (η, Q) where η : bD × bD → C is measurable and satisfies |η| = 1 and For g ∈ L 1 loc (bD), we set

Q : bD → {Q ε (ζ) / ε > 0, ζ ∈ bD} is such that the map (ζ, z) → 1 Q(ζ) (z)
(ζ) = Q ψ(ζ) (φ(ζ)). Since 1 Q(ζ) (z) = 1 if and only if z -φ(ζ) B,
U (g) = U (η,Q) (g) (η,Q)∈X where U (η,Q) (g) : ζ → 1 Vol(Q(ζ) ∩ bD) ξ∈Q(ζ)∩bD g(ξ) -g Q(ζ)∩bD η(ξ, ζ)dσ(ξ).
The operator U is linear ; for all (η,

Q) ∈ X, all ζ ∈ bD, U (η,Q) (g)(ζ) ≤ g * (ζ) and for all ζ ∈ bD, sup (η,Q)∈X U (η,Q) (g)(ζ) = g * (ζ). In other words, for all ζ ∈ bD, U (g)(ζ) is an element of L ∞ (X) and U (g)(ζ) L ∞ (X) = g * (ζ). We set L ∞ (bD, L ∞ (X)) = {f : bD → L ∞ (X) / f L ∞ (bD,L ∞ (X)) = sup bD f L ∞ (X) < ∞}, L p (bD, L ∞ (X)) = f : bD → L ∞ (X) / f L p (bD,L ∞ (X)) := bD f p L ∞ (X) dσ 1 p < ∞ . By definition U : BM OA(bD) → L ∞ (bD, L ∞ (X)) is continuous. Moreover since g * g # , from (2) 
we deduce that U : [START_REF] Hytönen | Analysis in Banach spaces[END_REF]), we conclude that uniformly with respect to

H p (D) → L p (bD, L ∞ (D)) is continuous. By interpolation, for all θ ∈]0, 1[, U : [H p (D), BM OA(D)] θ → L p (bD), L ∞ (X)), L ∞ (bD, L ∞ (X)) θ is continuous. Since for q such that 1 q = 1-θ p + θ ∞ , L p (bD, L ∞ (X)), L ∞ (bD, L ∞ (X)) θ = L q (bD, L ∞ (X)) (see Theorem 2.2.6 of
g ∈ [H p (D), BM OA(D)] θ : bD U (g) q L ∞ (X) dσ 1 q g [H p (D),BM OA(D)] θ . Since U (g) L ∞ (X) = g * , we get bD |g * | q dσ 1 q g [H p (D),BM OA(D)] θ
and finally, since g * g # , this implies that g # belongs to L q (bD) and satisfies, uniformly with respect to g, g # L q (bD)

g [H p (D),BM OA(D)] θ .
We are now ready to prove the reciprocate of Lemma 3.2.

Lemma 3.8. For 1 < p < q < +∞, [H p (D), BM OA(D)] 1-p q ⊂ H q (D) and for all f ∈ [H p (D), BM OA(D)] 1-p q , f H q (D) f [H p (D),BM OA(D)] 1-p q uniformly with respect to f . Proof : For all f ∈ [H p (D), BM OA(D)] 1-p q
, we have (Lemma 3.7) :

f # L q (bD) f [H p (D),BM OA(D)] 1-p q . ( 5 
)
In order to prove that 1 Vol(bD) bD f dσ satisfies the same estimates, we consider the linear form λ : L 1 (bD) → C defined by λ(f ) = 1 Vol(bD) bD f dσ. The form λ is continuous on H 1 (D) and thus on H p (D) and BM OA(D). Therefore, by interpolation, λ is also continuous on [H p (D), BM OA(D)] 1-p q and for all f ∈ [H p (D), BM OA(D)] 1-p q , we have

|λ(f )| f [H p (D)),BM OA(D)] 1-p q (6) 
Combining ( 5) and ( 6) with Lemma 3.3, we then get for all

f ∈ [H p (D), BM OA(D)] 1-p q , f L q (bD) f [H p (D),BM OA(D)] 1-p q , so [H p (D), BM OA(D)] 1-p q injects itself continuously in H q (D).
Lemmas 3.2 and 3.8 give immediately :

Corollary 3.9. For 1 < p < q < +∞ and θ = 1 -p q , [H p (D), BM OA(D)] θ = H q (D) with equivalent norms.

We now prove Theorem 3.1.

Proof of Theorem 3.1 : First prove that H q (D) = [H 1 (D), H p (D)] θ , for all 1 < q < p < +∞ and θ such that

1 q = 1-θ 1 + θ p . Since H p (D) is reflexive, from [8] Corollary 4.5.2, we have [H 1 (D), H p (D)] θ = [H 1 (D) , H p (D) ] θ .
We have H p (D) = H p (D) where 1 p + 1 p = 1 and, from [START_REF] Krantz | Duality theorems for Hardy and Bergman spaces on convex domains of finite type in C n[END_REF],

BM OA(D) = H 1 (D) so [H 1 (D), H p (D)] θ = [BM OA(D), H p (D)] θ = [H p (D), BM OA(D)] 1-θ
For q such that 1 q = θ p , we have 1 < p < q < +∞ and 1 -θ = 1 -p q . Thus Corollary 3.9 implies that

[H 1 (D), H p (D)] θ = [H p (D), BM OA(D)] 1-θ = H q (D).
Therefore, for q such that 1 q + 1 q = 1 (which implies that 1 q = 1 -θ + θ p ), we have

[H 1 (D), H p (D)] θ = H q (D). Since [H 1 (D), H p (D)] θ is a subspace of [H 1 (D), H p (D)
] θ which is reflexive since isomorphic to the reflexive space H q (D), it follows that [H 1 (D), H p (D)] θ is itself reflexive and so [H 1 (D), H p (D)] θ = H q (D) and

1 q = 1-θ 1 + θ p . Now we prove that H q (D) = [H 1 (D), BM OA(D)] 1-1 q . For 1 < q < +∞, θ = 1 2 , θ = 2(q-1) 2q-1 = 1 -1 2q-1 ∈]0, 1[, we have 1 q = 1 -θ + θ 2q and so [H q (D), BM OA(D)] θ = H 2q (D), [H 1 (D), H 2q (D)] θ = H q (D).
Therefore, for s = θθ 1-θ +θθ , we get from Wolff's note [START_REF] Wolff | A note on interpolation spaces[END_REF], Theorem 2 :

[H 1 (D), BM OA(D)] s = H q (D).

