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Hybrid UCB-HMM: A Machine Learning Strategy

for Cognitive Radio in HF Band
Laura Melián-Gutiérrez, Navikkumar Modi, Christophe Moy, Member, IEEE, Faouzi Bader, Senior

Member, IEEE, Iván Pérez-Álvarez, Member, IEEE, Santiago Zazo, Member, IEEE

Abstract—Multiple users transmit in the HF band with world-
wide coverage but collide with other HF users. New techniques
based on cognitive radio principles are discussed to reduce the
inefficient use of this band. In this paper, we show the feasibility
of the Upper Confidence Bound (UCB) algorithm, based on rein-
forcement learning, for an opportunistic access to the HF band.
The exploration vs. exploitation dilemma is evaluated in single-
channel and multi-channel UCB algorithms in order to obtain
their best performance in the HF environment. Furthermore,
we propose a new hybrid system which combines two types of
machine learning techniques based on reinforcement learning
and learning with Hidden Markov Models. This system can be
understood as a metacognitive engine that automatically adapts
its data transmission strategy according to HF environment’s
behaviour to efficiently use spectrum holes. The proposed hybrid
UCB-HMM system increases the duration of data transmission’s
slots when conditions are favourable, and is also able to reduce
the required signalling transmissions between transmitter and
receiver to inform which channels have been selected for data
transmission. This reduction can be as high as 61% with respect
to the signalling required by multi-channel UCB.

Index Terms—Cognitive Radio, HF, Opportunistic Spectrum
Access, Upper Confidence Bound, Hidden Markov Model

I. INTRODUCTION

The HF band offers worldwide coverage without relying on

satellite links, and includes the radio frequency band from 3

to 30 MHz. Beyond-line-of-sight (BLOS) links with remote

sites can be established by using the ionosphere as a passive

reflector but with variable propagation characteristics. This

variability is dependent on the use of a natural medium formed

by several ionised layers that change with solar radiation, time

of day, season and sunspot cycle [1]. Nevertheless, it is the

multiple collisions between HF users, including licensed ones,

not the propagation characteristics of the HF band, which

induce an inefficient use of the spectrum resources in terms

of satisfactory access to the HF band. All users around the

world access this band of only 27 MHz bandwidth where trans-

horizon links of thousand of kilometres can be established.

Legacy users run the risk of colliding with other legacy
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L. Melián-Gutiérrez and I. Pérez-Álvarez are with IDeTIC, Universidad de
Las Palmas de Gran Canaria, Spain.

N. Modi, C. Moy and F. Bader are with CentraleSupélec/IETR, France.
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users because HF frequency bands are usually allocated per

country. These collisions need to be reduced, and a dynamic

mechanism would not only achieve this goal but also increase

the efficient use of the HF band in terms of satisfactory

spectrum access without interfering with other active users

in the band.

Although the Automatic Link Establishment (ALE) protocol

[2] for HF radios has been presented as a primitive form of

cognitive radio (CR) in [3], it could not be applied in its current

form because CR requires a more dynamic mechanism. ALE is

mainly used in military HF stations but is also present in some

civilian stations. This protocol follows a listen-before-transmit

strategy to sense the channels not in use for transmission and

then ranks them according to their propagation characteristics.

One drawback to this mechanism is that it can take several

seconds to correctly establish a link in a single channel.

Furthermore, it does not monitor users’ activity in the channels

in the recent past. Due to these limitations, we proposed in

[4] and [5] to add some adaptability and cognition into the

exploitation of the HF band to reduce its inefficient use.

Classical HF modems with single-carrier modulation such

as [6] and [7] and current HF standards for link management as

[8] depend on long interleavers of several seconds and cannot

support a dynamic spectrum access as required by CR [3].

New modems and strategies are needed in order to successfully

apply cognitive capabilities to HF systems. The HFDVL (HF

Data+Voice Link) system, developed and evaluated with real

HF links by the authors in [9], [10], and [11], brings a

new communication paradigm in the HF band. This system

is based on OFDM-CDM (Orthogonal Frequency Division

Multiplexing - Code Division Multiplexing), which does not

require interleavers, and has a point-to-point transmission

delay of 125 ms with a net data rate of 2460 bps. Thus, it is an

appropriate platform to implement cognitive based strategies

such as the proposal of this paper.

In order to fulfil CR requirements, machine learning (ML)

techniques can be used to predict primary users’ activity in the

surrounding environment, and to decide which channels are the

most suitable to transmit. Two models for activity prediction

in the HF band were developed with Hidden Markov Models

(HMM) in [4], and with Neural Networks in [12]. Both models

were trained with real measurements to predict the activity of

different HF users: amateur and non-amateur users in [4], and

broadcasting users in [12]. These works differ from previous

ML proposals where HF propagation characteristics have been

widely modelled [13] [14].

The use of wideband HF transceivers has been specified
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in [15], instead of single-channel transceivers of 3 kHz

bandwidth. An advantage of these transceivers is that they

allow multi-band techniques with relatively low hardware

complexity to be applied. In this CR context, the application

of dynamic spectrum access [16] to the HF band could be

carried out to allow access to unoccupied channels at a

particular time and area. Different studies have presented and

analysed the challenges and opportunities of applying CR to

HF communications [17] [18] and [19], in which the authors

proposed new specifications based on CR principles for future

evolution of the ALE protocol to avoid collisions between

HF users. However, to the best of the authors’ knowledge, no

proposals on dynamic spectrum access have been undertaken

for the HF environment.

The HF activity prediction model in [4] was designed to

represent all possible activity patterns present in the HF band.

However, its straight application in a multi-band scenario for

opportunistic spectrum access (OSA) requires as much HMM

based prediction models as the number of channels to sense

and transmit. Each prediction model learns from a channel

and predicts the activity in that particular channel for the

next minute. Therefore, it allows long-term data transmissions

while the amount of transmissions needed for link manage-

ment is reduced.