Since s = 1 -1 q , we are done.

4. About hω and w 4.1. hω satisfies the hypothesis of Theorem 1.2. In this section, we prove that hω = h

(|f 1 | 2 +|f 2 | 2 ) 2 f 1 ∂ f 2 -f 2 ∂ f 1 ,
as defined in the introduction, satisfies the hypothesis of Theorem 1.2. When θ is a smooth p-form on D, Bruna, Charpentier and Dupain [START_REF] Bruna | Zero varieties for the Nevanlinna class in convex domains of finite type in C n[END_REF] define θ(z) k as a smooth function of z by θ(z) k := sup u 1 ,...,up =0 |θ(z)(u 1 ,...,up)| k(z,u 1 )...k(z,up) which is the norm of the form θ(z) with respect to the norm k(z, •). The following theorem is Theorem 1.2 of [START_REF] Jasiczak | Carleson embedding theorem on convex finite type domains[END_REF] . The following theorem is Theorem 1.1 of [START_REF] Jasiczak | Carleson embedding theorem on convex finite type domains[END_REF]. This result, generally referred as Carleson-Hörmander inequality, will be very useful for us. We will also need the following lemma which is the analog of Proposition 2.1 of [START_REF] Andersson | Wolff type estimates and the H p corona problem in strictly pseudoconvex domains[END_REF]. Proof :

We put θ = i∂∂|h| p = i p 2 2 |h| p-2 ∂h ∧ ∂h. Since i∂h ∧ ∂h(v, iv) = 2|∂h(v)| 2 , we have |h| p-2 ∂h 2 k |h| p-2 ∂h ∧ ∂h k θ k , so D |r| h p-2 ∂h 2 k dV D |r| θ k dV.
Since θ is a closed positive (1, 1)-current, Theorem 1.1 of [START_REF] Bruna | Zero varieties for the Nevanlinna class in convex domains of finite type in C n[END_REF] gives

D |r| h p-2 ∂h 2 k dV D |r| θ eucl dV.
where θ eucl stands for the euclidean norm of θ : Since ∂(hω) = 0, ∂(hω) is d-closed. Thus Fact 4.5 below shows that ∂(hω) satisfies the hypothesis of Theorem 1.2. We first establish :

θ(z) eucl = sup u,v =0
Fact 4.4. For f 1 , f 2 ∈ H ∞ (D) such that |f 1 | 2 + |f 2 | 2 ≥ δ 2 > 0 and ω = f 1 ∂ f 2 -f 2 ∂ f 1 (|f 1 | 2 +|f 2 | 2 ) 2 , |r| ∂ω k dV and |r| ω 2 k dV are Carleson measures on D. Proof : We have ω k ∂f 1 k + ∂f 2 k so |r| ω 2 k |r| ( ∂f 1 2 k + ∂f 2 2 k ). ( 7 
)
We also have

∂ω = 2 (|f 1 | 2 + |f 2 | 2 ) 3 f 1 2 ∂f 2 ∧ ∂f 1 -f 2 2 ∂f 1 ∧ ∂f 2 + f 1 f 2 ∂f 2 ∧ ∂f 2 -∂f 1 ∧ ∂f 1
and since for all α and β, α

∧ β k α k β k , we get |r| ∂ω k |r|( ∂f 1 2 k + ∂f 2 2 k ). (8) 
Since H ∞ (D) ⊂ BM OA(D), Fact 4.4 is then a consequence of ( 7), ( 8) and of Theorem 4.1. Proof : We treat separately the case h ∈ H ∞ (D). Since ∂(hω) = ∂h∧ω+h∂ω, it suffices to prove that both |r|∂h∧ω and |r|h∂ω belongs to W 1 1,1 (D). Since for all vectors fields u 1 and u 2 we have Let h belongs to H 1 (D) and let u 1 and u 2 be two vectors fields. Then :

1 k(•,u 1 )k(•,u 2 ) |∂h ∧ ω(u 1 , u 2 )| ≤ ∂h ∧ ω k and 1 k(•,u 1 )k(•,u 2 ) |∂ω(u 1 , u 2 )| ≤ ∂ω k ,
Pε(ζ 0 )∩D |r| ∂h ∧ ω k dV Pε(ζ 0 )∩D |r| ∂h 2 k dV 1 2 Pε(ζ 0 )∩D |r| ω 2 k dV 1 2 h BM OA(D) σ P ε (ζ 0 ) ∩ D h H ∞ (D) σ P ε (ζ 0 ) ∩ D .

Now we treat the case

D |r| |∂h ∧ ω(u 1 , u 2 )| dV k(•, u 1 )k(•, u 2 ) D |r| ∂h ∧ ω k dV. Since ∂h ∧ ω k ∂h k • ω k , we have D |r| ∂h ∧ ω k dV ≤ D |r||h| -1 ∂h 2 k dV 1 2 D |r||h| ω 2 k dV 1 2
.

If h belongs to H 1 (D), Lemma 4.3 implies that D |r| |h| -1 ∂h 2 k dV h H 1 (D) . Since, Fact 4.4, |r| ω 2 k is a Carleson measure, if h belongs to H 1 (D), Hörmander- Carleson inequality yields D |r||h| ω 2 k dV h H 1 (D) and so D |r| ∂h ∧ ω 2 k dV h H 1 (D) .
Thus, we have proved that T : H 1 (D) → W 0 1,1 (D) is continuous. Now for h ∈ BM OA(D), u 1 and u 2 be two vectors fields, z 0 ∈ bD, ε > 0, we have

Pε(z 0 )∩bD |r| |∂h ∧ ω(u 1 , u 2 )| dV k(•, u 1 )k(•, u 2 ) Pε(z 0 )∩bD |r| ∂h ∧ ω k dV Pε(z 0 )∩bD |r| ∂h 2 k dV 1 2 Pε(z 0 )∩bD |r| ω 2 k dV 1 2
From Theorem 4.1 and Fact 4.4, we then obtain :

Pε(z 0 )∩bD |r| ∂h ∧ ω k dV h BM OA(D) σ(P ε (z 0 ) ∩ bD).
We thus have proved that T : BM OA(D) → W 1 1,1 (D) is continuous. By interpolation, we get the continuity of T :

H p (D) → W 1-1 p 1,1 (D) for all 1 ≤ p < ∞. Thus, for all h ∈ H p (D), 1 ≤ p < +∞, |r| ∂h ∧ ω belongs to W 1-1 p 1,1 (D). 4.2.
w belongs to H p (D). Using that w is a holomorphic function such that w(0) = v(0) and dw = ∂v -hω with v ∈ L p (bD) and hω ∈ H p (D), we now prove that w is in H p (D). Let p be such that 1 p + 1 p = 1. We test w against any function g ∈ H p (D) and showing that bD gwdσ g H p (D) , uniformly with respect to g, we get by duality that w belongs to H p (D). Moreover, since v belongs to L p (bD), it suffices to prove that bD g(w -v)dσ g L p (bD) uniformly with respect to g. We use the following lemma.

Lemma 4.6. For 1 < p ≤ +∞ and 1 ≤ p < +∞ such that 1 p + 1 p = 1, g ∈ H p (D), h ∈ H p (D), we have uniformly with respect to g and h :

D |r| |∂g| |h| |ω|dV h H p (D) g H p (D) .
Proof : The proof is similar to a part of the proof of Theorem 1.2 of [START_REF] Andersson | Wolff type estimates and the H p corona problem in strictly pseudoconvex domains[END_REF] :

If p = +∞ and p = 1, from Fact 4.4, |r| ω 2 k dV is a Carleson measure. Thus from Lemma 4.3 and Theorem 4.2 applyed to g and µ = |r| ω 2 k dV, we get :

D |r| |∂g||h||ω|dV h H ∞ (D) D |r| |g| -1 ∂g 2 k dV 1 2 D |r||g| ω 2 k dV 1 2 h H ∞ (D) g H 1 (D) .
If p = p = 2, again from Lemma 4.3, Fact 4.4 and Carleson-Hörmander inequality applyed to h and µ = |r| ω 2 k dV,, we have : 

D |r| |∂g||h||ω|dV D |r| ∂g 2 k dV 1 2 D |r||h| 2 ω 2 k dV 1 2 h H 2 (D) g H 2 (D) . If 2 < p < +∞, 1 < p < 2,
D |r| |∂g||h||ω|dV D |r| |g| p -2 ∂g 2 k dV 1 2 D |r||g| 2-p |h| 2 ω 2 k dV 1 2 D |r| |g| p -2 ∂g 2 k dV 1 2 D |r||g| p ω 2 k dV 2-p 2p D |r||h| p ω 2 k dV 1 p h H p (D) g H p (D) .
Finally, if 1 < p < 2, 2 < p < +∞, we write h∂g as ∂(hg) -g∂h. Applying the case p = +∞, p = 1 to the function identically equal to 1 on D and to gh ∈ H 1 (D), we get

D |r| |∂(gh)||ω|dV hg H 1 (D) ≤ g H p (D) h H p (D) . (9) 
Applying the case 2 < p < +∞, 1 < p < 2 and to h ∈ H p (D) and g ∈ H p (D), we get

D |r| |∂h||g||ω|dV g H p (D) h H p (D) . (10) 
Inequalities ( 9) and [START_REF] Burger | Espace des fonctions à variation moyenne bornée sur un espace de nature homogène[END_REF] 

imply that D |r| |∂g||h||ω|dV h H p (D) g H p (D) when 1 < p < 2, 2 < p < +∞.
Now let G be the Green function for the Laplacian for D (see [START_REF] Krantz | Function theory of several complex variables[END_REF]). We will need the following properties of G :

• The following representation formula holds for all f ∈ C 2 (D) and all z ∈ D, [START_REF]Partial differential equations and complex analysis[END_REF]) implies that ∂ϕ ∂η ζ (ζ) < 0. We put G 0 = G(0, •). Since -∂G 0 ∂η > 0 on the compact set bD, we have bD

f (z) = - bD f (ξ) ∂G ∂η ξ (z, ξ)dσ(ξ) + D G(z, ξ)∆f (ξ)dV (ξ). • For all z ∈ D, all ζ ∈ D, z = ζ, G(z, ζ) ≥ 0. Indeed, let us consider ϕ(ζ) = -G(z, ζ), z fixed in D. For all ε > 0, ϕ is harmonic in D \ B(z, ε), ϕ(ζ) = 0 on bD and ϕ(ζ) < 0 for all ζ ∈ bB(z, ε), all ε > 0 sufficiently small. The maximum principle implies that ϕ(ζ) ≤ 0 for all ζ ∈ D \ B(z, ε), ε > 0 sufficiently small, so G(z, ζ) ≥ 0 for all z ∈ D, all ζ ∈ D, ζ = z. • For all z ∈ D, all ζ ∈ bD, ∂G ∂η ζ (z, ζ) < 0. Indeed, for all z ∈ D fixed, ϕ : ξ → G(z, ξ) is harmonic in D \ B(z, ε), ε > 0. For all ξ ∈ D \ {z}, all ζ ∈ bD fixed, we have ϕ(ξ) ≥ ϕ(ζ) = 0. Hopf's lemma (see
g(w -v)dσ bD g(w -v) ∂G 0 ∂η dσ . Since w(0) = v(0), the representation formula gives bD g(w -v)dσ D G 0 ∆(g(w -v))dV . Now let β = i 2 n k=1 dz k ∧ dz k .
For any f we have ∂∂f ∧ β n-1 c n ∆f dV for some c n ∈ C depending only on n. So, since g and w are holomorphic, since ∂∂v = ∂(hω) and