Furthermore, a strategy to select the best channels for

data transmission is also required. This last limitation can be

overcome if a reinforcement learning (RL) approach is jointly

used with HMM based prediction models. In this paper, we

propose a new hybrid scheme where two learning approaches

are used to learn from the environment and to transmit in a

short-term or a long-term basis according to the environment’s

conditions. A short-term learning approach based on Upper

Confidence Bound (UCB) and a long-term learning approach

based on HMM are developed and analysed. The proposed

approach will ensure that, whenever the activity in the band de-

creases, longer data transmissions can be established whereas

the amount of transmissions for link management will be

reduced. This hybrid UCB-HMM proposal can be considered

as a metacognitive radio engine [20], where the HMM based

prediction model and UCB algorithm are cognitive engines

working in parallel and each one will be selected according

to the environment’s behaviour.

The goal of this work is twofold; to show the feasibility

of RL in a real environment, such as the HF band, and to

propose a new hybrid system which combines two types of

ML techniques, reinforcement learning (RL) and learning with

HMMs. The main goals of this new hybrid system are: to adapt

data transmission’s slots to the environment’s behaviour, to

reduce the amount of channel signalling for link management,

and to reduce the complexity of multiple HMMs working

in parallel. The HF band is selected in this work due to its

variability and high activity load, where multiple transmission

patterns are present. Moreover, the availability of the HF

spectrum activity database HFSA IDeTIC F1 V01 [4], which

contains wideband measurements of the HF band including

several types of transmissions, allows us to show the feasibility

of RL in this band and to validate the proposed hybrid scheme

in a real environment.

The first part of this paper deals with the feasibility of

Upper Confidence Bound algorithm in the HF environment.

A description of the UCB algorithm is presented in Section II

whereas its validation is detailed in Section III, including

the analysis and validation of the exploration vs. exploitation

dilemma for single and multiple channel UCB. The second

part of the paper starts at Section IV, where the new proposed

hybrid UCB-HMM system is described and analysed in a

multi-band scenario. Finally, the main analyses and conclu-

sions of the proposed work are drawn in Section V.

II. UPPER CONFIDENCE BOUND ALGORITHM

The UCB algorithm is one of the RL algorithms that was

introduced in [21] and [22] as an approach for solving Multi-

Armed Bandit (MAB) problems [23]. The MAB problem is

analogous to the traditional slot machine except that it has

more than one lever. In [24], the UCB algorithm was proposed

for the CR environment in order to provide secondary users

with opportunistic spectrum access (OSA) through a set of

channels following the MAB paradigm. In this paradigm, the

spectrum is divided into a set of N channels, each one with the

same bandwidth and modulation scheme, and each represents

one lever of the MAB. At each time slot, the RL algorithm

plays one or multiple levers and obtains a reward from each

one.

The UCB algorithm allows decision making in an OSA

cognitive radio context to maximise the transmission oppor-

tunities of secondary users. Since it is based on RL, it learns

from previously observed rewards starting from scratch, e.g.

without any a priori knowledge of the activity within the set

of channels. The UCB algorithm continuously learns (in the

exploration phase) and predicts the next available channel to

transmit on within the set of channels (in the exploitation

phase) during the entire process. One of the advantages of

the UCB algorithm is that the exploitation phase starts at the

beginning of the process even when the knowledge is not ma-

ture enough [25]. Reciprocally, the exploration is maintained

along the overall process, even during the exploitation phase.

Thus, both exploration and exploitation are continuously su-

perposed for improved management of the exploration versus

exploitation dilemma.

At each time slot t, the algorithm updates UCB indices

named as Bt,k,Tk(t), where Tk(t) is the number of times

channel k has been selected by the algorithm in previous

slots, and returns the channel index k of the maximum UCB

index (see Algorithm 1). From the different UCB indices

existing in the literature, UCB1 index [22] is computed in

this paper and evaluated with one (UCB1) or multiple channel

(UCB1-M, known as UCB1 - multiple plays) selection of the

most available channels within the set. Other algorithms based

on the computation of UCB indices could also have been

considered but the use of UCB1 produces no loss of generality.

The UCB1 index is defined as follows:

Bt,k,Tk(t) = Xk,Tk(t) +At,k,Tk(t), (1)

where Xk,Tk(t) and At,k,Tk(t) are two terms that represent

the exploitation and the exploration contributions, respectively.
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Xk,Tk(t) is the empirical mean and it is defined as

Xk,Tk(t) =

∑t−1
m=0 rm1{am=k}

Tk(t)
, (2)

where rm and am are the achieved reward and selected

channel, respectively, at the m-th time slot, and the indicator

function is as follows

1{am=k} =

{

1 if am = k
0 if am 6= k

(3)

The empirical mean is also proportional to the accumulated

throughput by the UCB1 algorithm when channel k has been

selected. At,k,Tk(t) is the UCB1 bias [22] defined as follows

At,k,Tk(t) =

√

α ln(t)

Tk(t)
, (4)

where α is the exploitation-exploration factor of the algorithm.

If α increases, UCB1 bias At,k,Tk(t) dominates and UCB1

algorithm explores new channels. Otherwise, if α decreases,

UCB1 bias also does and Xk,Tk(t) dominates the UCB1 index

Bt,k,Tk(t) forcing the algorithm to mostly exploit previous

channels [24].