∂(w -v) = -hω : bD g(w -v)dσ D G 0 ∂∂(g(w -v)) ∧ β n-1 D G 0 ∂g ∧ ∂(w -v) ∧ β n-1 + D G 0 g∂∂v ∧ β n-1 D G 0 h∂g ∧ ω ∧ β n-1 + D G 0 g∂(hω) ∧ β n-1 .
Let K be a compact neighborhood of 0. Since G 0 is in C 1 (D \ K) and vanishes on bD, |r| -1 G 0 is bounded on D \ K. Thus, by Lemma 4.6 :

D\K G 0 h∂g ∧ ω ∧ β n-1 ≤ D\K G 0 |r| |h||∂g| |r| |ω|dV g H p (D) h H p (D) .
Since G 0 is locally integrable and since ω is bounded on K :

K G 0 h∂g ∧ ω ∧ β n-1 sup K |∂g| sup K |h| g L p (D) h L p (D) g H p (D) h H p (D)
and so

D G 0 h∂g ∧ ω ∧ β n-1 g H p (D) h H p (D) . Now we show that D G 0 g∂(hω) ∧ β n-1 g H p (D)
. Let e 1 , . . . , e n be the canonical basis of C n . We have

D\K G 0 g∂(hω) ∧ β n-1 n i,j=1 D\K G 0 |r| g |r|∂(hω)(e i , e j ) k(•, e i )k(•, e j ) dV .
From Fact 4.5, |r| ∂(hω)(e i ,e j ) k(•,e i )k(•,e j ) dV belongs to W 1-1 p (D) so, Proposition 2.4, it can be written as f dµ where µ is a Carleson measure on D and f belongs to L p (D, µ). Therefore, since

G 0 |r| is bounded on D \ K : D\K G 0 |r| g |r|∂(hω)(e i , e j ) k(•, e i )k(•, e j ) dV D\K gf dµ D\K |g| p dµ 1 p D\K |f | p dµ 1 p
. and using Carleson-Hörmander inequality, we then get :

D\K G 0 |r| g |r|∂(hω)(e i , e j ) k(•, e i )k(•, e j ) dV g H p (D) .
and so D G 0 g∂(hω) ∧ β n-1 g H p (D) . Since G 0 is locally integrable, as previously, we have :

K G 0 g∂(hω) ∧ β n-1 sup K |g| sup K |hω| g H p (D) h H p (D) . So, D G 0 g∂(hw) ∧ β n-1 g H p (D) h H p (D)
and for any g ∈ H p (D), bD gwdσ g H p (D) which implies that w belongs to H p (D).

Proof of Theorem 1.2

The proof of Theorem 1.2 reduces to the 2 following theorems. [START_REF] Alexandre | A Berndtsson-Andersson operator solving ∂-equation with W α -estimates on convex domains of finite type[END_REF]. Theorem 5.1 will be proved by interpolation. We admit it for the moment and prove Theorem 1.2.

For all ∂-closed v ∈ C ∞ 0,1 (D) ∩ W 1-1 p 0,1 (D), p ∈ [1, +∞], there exists u ∈ C ∞ (D) such that • ∂u = v, • u L p (bD) v W 1-1 p 0,1 (D) if 1 ≤ p < +∞, • u BM O(bD) v W 1 0,1 (D) if p = +∞. Theorem 5.2 is Theorem 2.10 of
Proof of Theorem 1.2 : This is classic, we include it for completness. Since θ is positive, it is real and since θ is d-closed, there exists v real 1-form such that idv = θ. We decompose v = -v 1,0 + v 0,1 where v 0,1 is a (0, 1)-form and v 1,0 a (1, 0)-form. For bidegree reason ∂v 0,1 = 0. Let u be such that ∂u = v 0,1 . We put w = 2 u and, using v 0,1 = v 1,0 , we get

i∂∂w = i∂∂(u + u) = i∂∂u -i∂∂u = i∂v 0,1 -i∂v 0,1 = idv = θ.
Now when v is given by Theorem 5.1, v 0,1 belongs to W

1-1 p 0,1 (D) if |r| θ belongs to W 1-1 p 1,1 (D)
and then, when u is given by Theorem 5.2, w belongs to BM O(bD) if p = +∞ and to L p (bD) if 1 ≤ p < +∞.

Our goal is now to prove Theorem 5.1. We will use the homotopy operator of [START_REF]Zero sets of H p functions in convex domains of finite type[END_REF] that we now recall. Let ϕ be a C ∞ smooth function such that ϕ(t) = 1 if t < 1 2 , ϕ(t) = 0 if t > 1, and define the map

h Λ : D × [0, 1] → D for |Λ| ≤ ρ by h Λ (z, t) = tz + tϕ 1 -t γ|r(z)| 1 -t |r(z)| A(z) • Λ + t 1 -ϕ 1 -t γ|r(z)| A(tz) • Λ
where γ and ρ have to be chosen sufficiently small, A(z) is a positive hermitian matrix, smoothly depending on z, such that A(z) -2 = B(z), B(z) being the matrix in the canonical basis which determines the Bergman metric

• B,z at z, i.e. v B,z = v t B(z)v for any vector v. The map h Λ is C ∞ -smooth in D×]0, 1[, h Λ (z, 0) = 0 and h Λ (z, 1) = z for all z in D.
The associated homotopy operator is

Hθ = 1 Vol( ∆ n (ρ)) Λ∈∆n(ρ) t∈[0,1] h * Λ θ dΛ,
where ∆ n (ρ) = {Λ ∈ C n , |Λ| < ρ}. If θ is closed and if its support does not meet 0, then dHθ = θ. Moreover, the author proved in [START_REF]Zero sets of H p functions in convex domains of finite type[END_REF] that for all closed positive (1, 1)-current θ supported away from the origin and such that |r| θ belongs to W 1 1,1 (D), Hθ belongs to W 1 1 (D) and satisfies Hθ W 1

1 (D) |r| θ W 1 1,1 (D)
. We now prove that if |r| θ belongs to W 0 1,1 (D), then Hθ belongs to W 0 1 (D) and satisfies

Hθ W 0 1 (D) |r| θ W 0 1,1 ( 
D) . Theorem 5.1 will then follow by interpolation. Let u be a non-vanishing vector field u. When we compute Hθ(z)[u(z)], we get

Hθ(z)[u(z)] = 1 Vol(∆ n (ρ)) Λ∈∆n(ρ) t∈[0,1] θ(h Λ (z, t)) ∂h Λ ∂t (z, t), d z h Λ (z, t)[u] dtdΛ. ( 11 
)
Without restriction, we assume that the support of θ is included in a small neighborhood of bD. Therefore, in Hθ, we integrate only for t ∈ [t 0 , 1], t 0 > 0. For z ∈ D fixed, we decompose [t 0 , 1] in 3 parts :

1 -t ≤ γ 2 |r(z)|, 1 -t ≥ γ|r(z)| and γ 2 |r(z)| ≤ 1 -t ≤ γ|r(z)|. 5.1. Case 1 -t ≤ γ
2 |r(z)|. We will use the following covering lemma : Lemma 5.3. Let K > 0 be arbitrary big and ε 0 > 0 be arbitrary small. If c > 0 is small enough, there exists a sequence (z j ) j∈N such that (i) D \ D -ε 0 ⊂ +∞ j=0 P c|r(z j )| (z j ), (ii) there exists M such that all z ∈ D \ D -ε 0 , z belongs to at most M polydiscs P cK|r(z j )| (z j ).

Proof : The sequence is constructed as follows. Let k be a non negative integer. We pick a point z

(k)
1 in the boundary of D -(1-cκ) k ε 0 where κ is a small positive number to be chosen later. We then pick up successively points z

(k) 2 , z (k) 3 , . . . in bD -(1-cκ) k ε 0 such that δ(z (k) j , z (k) l ) ≥ cκ(1 -cκ) k ε 0
for all distinct j and l. Then, there exists γ > 0 such that for j = l, γP cκ(1-cκ) k ε 0 (z

(k) j ) ∩ γP cκ(1-cκ) k ε 0 (z (k)
l ) is empty and since bD -(1-cκ) k ε 0 is compact, this process stops at some rank n k . Moreover, for all z ∈ bD -(1-cκ) k ε 0 , there exists j such that z belongs to P cκ(1-cκ) k ε 0 (z

(k) j ). Let us prove that (i) holds true. For z ∈ D\D -ε 0 , let k ∈ N be such that (1-cκ) k+1 ε 0 < |r(z)| ≤ (1 -cκ) k ε 0 and let λ ∈ R be such that ζ = z + λη z belongs to bD -(1-cκ) k ε 0 .
Then there exists j such that δ(ζ, z

(k) j ) ≤ cκ(1 -cκ) k ε 0 . We also have δ(ζ, z) = |λ| ≤ cκ(1-cκ) k ε 0 . Therefore δ(z, z (k) j ) cκ r z (k) j
, and thus, if κ has been chosen sufficiently small, z belongs to P c r z (k) j (z

(k) j ). Now we prove (ii). Let ζ be a point in D \ D -ε 0 . If ζ belongs to P cK r z (k) j (z j ), provided c is small enough, we have 1 2 |r(ζ)| ≤ (1 -cκ) k ε 0 ≤ 2|r(ζ)|.
So there exist a finite number of k such that ζ belongs to P cK r z (k) j (z j ). For such a k, we put

I k = j ∈ {1, . . . , n k } / ζ ∈ P cK r z (k) j (z j )
and we show that #I k is bounded, uniformly with respect to k. We have for C > 0, independant of k, K and c, so big that

P c C (1-cκ) k ε 0 (z (k) j ) ∩ P c C (1-cκ) k ε 0 (z (k) l ) = ∅ for all j = l : σ ∪ j∈I k P cK r z (k) j (z (k) j ) ∩ bD -(1-cκ) k ε 0 ≥ σ ∪ j∈I k P c C K r z (k) j (z (k) j ) ∩ bD -(1-cκ) k ε 0 ≥ j∈I k σ P c C K r z (k) j (z (k) j ) ∩ bD -(1-cκ) k ε 0 j∈I k σ P cK r z (k) j (z (k) j ) ∩ bD -(1-cκ) k ε 0 . Since |r(ζ)| r z (k) j
, we have

σ P cK r z (k) j (z (k) j ) ∩ bD -(1-cκ) k ε 0 σ P cK|r(ζ)| (ζ) ∩ bD -(1-cκ) k ε 0 and so σ ∪ j∈I k P cK r z (k) j (z (k) j ) ∩ bD -(1-cκ) k ε 0 ≥ #I k • σ P cK|r(ζ)| (ζ) ∩ bD -(1-cκ) k ε 0 .
On the other hand, since ζ belongs to P cK r z 

σ ∪ j∈I k P cK r z (k) j (z (k) j ) ∩ bD -(1-cκ) k ε 0 σ P cK|r(ζ)| (ζ) ∩ bD -(1-cκ) k ε 0
from which we get #I k 1. Now we proceed essentially as in [START_REF]Zero sets of H p functions in convex domains of finite type[END_REF]. Let j be a non negative integer and set

(I) j := z∈P c|r(z j )| (z j ) Λ∈∆n(ρ) t∈[1- γ 2 |r(z)|,1] |θ(h Λ (z, t))| ∂h Λ ∂t (z, t), d z h Λ (z, t)[u(z)] k(z, u(z))Vol(∆ n (ρ))
dtdΛdV (z).