Algorithm 1 UCB1 algorithm

Inputs: N,α, {a0, r0, a1, r1, . . . , at−1,rt−1}
Outputs: at

1: loop

2: if t ≤ N then

3: at = t+ 1
4: else

5: Tk(t)←
∑t−1

m=0 1{am=k}, ∀k

6: Xk,Tk(t) ←
∑

t−1

m=0
rm1{am=k}

Tk(t)
, ∀k

7: At,k,Tk(t) ←
√

α ln(t)
Tk(t)

, ∀k

8: Bt,k,Tk(t) ← Xk,Tk(t) +At,k,Tk(t), ∀k
9: at = argmaxk

(

Bt,k,Tk(t)

)

10: end if

11: return at
12: end loop

III. UCB1 VALIDATION IN THE HF ENVIRONMENT

Before going into the details of the combination of both

UCB1 and HMM approaches in Section IV, we discuss here-

after the feasibility of RL in the HF environment, particularly

the performance of the Upper Confidence Bound (UCB1) and

multi-channel Upper Confidence Bound (UCB1-M) algorithms

previously described in Section II.

A. HF database parameters

In this paper, we use the same HF spectrum activity database

HFSA IDeTIC F1 V01 used in [4] to train and validate the

HMM based prediction model in the HF environment. This

HF database consists of 63 wideband measurements of the

14 MHz band where amateur and non-amateur HF stations are

TUCB = 2 s THMM = 1 min

1 0 0 ... ... ... ...1 1 1 1 1 1 1 1 1 1 00 0 0 0 0 0 0 0 0 0

...

TTEST = 10 min

Available

Unavailable

Partially available

THMM = 1 min

Fig. 1. Data segmentation and classification in the HF database [4].

Fig. 2. Example of a measurement of the High Activity scenario (acquired
at weekends) of the HF database [4].

operating during a testing time (TTEST) of 10 minutes. Mea-

surements were undertaken during weekdays and weekends,

when amateur contests were scheduled. The database includes

real measurements with different degrees of spectrum activity

in the HF band. The main parameters of this HF database [4]

are described in Table I.

TABLE I
MAIN PARAMETERS OF THE HF DATABASE IN [4]

HF database Parameters

Number of measurements 63

Frequency location 13.875 MHz - 14.475 MHz

Bandwidth
600 kHz

(200 channels of 3 kHz each)

Time duration (TTEST) 10 min

Segmentation time for HMM (THMM) 1 min

Sample time slot (TUCB) 2 s

According to the used energy detector, these measurements

are divided in samples with ‘0’ and ‘1’ values that indicate

whether the channel is free or occupied, respectively. The

sample time slot is 2 seconds and is referred to as TUCB in this

paper since UCB1 and UCB1-M algorithms will be executed

every TUCB. Furthermore, due to the structure defined in the

HMM based prediction model, each measured channel over a

slot of 1 minute (referred hereafter in this paper as THMM)

is classified based on the following categories: available,

unavailable, and partially available channels [4] as indicated

in Fig. 1.

From the HF database in [4], we have selected those

measurements with the worst conditions in terms of avail-
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ability to validate the performance of UCB1 and UCB1-M

algorithms. Fig. 2 shows an example of these measurements

acquired during several weekends which corresponds to the

High Activity scenario classified in the HF database in [4].

The selection of measurements for the validation of UCB1

and UCB1-M algorithms includes amateur channels of 3 kHz

each located from 14.07 MHz to 14.14 MHz (see Fig. 2), and

recorded when this amateur band was heavily occupied.

B. Analysed approaches for performance evaluation

UCB1 and UCB1-M performances are evaluated from a

radio communication point of view in a CR context instead

of the metrics typically utilised in the ML community. It is

worth highlighting that in a ML context, the final goal is to

find and to subsequently exploit the best channel in terms

of availability, whereas in a CR context the goal is to find

and to exploit any possible available channel to efficiently

use the spectrum opportunities. Thus, the selection of the best

available channel is not as important as the selection of any

available channel at each time slot to establish the commu-

nication link. Considering the CR context, new performance

metrics for RL algorithms were presented in [26] in terms

of transmission opportunities effectively obtained and utilised

for data transmission. These new metrics are based on the

percentage of time that the RL algorithm selects an available

channel, named as ‘percentage of successful trials’, which can

be also seen as the successful transmission rate obtained by

the RL algorithm.

In this paper, the performance evaluations of UCB1 and

UCB1-M are based on the percentage of successful trials

achieved within a set of channels. A ‘successful transmission

rate’ is defined as the percentage of transmission opportunities

effectively detected and used to transmit by a secondary

user during the whole testing time period. The following

approaches have been defined to facilitate comparisons:

• Uniform random selection: the first question that we

should answer is: ‘Is it worth applying RL for decision

making in the HF environment?’ If so, ‘how much

can we improve the performances compared to a non

intelligent approach?’ Thus, the successful transmission

rate achieved by a uniform random channel selection in

each set of channels is computed to establish a reference

level where no learning is used.

• Best channel: from the set of evaluated channels, it is

the channel with the longest availability time within the

overall testing time (10 minutes), which is considered

as the maximum performance achievable under the ML

perspective.

• Worst channel: it is the channel with the shortest avail-

ability time within the overall testing time from the set

of evaluated channels.

• Best opportunistic selection: Since the algorithm is eval-

uated for a CR application, the performances of UCB1

and UCB1-M algorithms will be compared with a kind

of genie-aided policy, i.e. a policy with a perfect knowl-

edge of the environment’s behaviour, where all spectrum

holes within the set of evaluated channels are used for

transmission achieving a more efficient use of the band.

In this approach, the system will use any detected free

channel, independently of being or not the channel with

the longest availability time.

As previously stated, the UCB1 algorithm can select one or

multiple channels (UCB1-M) at each time slot. The sections

that follow will analyse the behaviour of this algorithm using

single and multiple channel selection strategies.

C. The exploration vs. exploitation dilemma in single-channel

UCB1

Two parameters must be set before executing the UCB1

algorithm: the total number N of channels considered within

a set, e.g. the number of arms in a MAB approach, and the

exploitation-exploration factor α. The value of α is chosen

depending on the environment’s conditions in terms of activity

or presence of primary users, whereas N is determined by the

final system restrictions such as the number of channels to

explore or the limited number of assigned channels. In this

section, we will focus on how the performance of the UCB1

algorithm with a single-channel selection varies according

to N and α parameters, i.e. the exploration vs. exploitation

dilemma.

The best opportunistic selection approach, i.e. the genie-

aided policy, is used for numerical comparisons of the UCB1

algorithm performance with the other approaches given in

Section III-B. This approach is selected as a reference of

the best possible performance because it has prior knowledge

of the band activity. Therefore, the percentage of successful

transmission rate achieved by each approach after 10 minutes

of testing time (TTEST) is computed with respect to the success-

ful transmission rate of the best opportunistic selection after

TTEST, i.e. the maximum achievable successful transmission

rate. As stated previously in Table I, the maximum testing time

is about 10 minutes according to TTEST of the HF database in

[4]. This time period corresponds to 300 samples of 2 seconds

that could not be considered as a large enough amount of

samples from a ML perspective which allow for convergence.

However, it has been stated and experimentally verified in [25]

that in an OSA context UCB1 learning is sufficient after a

small number of time slots.

Fig. 3 depicts the obtained results when comparing the

UCB1 algorithm and the best opportunistic selection for

α ∈ [0, 5], and sets of N = {4, 8, 16} channels. Note that

for different values of N the best performance is reached at

α = 0.4. When N = 4, UCB1 can achieve a 81% of the

successful transmission rate achieved by best opportunistic

selection for α ∈ [0.4, 1.8], and it remains close to this

maximum for α > 1.8. Nevertheless, when the number of

channels within a set increases to N = 8 or N = 16, the

number of channels that UCB1 has to explore also increases.

Thus, if the exploitation-exploration factor α is high, the

UCB1 algorithm will tend to explore more than to exploit

the channels that have been previously labelled as available.

This fact explains why, when N = 8, the best performance

(77%) is achieved for α ∈ [0.3, 0.4], whereas it reaches 79%
for N = 16 and α ∈ [0.2, 0.4].
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Fig. 3. UCB1: Mean percentage of successful transmission rate with respect
to best opportunistic selection approach vs. α with N = {4, 8, 16}.

Best channel selection, uniform random selection, and worst

channel selection approaches are also compared in terms of

mean percentage of achieved successful transmission rate with

respect to the best opportunistic selection approach in Table II.

Both UCB1 and best channel selection approach improve on

in these terms the performance of uniform random selection

and worst channel selection approaches.

TABLE II
SINGLE-CHANNEL SELECTION: MEAN PERCENTAGE OF SUCCESSFUL

TRANSMISSION RATE ACHIEVED BY EACH APPROACH WITH RESPECT TO

BEST OPPORTUNISTIC SELECTION APPROACH.

N = 4 N = 8 N = 16

UCB1 (α = 0.4) 81% 77% 79%

Best channel selection 83% 81% 88%

Uniform random selection 53% 39% 35%

Worst channel selection 27% 9% 3%

Another metric that reveals how the UCB1 algorithm per-

forms in a CR context is the mean percentage of improve-

ment in the successful transmission rate with respect to a

uniform random selection of channels, since it also reflects

the improvement of applying learning in OSA for HF en-

vironment. This is analysed in Fig. 4 with α ∈ [0, 5], and

with sets of N = {4, 8, 16} channels. The mean percentage

of improvement when the size of the set of channels is small

(N = 4) remains close to 178% for any value of α within the

interval [0.4, 5], which is nearly twice as much as that with

respect to uniform random selection approach. However, the

maximum percentage of improvement is reached at α = 0.4,

with 228% for N = 8 and 245% for N = 16. This behaviour

exhibits the same trend as obtained performances in terms of

mean percentage of successful transmission rate with respect

to best opportunistic selection approach in Fig. 3. If there is

a small set of channels, then there are fewer to explore and

the variability in the exploitation-exploration factor α does

not strongly influence UCB1 performance. Otherwise, when

the size of the set of channels increases, the UCB1 algorithm

will tend to explore more as α increases, thus, it results in a
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Fig. 4. Percentage of improvement using UCB1 with respect to uniform
random selection approach vs. α with N = {4, 8, 16}.

decrease in the percentage of improvement with respect to a

uniform random selection.

Note that in Fig. 3 and Fig. 4 the exploration vs. exploita-

tion dilemma is highly dependent on the size of the set of

channels N . As N increases, the sensitivity of α is higher,

the UCB1 algorithm is forced to explore more channels and

the transmission opportunities are reduced. Due to this fact,

in Fig. 3 and Fig. 4, as N increases, the interval of values of

α where the best performance is reached is also reduced at α
close to 0.4.

D. The exploration vs. exploitation dilemma in multi-channel

UCB1 (UCB1-M)

This Subsection analyses how the UCB1 algorithm with

multiple-channel selection (UCB1-M), known as UCB1-

multiple plays, behaves. The same performance metrics and

strategies followed in Subsection III-C are used for the vali-

dation of the UCB1 algorithm with multi-channel selection. An

evaluation of the mean percentage of successful transmission

rate achieved by each approach defined in Subsection III-B

compared to the best possible performance, i.e. best oppor-

tunistic selection approach, is performed. Unlike the UCB1

algorithm in the previous analysis where two parameters were

defined: N and α, a third parameter is introduced here which

is the number of channels M (being M ≤ N ) that will be

selected by the algorithm to transmit.

The obtained results for the UCB1-M algorithm in the

HF environment in terms of mean percentage of successful

transmission rate with respect to best opportunistic selec-

tion are depicted in Fig. 5. These results are represented

for different values of α ∈ [0, 5], and ratios of M/N =
{1/8, 1/4, 1/2} with 12 ≤ N ≤ 30. When the ratio M/N
is high (M/N = 1/2), i.e. a higher percentage of channels

of N can be jointly selected by the algorithm, the maximum

percentage of successful transmission rate achieved by UCB1-

M is equal to 88% of the achieved successful transmission

rate achieved by best opportunistic selection for values of α
within the studied interval. Therefore, we can conclude that

the UCB1-M performance does not strongly depend on α for
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Fig. 5. UCB1-M: Mean percentage of successful transmission rate with
respect to best opportunistic selection approach vs. α with M/N =

{1/8, 1/4, 1/2}.