Lemma 2.17 from [START_REF]Zero sets of H p functions in convex domains of finite type[END_REF] implies that

(I) j z∈P c|r(z j )| (z j ) Λ∈∆n(ρ) t∈[1- γ 2 |r(z)|,1] |θ(h Λ (z, t))| ∂h Λ ∂t (z, t), d z h Λ (z, t)[u(z)] k h Λ (z, t), d z h Λ (z, t)[u(z)] • k h Λ (z, t), ∂h Λ ∂t (z, t) dtdΛdV (z).
Then Proposition 2.12 from [START_REF]Zero sets of H p functions in convex domains of finite type[END_REF] gives (I) j n k,l=1 (I) j,k,l where

(I) j,k,l := z∈P c|r(z j )| (z j ) Λ∈∆n(ρ) t∈[1- γ 2 |r(z)|,1] |θ(h Λ (z, t))|[e k (h Λ (z, t)), e l (h Λ (z, t))] k(h Λ (z, t), e k (h Λ (z, t))) • k(h Λ (z, t), e l (h Λ (z, t)))
dtdΛdV (z).

For fixed z and t, we make the substitution ζ = h Λ (z, t), Λ running over ∆ n (ρ). From Now we want to change the order of integration. Intuitively, since t is sufficiently close to 1, ζ will belong to P cK|r(z j )| (z j ) for some K and z will belong to

P |r(ζ)| (ζ). If γ is small enough, |r(z)| |r(ζ)| because 1-t |r(z)| ≤ γ 2 and because ζ belongs to C 1-t |r(z)| P |r(z)| (z). This implies, if γ is even smaller, that t belongs to [1 -1 2 |r(ζ)|, 1]
. We also have δ(ζ, z j ) δ(ζ, z) + δ(z, z j ) c|r(z j )| so ζ belongs to P cK|r(z j )| (z j ) for some K which does not depend on j, c or ζ. Therefore, c can be chosen small so that Lemma 5.3 holds true.

Since

ζ belongs to C 1-t |r(z)| P |r(z)| (z), we can write ζ = z + C 1-t |r(z)| µv with µ ∈ C, v ∈ C n , |v| = 1, such that |µ| < τ (z, v, |r(z)|). Provided γ is small enough, we have |r(z)| |r(ζ)| and τ (z, v, |r(z)|) τ (ζ, v, |r(ζ)|). Therefore z = ζ -1-t |r(z)| µv with |µ| τ (ζ, v, |r(ζ)|) and there exists K > 0 big, such that z belongs to K 1-t |r(ζ)| P |r(ζ)| (ζ). Therefore, the set (z, t, ζ), z ∈ P |r(z j )| (z j ), t ∈ [1 -γ 2 |r(z)|, 1], ζ ∈ C 1-t |r(z)| P |r(z)| (z) is included in (z, t, ζ), ζ ∈ P cK|r(z j )| (z j ), t ∈ [1 -1 2 |r(ζ)|, 1], z ∈ K 1-t |r(ζ)| P |r(ζ)| (ζ) . Moreover, Vol(P |r(z)| (z)) Vol(P |r(ζ)| (ζ)) which gives (I) j,k,l ζ∈P cK|r(z j )| (z j ) t∈[1-1 2 |r(ζ)|,1] z∈K 1-t |r(ζ)| P |r(ζ)| (ζ) |r(ζ)| 1 -t 2n |θ(ζ)|[e k (ζ), e l (ζ)] Vol(P |r(ζ)| (ζ)) • k(ζ, e k (ζ)) • k(ζ, e l (ζ)) dV (ζ)dtdV (z).
We integrate successively with respect to z and t and get 

Theorem 1 . 2 . 1 p 1 , 1

 12111 Let D be a bounded convex domain of finite type in C n , let θ be a positive d-closed (1, 1)-current. Then (i) if |r| θ belongs to W 1 1,1 (D), then there exists v such that θ = i∂∂v and v BM O(bD) |r| θ W 1 1,1 (D) , uniformly with respect to θ. (ii) if |r| θ belongs to W 1-(D), 1 ≤ p < +∞, then there exists v such that θ = i∂∂v and v L p (bD)

  is measurable and, for all ζ ∈ bD, ζ belongs to Q(ζ). Let us point out that in order to define such a function Q, it suffices to define two functions φ : bD → bD and ψ : bD →]0, +∞[ and to set Q

1 p

 1 (φ(ζ))-ψ(ζ) φ(ζ) < 1 and since the Bergman metric is a smooth metric, (ζ, z) → 1 Q(ζ) (z) is measurable as soon as that φ and ψ are measurable. This would not be the case, a priori, with McNeal's polydiscs instead of Q ε (ζ).

Theorem 4 . 2 (

 42 Carleson-Hörmander inequality). Let D be a bounded convex domain of finite type in C n , let µ be a Carleson measure in D. Then for all 1 < p < +∞, all h ∈ H p (D), we have, uniformly with respect to h : D |h| p dµ ≤ bD |h| p dσ.

Lemma 4 . 3 .

 43 For all p ∈]0, +∞[, all h ∈ H p (D), we haveD |r| |h| p-2 ∂h 2 k dV h p H p (D) .

D

  |θ(z)(u, v)| |u| • |v| . Let e 1 , . . . , e n be the canonical basis of C n and let us write u = n j=1 u j e j and v = n j=1 v j e j . Since θ is positive |θ(z)(u, v)| ≤ θ(z)(u, iu) θ(z)(v, iv) which yields |θ(z)(u, v)| |u| • |v| ≤ n k,j=1 θ(z)(e j , e k ) u j v k |u| |v| |r| ∆|h| p dV + D |h| p ∆r dV = bD |h| p ∂r ∂η dσ and since r is convex, ∆r ≥ 0 so D |r| h p-2 ∂h 2 k dV bD |h| p ∂r ∂η dσ bD |h| p dσ = h p H p (D) .

Fact 4 . 5 . 1 p 1 , 1

 45111 For all p ∈ [1, +∞], all h ∈ H p (D), |r|∂(hω) and |r|∂h ∧ ω belong to W 1-(D).

  we just prove that |r| ∂h ∧ ω k dV and |r| h∂ω k dV are Carleson measure. From fact 4.4, |rh| ∂ω k dV is a Carleson measure. Next, since ∂h ∧ ω k ∂h k ω k for any ζ 0 ∈ bD and all ε > 0, we get from Theorem 4.1 and Fact 4.4 :

1 p 1 , 1 ( 1 p 1 p 1 p 1 , 1

 11111111 h ∈ H p (D), p ∈ [1, +∞[. It suffices to prove that |r| ∂h ∧ ω belongs to W 1-D) and |r| |h| ∂ω k dV belongs to W 1-(D). From Fact 4.4, |r| ∂ω k dV is a Carleson measure. The Hörmander-Carleson inequality implies that h belongs to L p (D, |r| ∂ω k dV ). Then, Proposition 2.4, |rh| ∂ω k dV belongs to W 1-(D). Now it remains to prove that |r| ∂h ∧ ω belongs to W 1-(D). We proceed by interpolation. Let us consider the linear operator T : h → ∂h ∧ ω. We prove that T : H 1 (D) → W 0 1,1 (D) and T : BM OA(D) → W 1 1,1 (D) are continuous.

Theorem 5 . 1 .

 51 Let D be a bounded convex domain with smooth boundary of finite type, let θ be a closed positive (1, 1)-current such that |r|θ belongs to W α 1,1 (D) for some α ∈ [0, 1]. Then there exists v real 1-form in W α 1 (D) such that dv = θ and v W α 1 (D) |r| θ W α 1,1 (D) , uniformly with respect to θ. Theorem 5.2. Let D be a bounded convex domain with smooth boundary of finite type.

  C big such that P cK r z (k) j ) ⊂ CP cK|r(ζ)| (ζ) and so

[ 2 ]

 2 Lemma 2.15, when |Λ| ≤ ρ, the point h Λ (z, t) belongs to C 1-t |r(z)| P |r(z)| (z) for some bigC > 0. Moreover, det R d Λ h Λ (z, t) 1-t |r(z)| 2n (det C A(z))2 and Proposition 2.11 from[START_REF]Zero sets of H p functions in convex domains of finite type[END_REF] then gives det R d Λ h Λ (z, t) 1-t |r(z)| 2n Vol(P |r(z)| (z)). Therefore (I) j,k,l z∈P c|r(z j )| (z j ) ζ∈C 1-t |r(z)| P |r(z)| (z) t∈[1-γ 2 |r(z)|,1] |r(z)| 1 -t 2n |θ(ζ)|[e k (ζ), e l (ζ)] Vol(P |r(z)| (z)) • k(ζ, e k (ζ)) • k(ζ, e l (ζ)) dV (ζ)dtdV (z).

( 2 .

 2 I) j,k,l ζ∈P cK|r(z j )| (z j ) |r(ζ)||θ(ζ)|[e k (ζ), e l (ζ)] k(ζ, e k (ζ)) • k(ζ, e l (ζ)) dV (ζ).Now, summing over j ∈ N, we get, since any ζ belongs to at mostM polydiscs P cK|r(z j )| (z j ) z∈D Λ∈∆n(ρ) t∈[1-γ 2 |r(z)|,1] |θ(h Λ (z, t))| ∂h Λ ∂t (z, t), d z h Λ (z, t)[u(z)] k(z, u(z))Vol(∆ n (ρ)) dtdΛdV (z) ζ∈P cK|r(z j )| (z j ) |r(ζ)||θ(ζ)|[e k (ζ), e l (ζ)] k(ζ, e k (ζ)) • k(ζ, e l (ζ)) dV (ζ) n k,l=1 ζ∈D |r(ζ)||θ(ζ)|[e k (ζ), e l (ζ)] k(ζ, e k (ζ)) • k(ζ, e l (ζ)) dV (ζ) |r|θ W 0 1,1 (D) .5.Case 1 -t ≥ γ|r(z)|. Here we want to estimate (II) := z∈D Λ∈∆n(ρ) t∈[t 0 ,1-γ|r(z)|] |θ(h Λ (z, t))| ∂h Λ ∂t (z, t), d z h Λ (z, t)[u(z)] k(z, u(z))Vol(∆ n (ρ)) dtdΛdV (z). Lemma 2.20 of [2] implies (II) z∈D Λ∈∆n(ρ) t∈[t 0 ,1-γ|r(z)|]