M/N = 1/2. However, when M/N decreases because there

are fewer channels for data transmission that can be chosen

by the UCB1-M algorithm (M/N = 1/4 and M/N = 1/8),

the maximum performance of UCB1-M algorithm is achieved

at α ∈ [0.2, 0.4] when M/N = 1/8, and α = 0.4 if

M/N = 1/4. It is worth noting that this behaviour is identical

for single-channel selection UCB1 in Fig. 3 when the size of

the set of channels N increases. In this case, the UCB1-M

algorithm has a larger set of channels to explore and if α
increases, it is forced to explore instead of exploiting the chan-

nels previously labelled as available, and consequently will

lose transmission opportunities. This phenomenon is shown in

Fig. 5 for α = 5, where the mean percentage of successful

transmission rate achieved by UCB1-M with M/N = 1/4
decreases by 6% compared to its maximum at α = 0.4, and it

decreases by 17% compared to its maximum at α ∈ [0.2, 0.4]
when M/N = 1/8.

In Table III, the performance of the UCB1-M algorithm is

also compared to the best channel selection, uniform random

selection, and worst channel selection approaches. It can be

observed that best channel selection performs similarly to

the best opportunistic selection because when M > 1, these

sets of M channels contain channels that are available during

the whole testing time, therefore, both achieve the maximum

performance. Furthermore, similar to UCB1 results in Table II,

both UCB1-M and best channel selection improve on the

performance of uniform random selection and worst channel

selection approaches.

Finally, we present how performance improves when learn-

ing is applied to OSA for the HF spectrum. The mean

percentage of improvement using UCB1-M with respect to

a uniform random selection of channels is shown in Fig. 6,

and has been computed as the percentage of improvement in

terms of achieved successful transmission rates for values of

α ∈ [0, 5] and M/N = {1/8, 1/4, 1/2}. When the number of

channels that can be selected by UCB1-M algorithm is high,

i.e. M/N = 1/2, UCB1-M outperforms the uniform random

selection by 140% when α ∈ [0.4, 5]. As the M/N ratio

TABLE III
MULTI-CHANNEL SELECTION: MEAN PERCENTAGE OF SUCCESSFUL

TRANSMISSION RATE ACHIEVED BY EACH APPROACH COMPARED W.R.T.
BEST OPPORTUNISTIC SELECTION.

M/N M/N M/N

= 1/8 = 1/4 = 1/2

UCB1-M (α = 0.4) 88% 86% 88%

Best channel selection 100% 92% 92%

Uniform random selection 48% 52% 64%

Worst channel selection 4% 14% 37%
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Fig. 6. Percentage of improvement using UCB1-M with respect to uniform
random selection approach vs. α with M/N = {1/8, 1/4, 1/2}.

decreases, the percentage of improvement increases. When

M/N = 1/4 the percentage of improvement is equal to 180%
for α ∈ [0.3, 0.7], whereas for M/N = 1/8, the maximum

percentage of improvement is reached for α ∈ [0.3, 0.4]
and is equal to 190%, being the successful transmission rate

of UCB1-M algorithm nearly three times higher than the

successful transmission rate of the uniform random selection.

As seen in Fig. 5 and Fig. 6, the UCB1-M algorithm

performs best in terms of successful transmission rate when

the exploitation-exploration factor α is close to 0.4 and

M/N = 1/8. This will hereafter be exploited in the proposed

joint combination of HMM and UCB1 learning methods.

IV. A HYBRID LEARNING SOLUTION FOR COGNITIVE

RADIOS IN THE HF ENVIRONMENT

Signalling is required to coordinate any transmission and

reception processes, and this is essentially the role of link

management. Both sides of the communication link can be

interconnected for link management with an in-band or an out-

band channel. CR systems do require link management, for

instance a Cognitive Pilot Channel (CPC) has been proposed

in [27]. This link management could be an in-band or out-band

channel that informs secondary users about the channel status.

In this paper, we also consider channel signalling to coordinate

transmitter and receiver sides in HF communications. Due

to HF communication rate limitation and its link instability,

whatever the adopted signalling solution is, for instance CPC,

or other suitable mechanisms (this is out of the scope of this
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paper), the efficient management of the amount of signalling

information to be exchanged is highly recommended. As will

be detailed in Section IV-B4, the channel signalling load

of this proposal is affordable for use in this environment.

It is worth noting that in this paper, channel signalling is

defined as the amount of transmissions needed to inform the

receiver about the selected channels for data transmission. This

aspect is significant and has not been previously considered

in Sections III-C and III-D for the validation of UCB1 and

UCB1-M algorithms in HF band.

The HMM based prediction model proposed in [4] was

designed to make long-term predictions (1 minute duration)

with low complexity in a specific HF channel. By making

long-term predictions, channel signalling can be significantly

decreased with respect to short-term prediction methods such

as UCB since it is only updated once in a period of one

minute. Furthermore, longer data transmissions can be estab-

lished according to these long-term predictions. Nevertheless,

multiple HMMs are required when we want to sense and

predict multiple channels. In other words, if we wish to sense

N channels, N parallel HMMs are required to obtain the

predictions in the complete set of channels. It is worth men-

tioning that the HMM based prediction model was designed

as a single-channel prediction model due to its simplicity,

while one HMM based prediction model that learns multiple

channels simultaneously is more complex than multiple HMM

based prediction models working in parallel [4].

We propose a hybrid solution combining learning with

HMM and reinforcement learning with UCB1-M, whose goals

are: (1) to decrease the amount of signalling information

exchanged between transmitter and receiver, (2) to reduce the

complexity of N HMM based models working in parallel, and

(3) to adapt slots of data transmission to the behaviour of the

environment. This hybrid solution can be developed by using

modern HF systems with multi-carrier modulation, which

support short delays and moderated bit rates, as proposed in

[9], [10], and [11], combined with link management protocols

with lower overhead than current HF standards.

A. Hybrid UCB-HMM system description

The UCB1-M and HMM learning methods run in parallel

in the proposed scheme over two transmission slots; a short-

term slot of 2 seconds with UCB1-M (TUCB), and a long-term

slot using HMM predictions of 1 minute duration (THMM). The

same data segmentation of the HF database in [4] (see Fig. 1)

is hereafter considered.

Achievable data rates in the HF environment are very small,

which make longer transmissions preferable when sending

higher amounts of data. The proposed scheme is able to auto-

matically adapt its configuration to the changes in channels’

activity, which means that if there are plenty of available

channels for transmission during a minute, the hybrid UCB-

HMM system will switch to long-term transmission slots

following the predictions of M HMMs working in parallel

(M-HMMs), being M < N . Nevertheless, if the environment

changes and most of the channels are unavailable or partially-

available, it will transmit in a short-term slot following the

decisions of the UCB1-M algorithm. This is indeed a CR

procedure that selects different cognitive engines according to

the conditions of the environment, e.g. a metacognitive radio

engine [20].

If only short-term predictions and transmissions are ac-

complished, the channel signalling used for link management

between transmitter and receiver will increase. This increase

occurs if UCB1-M is only used in the system, as it has

to predict channels’ activity every 2 seconds (TUCB) and,

therefore, it will require a higher number of signalling trans-

missions. However, in the proposed hybrid scheme, channel

signalling will decrease when it switches to M-HMMs to

transmit according to their predictions over a minute (THMM).

For each channel predicted as available in the next minute by a

HMM, the transmitter will send selected channel frequency to

the receiver only once during this one minute slot, thereby

reducing thirty times (THMM/TUCB) the channel signalling

and, therefore, increasing feedback information capacity. This

reduction factor remains at a constant value throughout the

entire execution of the proposed hybrid scheme since M-

HMMs are trained before their use for prediction [4] and there

is no added workload.

Furthermore, the hybrid UCB-HMM allows for a reduction

in the complexity of N HMM working in parallel by combin-

ing two learning methods. This combination only requires M
HMM with M < N and UCB1-M algorithm to select the M
best channels in terms of availability from a larger set of N
channels, which is not nearly as complex [5]. It will be shown

that the best of both learning methods will be exploited in this

proposal.

The hybrid UCB-HMM system is described in Algorithm 2

and Fig. 7, where a simplified diagram is depicted. During its

execution, the UCB1-M algorithm selects the M best channels

with short-term predictions in TUCB slots, and subsequently,

these channels are learnt by M-HMMs to predict their ac-

tivity in a long-term slot, THMM. Hence, M-HMMs’ effort is

optimised as M-HMMs are executed in the M best available

channels from the complete set of N channels, e.g. in those

channels with the longest availability time during next THMM

to establish longer data transmissions.

Two sets are modified during the execution of the hybrid

UCB-HMM system to avoid any conflict between both learn-

ing methods: IDUCB, which contains the M best channels

selected by UCB1-M, and IDHMM, which includes channels

predicted by M-HMMs as available for the next THMM slot.

Both learning methods update and transmit their sets to each

other at every THMM according to their predictions as described

in lines 9 and 12 of Algorithm 2.

There is an initialization phase where only UCB1-M is

learning during THMM over N channels until it extracts which

are the M best available channels (see line 11 of Algorithm 2

and Fig. 7). After the first THMM slot, it transmits the M best

channels in the set IDUCB to M-HMMs. During the second

THMM slot (see Fig. 7), each HMM will learn one of the

M best channels to predict which of them will be available,

partially available or unavailable for the next THMM slot. While

M-HMMs are learning, UCB1-M continues its execution and

transmits in at most M channels in TUCB slots. Once M-
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Fig. 7. Time execution of the hybrid UCB-HMM system with M HMM based prediction models and the UCB1-M algorithm.

Algorithm 2 Hybrid UCB-HMM algorithm

Inputs: N,M,α
Init.: MUCB = M , MHMM = 0, slot = 0, TUCB = 2 s, THMM =

1 min, IDUCB = ∅, IDHMM = ∅

1: loop

2: if t = slot+ THMM then

3: slot← t
4: if IDUCB 6= ∅ then

5: Predict with M-HMMs

6: IDHMM ← indices (channels predicted as free)

7: MHMM ← size (IDHMM)

8: MUCB ←M− MHMM

9: M-HMMs SEND UCB1-M: MUCB, IDHMM

10: end if

11: IDUCB ← indices (M highest Bt,k,Tk(t))

12: UCB1-M SENDS M-HMMs: M , IDUCB

13: end if

14: t← t+ TUCB

15: Compute UCB1-M

16: TX in MUCB channels ∈ N \ IDHMM

17: if IDUCB 6= ∅ then

18: M-HMMs save sensing information of IDUCB chan-

nels

19: if IDHMM 6= ∅ then

20: TX in MHMM channels ∈ IDHMM

21: end if

22: end if

23: end loop

HMMs have learnt for a THMM slot, IDHMM set is modified

to contain those channels predicted as available for the next

THMM slot, and sent to UCB1-M algorithm jointly with the

maximum number of channels MUCB where UCB1-M can

transmit in the next THMM slot (see lines 4-10 of Algorithm 2).