1 m 1 m 1 m 1 m - 1

 11111 |θ(ζ)| [e j (ζ), e k (ζ)] k ζ, e j (ζ) • k (ζ, e k (ζ)) Vol P |r(tz)| (tz) dtdV (ζ)dV (z).We want to apply Fubini's theorem. For ζ ∈ D fixed, if t and z are such that ζ belongs to CtρP |r(tz)| (tz), then |r(tz)| |r(ζ)| if ρ is small enough and since, Corollary 2.19 of [2], |r(tz)| 1 -t, we have 1 -t |r(ζ)|. Moreover δ(ζ, z) δ(ζ, tz) + δ(tz, z) |r(tz)| + |tz -z| |r(ζ)| + 1 -t |r(ζ)|. So z belongs to P K|r(ζ)| (ζ) for some big K. Finally, if ρ is small enough, since ζ belongs to CtρP |r(tz)| (tz), VolP |r(tz)| (tz) VolP |r(ζ)| (ζ). We thus have (II) j,k ζ∈D |r(ζ)| 1-t |r(ζ)| z∈D∩P K|r(ζ)| (ζ)|θ(ζ)| [e j (ζ), e k (ζ)] k ζ, e j (ζ) • k (ζ, e k (ζ)) VolP |r(ζ)| (ζ) dtdV (ζ)dV (z). Now, using the 2 inequalities z∈D∩P K|r(ζ)| (ζ) |r(z)| -1 dλ(z) |r(ζ)| VolP |r(ζ)| (ζ) and |r(ζ)| 1-t |r(ζ)| (1 -t) 1-1 m dt |r(ζ)| 2-1 m , we get (II) j,k ζ∈D |r(ζ)||θ(ζ)| [e j (ζ), e k (ζ)] k ζ, e j (ζ) • k (ζ, e k (ζ)) dV (ζ),from which we conclude that (II)|r| θ W 0 1,1 (D) . 5.3. Case γ 2 |r(z)| ≤ 1 -t ≤ γ|r(z)|. For j ∈ N, we set (III) j := z∈P c|r(z j )| (z j )∩D t∈[1-γ|r(z)|,1-γ 2 |r(z)|] Λ∈∆n(ρ) |θ(h Λ (z, t))| ∂h Λ ∂t (z, t), d z h Λ (z, t)[u(z)] k(z, u(z))Vol(∆ n (ρ))dΛdtdV (z).Combining Lemma 2.21 and Lemma 2.12 of[START_REF]Zero sets of H p functions in convex domains of finite type[END_REF] gives (III) j n k,l=1 (III) j,k,l where (III) j,k,l :=z∈P c|r(z j )| (z j ) Λ∈∆n(ρ) t∈[1-γ|r(z)|,1-γ 2 |r(z)| |θ(h Λ (z, t))|[e l (h Λ (z, t)), e k (h Λ (z, t))] k(h Λ (z, t), e l (h Λ (z, t))) • k(h Λ (z, t), e k (h Λ (z, t)))dtdΛdV (z).Now we make the substitutionζ = h Λ (z, t), Λ ∈ ∆ n (ρ). By Lemma 2.21 of [2], h Λ (z, t) belongs to P c|r(z)| (z) and |r(h Λ (z, t))| |r(z)| if c is small enough. As in [2], Subsection 2.5, det R (d Λ h Λ (z, t)) Vol(P |r(z)| (z)), thus (III) j,k,l z∈P c|r(z j )| (z j ) ζ∈P c|r(z)| (z) t∈[1-γ|r(z)|,1-γ 2 |r(z)| |θ(ζ)|[e l (ζ), e k (ζ)] k(ζ, e l (ζ)) • k(ζ, e k (ζ))VolP |r(z)| (z) dtdV (ζ)dV (z) z∈P c|r(z j )| (z j ) ζ∈P c|r(z)| (z) |r(z)||θ(ζ)|[e l (ζ), e k (ζ)] k(ζ, e l (ζ)) • k(ζ, e k (ζ))VolP |r(z)| (z) dV (ζ)dV (z) For ζ in P c|r(z)| (z) and z in P c|r(z j )| (z j ), if c is small enough, |r(ζ)| |r(z)| |r(z j )| VolP |r(z)| (z)VolP |r(ζ)| (ζ) and δ(ζ, z j ) δ(ζ, z) + δ(z, z j ) c|r(z j )|, so ζ belongs to P cK|r(z j )| (z j ) for some big K, not depending on c, ζ, z or z j . The point z also belongs to P cK|r(ζ)| (ζ) if K is big enough so (III) j,k,l ζ∈P cK|r(z j )| (z j ) z∈P cK|r(ζ)| (ζ) |r(ζ)| |θ(ζ)|[e l (ζ), e k (ζ)] k(ζ, e l (ζ)) • k(ζ, e k (ζ))VolP |r(ζ)| (ζ) dV (ζ)dV (z) ζ∈P cK|r(z j )| (z j ) |r(ζ)| |θ(ζ)|[e l (ζ), e k (ζ)] k(ζ, e l (ζ)) • k(ζ, e k (ζ)) dV (ζ). Since, Lemma 5.3, any ζ belongs to at most M polydiscs P cK|r(z j )| (z j ), we get z∈D t∈[1-γ|r(z)|,1-γ 2 |r(z)|] Λ∈∆n(ρ) |θ(h Λ (z, t))| ∂h Λ ∂t (z, t), d z h Λ (z, t)[u(z)] k(z, u(z))Vol(∆ n (ρ)) dΛdtdV (z) |r| θ W 0 1,1 (D) , which conclude the proof of Theorem 5.1.

  except for the estimates |r| ∂h ∧ ∂h k dV W 1 which are not stated in it, but they are immediate consequences of the inequality Pε(z)∩bD |r| ∂h ∧ ∂h k h 2 BM OA(D) σ(P ε (z) ∩ bD) established for all ε > 0 and all z ∈ bD in the proof of Theorem 1.2 of[START_REF] Jasiczak | Carleson embedding theorem on convex finite type domains[END_REF]. For all h ∈ BM OA(D), |r| ∂h ∧ ∂h dV and |r| ∂h 2 k dV are Carleson measure and |r| ∂h ∧ ∂h k dV W 1

		h 2 BM OA(D)
	and |r| ∂h 2 k dV W 1 BM OA(D) Theorem 4.1. h 2 h 2 BM OA(D) and |r| ∂h 2 k dV W 1	h 2 BM OA(D)

  since p 2-p and p 2 are dual exponents, still from Lemma 4.3, Fact 4.4 and Carleson-Hörmander inequality :

  |θ(h Λ (z, t))| ∂h Λ |θ(h Λ (z, t))| [e j (h Λ (z, t)), e k (h Λ (z, t))] dtdΛdV (z) k h Λ (z, t), e j (h Λ (z, t)) • k (h Λ (z, t), e k (h Λ (z, t))). now make the substitution ζ = h Λ (z, t). Since, Proposition 2.11 of[START_REF]Zero sets of H p functions in convex domains of finite type[END_REF], det R h Λ (z, t) = det R A(tz) Vol P |r(tz)| (tz) and since, Lemma 2.18 of[START_REF]Zero sets of H p functions in convex domains of finite type[END_REF], {h Λ (z, t) / Λ ∈ ∆ n (ρ)} is a subset of CtρP |r(tz)| (tz), we have

			1 -t	1-1
			|r(z)|	
					n j,k=1 (II) j,k where
	(II) j,k :=	z∈D Λ∈∆n(ρ)	|r(z)| 1 -t	1-1
		t∈[t 0 ,1-γ|r(z)|]		
	We (II) j,k	z∈D		
		t∈[t 0 ,1-γ|r(z)|]		
		ζ∈CtρP |r(tz)| (tz)		

m ∂t (z, t), d z h Λ (z, t)[u(z)] dtdΛdV (z) k h Λ (z, t), d z h Λ (z, t)[u(z)] • k h Λ (z, t), ∂h Λ ∂t (z, t)

and Proposition 2.12 of

[START_REF]Zero sets of H p functions in convex domains of finite type[END_REF] 

gives (II) m