At this instant (at the beginning of the third THMM slot)

both learning methods start transmitting in their corresponding

channels, M-HMMs in MHMM channels from the set IDHMM

and UCB1-M in MUCB channels from the relative complement

of IDHMM in N (N \ IDHMM). Thus, the hybrid UCB-HMM
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Fig. 8. Successful transmission rate of hybrid UCB-HMM system and UCB1-
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system always tries to transmit in the M maximum number of

assigned channels. Note that M-HMMs execution is restricted

to 8 minutes (TTEST - 2·THMM) due to the initialization phase

of the proposed hybrid UCB-HMM system shown in Fig. 7.

B. Performance evaluation

The performance of the proposed hybrid UCB-HMM sys-

tem is hereafter evaluated by depicting the benefits of the

combination of the UCB1-M and HMM learning methods.

1) Successful transmission rate: The validation of the

UCB1-M algorithm in Section III-D was carried out based on

successful transmission rates, attaining its best performance for

α = 0.4 and M/N = 1/8. Fig. 8 depicts the comparison of

the achieved successful transmission rate after each THMM slot

by the hybrid UCB-HMM system and the UCB1-M algorithm

with α = 0.4 and M/N = {1/8, 1/4, 1/2}. As described in

Fig. 7, TTEST is restricted to 10 minutes and long-term data

transmissions according to M-HMMs predictions, which start

after 2·THMM slots (2 minutes). Note that, as seen in Fig. 8,

the UCB1-M and the hybrid UCB-HMM scheme learning

gradually increases and so does the successful transmission
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Fig. 9. Percentage of long-term (M-HMMs) and short-term (UCB1-M) transmissions in proposed hybrid UCB-HMM system with M/N = {1/8, 1/4, 1/2}
vs. environment’s conditions.

rate from minute 1 to minute 1.7. At this point, both UCB1-

M and the proposed hybrid scheme are close to their max-

imum performances for M/N = {1/8, 1/4, 1/2}. The best

successful transmission rate is achieved by the proposed hybrid

UCB-HMM with M/N = 1/8, since it exploits 99% of the

transmission opportunities from the third minute when M-

HMMs start transmitting and the learning process is almost

done (see Fig. 8 at minute 3). This successful transmission

rate is 4% higher than that achieved when M/N = 1/4,

and 20% higher than that achieved when M/N = 1/2. Note

that global performance of the proposed hybrid UCB-HMM

is highly dependent on the initial selection of the M best

channels made by the UCB1-M algorithm and, as shown in

Section III-D for UCB1-M, the best performance is achieved

for α = 0.4 and M/N = 1/8.

2) Metacognitive strategy: As previously stated, the pro-

posed hybrid UCB-HMM solution exhibits the same behaviour

as a metacognitive radio engine [20] since it changes its

learning method, also known as a cognitive engine, based on

changes in the environment. The proposed solution switches

from short-term transmissions to long-term transmissions

when there is an improvement in the environment’s conditions

as regards availability. Nevertheless, if the environment’s con-

ditions worsen, it will switch from long-term transmissions to

short-term transmissions. It is noteworthy that this adaptability

enhances the proposed hybrid UCB-HMM performance to

meet its goals, namely to transmit data in long-term slots when

the environment is favourable and to reduce the amount of

channel signalling between transmitter and receiver.

Fig. 9 illustrates the transmission adaptability

of the proposed hybrid UCB-HMM scheme for

M/N = {1/8, 1/4, 1/2}. The percentage of channels

used for transmission by each cognitive engine (UCB1-M or

M-HMMs) is represented versus the status of the environment

in terms of availability. We define three different scenarios

following the same classification of the HF database used

in [4]: a ‘good scenario’ where most of the channels are

completely available, a ‘regular scenario’ where most of the

channels are partially available, and a ‘bad scenario’ where

most of the channels are unavailable.

Fig. 9 shows that an increase in the number of channels

classified as available leads to a decrease in the percentage

of channels used for short-term transmissions according to

UCB1-M predictions, whereas the percentage of channels

transmitting in a long-term basis according to M-HMMs pre-

dictions increases. This increase in the percentage of channels

used for long-term transmissions (or inversely the decrease in

the percentage of channels used for short-term transmissions)

when the environment’s conditions improve is about 16%
for M/N = 1/8, 31% for M/N = 1/4, and 50% for

M/N = 1/2. It is shown that the highest increase in the

percentage of channels used for long-term transmissions is

reached when M/N = 1/2. It occurs because as M increases,

the proposed hybrid UCB-HMM has to transmit in a higher

number of channels, and, in ‘bad scenarios’, it is more difficult

to take advantage of all possible transmission opportunities

within the total set of N channels. Thus, in ‘bad scenarios’

it switches to UCB1-M for 68% of data transmissions in the

short-term whereas in ‘good scenarios’ it reaches 83% of data

transmissions in the long-term.

3) Analysis of the duration of data transmission’s slots:

The duration of data transmission’s slots of each cognitive

engine of the proposed hybrid UCB-HMM is also noteworthy.

Fig. 10 and Fig. 11 show the histogram of data transmission’s

slots made by both learning methods when they are executed

in this hybrid UCB-HMM scheme with respect to their slots’

duration. These results include the performance of the pro-

posed hybrid UCB-HMM with M/N = {1/8, 1/4, 1/2}.
Fig. 10 shows that, for M/N = 1/8, 94% of data transmis-

sion’s slots according to UCB1-M predictions have a duration

of less than 0.2 minutes (12 seconds). As M/N increases to

M/N = 1/4 and M/N = 1/2, i.e., the number of channels

for transmission increases, UCB1-M transmission’s slots also

increase their duration to at most 2 minutes. Therefore, the

percentage of transmissions’ slots with a duration less than

12 seconds is reduced to 70%. This reduction occurs because

the set of channels that can be chosen to transmit is larger

and thus, the probability of having more available channels

for longer periods also increases.

This effect can also be observed in Fig. 11, where the
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Fig. 10. Histogram of data transmission’s slots according to UCB1-M
predictions in the proposed hybrid UCB-HMM system vs. slots’ duration.
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predictions in the proposed hybrid UCB-HMM system vs. slots’ duration.

histogram of data transmission’s slots according to M-HMMs

predictions is depicted. When the value of the ratio M/N
is small (M/N = 1/8), 73% of data transmission’s slots

have a length of only one minute according to the M-HMMs

predictions. However, as M/N increases to 1/4 and 1/2,

this percentage decreases to 34% when M/N = 1/4 and

to 21% when M/N = 1/2, whereas the percentage of

data transmission’s slots of 8 minutes according to M-HMMs

predictions without shifting to other channels increases to 18%
when M/N = 1/4 and to 44% when M/N = 1/2. Therefore,

in order to exploit longer data transmissions, M/N must be

set to 1/2 or 1/4.

4) Channel signalling improvement: A reduction in the

complexity of N parallel HMM based prediction models is not

the only aim of the hybrid UCB-HMM system. A second ob-

jective is to simplify the link management between transmitter

and receiver. This simplification can be seen as a reduction in

the channel signalling due to the possibility of establishing

long-term transmissions by using slots of THMM = 1 min
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Fig. 12. Required channel signalling by M-HMMs, UCB1-M and proposed
hybrid UCB-HMM system vs. M/N ratio.

with M-HMMs predictions instead of short-term transmissions

during slots of TUCB = 2 s with UCB1-M predictions.

A comparison of the proposed UCB-HMM system to the

M parallel HMMs and UCB1-M algorithms working sepa-

rately and independently is shown in Fig. 12 with the aim

of analysing the amount of required channel signalling. As

mentioned previously, channel signalling is the amount of

transmissions needed to inform the receiver about the selected

channels for data transmission. Therefore, when M-HMMs

are used for prediction and transmission, the selection of

M channels for data transmission is updated and transmitted

to the receiver once every THMM slot. Nevertheless, UCB1-

M requires more channel signalling because it updates and

transmits the selection of M channels every TUCB slots.

Fig. 12 shows that required channel signalling by

the proposed hybrid UCB-HMM scheme with M/N =
{1/8, 1/4, 1/2} after TTEST is higher than that of M-HMMs

but lower than UCB1-M. It is important to remark that required

channel signalling by M-HMMs, hybrid UCB-HMM system,

and UCB1-M algorithm increases when M/N also does since

the number of channels that can be used to transmit (M ) is also

increasing. However, even if the maximum number of channels

to explore in the hybrid UCB-HMM system is considered

(N = 30), the amount of signalling transmissions and channel

signalling load required to coordinate transmitter and receiver

are totally affordable. The most demanding configuration of

the hybrid scheme is when N = 30 and M/N = 1/2, which

allows simultaneous data transmissions in at most M = 15
channels. In this configuration, 5 bits are needed to identify

each channel for the set of N = 30. The highest channel

signalling load to send will be 5 ×M = 5 × 15 = 75 bits

every 2 seconds, i.e. only when UCB1-M is used to transmit

in the short-term due to poor environment’s conditions. If these

conditions improve, less than M channels will be used in the

short-term and the channel signalling load will decrease.

We computed the attained reduction in channel signalling

by the proposed hybrid UCB-HMM with respect to that

required by the UCB1-M algorithm. It is worth mentioning

that as UCB1-M updates the selection of channels for data
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transmission every TUCB slots, it is the learning method that

requires the highest amount of channel signalling as defined

in this paper. Fig. 12 shows that required channel signalling

by the hybrid UCB-HMM system is equivalent to a reduction

of 57% when M/N = 1/8, 61% when M/N = 1/4 and

39% when M/N = 1/2. It was shown in Fig. 8 that the pro-

posed UCB-HMM system has similar successful transmission

rates to UCB1-M. However, as the proposed hybrid UCB-

HMM system switches to long-term transmissions, required

channel signalling is significantly reduced for all M/N ratios.

This clearly demonstrates the benefits of the proposed hybrid

UCB-HMM system compared to each learning method used

separately.

In order to exploit hybrid UCB-HMM system’s capability

to transmit data for longer slots according to environment’s

conditions, a trade-off between achieved successful transmis-

sion rate, the duration of data transmissions, and the reduction

of channel signalling must be found. The depicted results

reveal that this trade-off can be accomplished by selecting

M/N = 1/4. With this configuration, the proposed hybrid

UCB-HMM achieves 95% successful transmission rate, and

reduces by 61% the required channel signalling compared to

that required by the UCB1-M algorithm.

V. CONCLUSION

This paper has shown the feasibility of the Upper Confi-

dence Bound (UCB) algorithm in the HF band. Both single-

channel and multiple-channel versions of UCB1 (UCB1 and

UCB1-M) achieve the best trade-off between exploration and

exploitation in the HF environment when the exploitation-

exploration factor α is equal to 0.4, which means that UCB1

and UCB1-M algorithms try to exploit channels previously

labelled as available instead of trying to explore new channels.

Furthermore, we propose a new hybrid scheme based on a

metacognitive engine approach. This hybrid scheme combines

two separate cognitive engines: the UCB1-M algorithm and

M parallel HMM based prediction models for the HF band

(M-HMMs). The proposed hybrid UCB-HMM with α = 0.4
and M/N ratio equal to 1/4 achieves its best performance:

95% of successful transmission rate is achieved as long as it

automatically adapts its configuration to the changes in the

environment. An 88% of data transmissions are established in

the long-term (1 minute) according to M-HMMs predictions

when the activity in the band decreases whereas 44% of the

data transmissions are established in the short-term (2 seconds)

according to UCB1-M predictions when the activity in the

band increases. We have also shown that the link management

of cognitive radio can be significantly reduced by using the

proposed hybrid UCB-HMM since long-term transmissions

are established, and required channel signalling is reduced by

61% with respect to that required by the UCB1-M algorithm.

These results were obtained by evaluating the proposed hybrid

system with real measurements from the HF band.
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