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Dynamic Boundary Stabilization of First Order
Hyperbolic Systems

Felipe Castillo, Emmanuel Witrant, Christophe Prieur and Luc Dugard

Abstract In this chapter, we address the problem of the dynamic boundary stabi-
lization of linear, quasilinear and LPV first-order hyperbolic systems. We provide
sufficient conditions for the exponential stability for this class of infinite dimen-
sional systems by means of Lyapunov based techniques and matrix inequalities. We
develop an applicative example of a temperature boundary control in a Poiseuille
flow using some of our main results and we present simulation results that illustrate
the efficiency of our approach.

1 Introduction

Variable time-delays are often encountered in many industrial applications such as
those where mass transport is present. This phenomenon makes the closed loop
control much more challenging motivating the investigation of new strategies to
effectively stabilize these systems. Among the potential applications, hydraulic net-
works [31], multiphase flow [24], road traffic networks [16], gas flow in pipelines
[4] or flow regulation in deep pits [34] are of significant importance. Due to the con-
vective nature of the mass transport, it is often modeled by means of balance laws
which are described by hyperbolic partial differential equations (PDE) and typically
used to express the fundamental dynamics of open conservative systems [35]. The
interest in boundary control comes from the fact that measurements in distributed
parameter systems are usually not available. It is more common for sensors and ac-
tuators to be located at the boundaries.
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Techniques based on Lyapunov functions are commonly used for the stability anal-
ysis of infinite dimensional dynamical systems, such as those described by strict
hyperbolic partial differential equations. One of the main properties of this class
of PDEs is the existence of the so-called Riemann transformation, which is a pow-
erful tool for the proof of classical solutions, analysis and control, among other
properties [2]. Control results for first-order hyperbolic systems do exist in the lit-
erature. For instance, sufficient conditions for controllability and observability of
quasilinear hyperbolic systems have been obtained in [21]. The boundary control us-
ing backstepping designs and dissipative boundary conditions ([19, 18, 25, 32] and
[12, 13, 5, 15, 27], respectively) are some of the most representative references for
the boundary control of first-order hyperbolic systems. In [23], the boundary control
problem is investigated using a frequency domain approach while [1] focuses in the
disturbance rejection problem. In [29], a strict time-varying Lyapunov function that
allows establishing the asymptotic stability of time-varying hyperbolic systems is
formulated for time-invariant boundary conditions and in [28] the boundary control
of switched linear hyperbolic systems is considered. Other important references on
boundary control are found in [14, 20, 26, 30]. However, results in dynamic bound-
ary stabilization of hyperbolic systems has been less explored and therefore we have
proposed some strategies to address this aspects in our previous works [8, 7, 9].

In this chapter, we provide an extension of our previous results and general overview
of the dynamic boundary stabilization of hyperbolic systems. We start with a brief
description of the class of first-order hyperbolic systems considered in this work. In
Section 3, we use Lyapunov-based techniques to establish sufficient conditions for
exponential stability of linear, LPV and quasilinear hyperbolic systems with dynam-
ics associated with their boundary conditions. A polytopic approach is developed for
the LPV and quasilinear hyperbolic systems to guarantee the exponential stability
inside a prescribed non-empty convex set. The main results are presented in three
theorems using a matrix inequality framework. Finally in Section 4, a reduced phys-
ical model of an experimental setup for the regulation of the output temperature in
a Poiseuille flow is developed. A temperature boundary control is designed using
the main contributions of this work. Simulation results are presented to illustrate the
effectiveness of the proposed control strategy.
Notation. By the expressions H � 0, H � 0, H � 0 and H ≺ 0 we mean that the
matrix H is positive semi-definite, negative semi-definite, positive definite and neg-
ative definite, respectively. The usual Euclidian norm in Rn is denoted by |.| and the
associated matrix norm is denoted ‖.‖. Given g : [0,1]→ Rn, we define its L2-norm
(when is finite) as:

‖g‖L2 =

√∫ 1

0
|g(x)|2dx
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2 Linear and Quasi-Linear Hyperbolic Systems

Let n be a positive integer and Θ be an open non-empty convex set of Rn. Consider
the following class of quasilinear hyperbolic systems of order n:

∂tξ (x, t)+Λ(ξ )∂xξ (x, t) = 0 ∀x ∈ [0,1], t ≥ 0 (1)

where ξ : [0,1]× [0,∞)→Rn and Λ is a continuously differentiable diagonal matrix
function Λ : Θ → Rn×n such that Λ(ξ ) = diag(λ1(ξ ),λ2(ξ ), ...,λn(ξ )).

Remark 1. Define the open non-empty convex set of Rn Ω and consider the general
class of quasilinear hyperbolic systems of order n defined as follows [22]:

∂ts(x, t)+F(s(x, t))∂xs(x, t) = 0 (2)

where s(x, t)∈Ω , and F : Ω →Rn×n is a continuously differentiable function. If (2)
is strictly hyperbolic (all eigenvalues of F(s) are different from zero and different
between each other), then a local bijection ξ (s) ∈Θ ⊂ Rn may exist, such that (2)
can be transformed into the following system of coupled transport equations (it has
been proved that for n≤ 2, this bijection always exists [11]):

∂tξi(x, t)+λi(ξ (x, t))∂xξi(x, t) = 0, i ∈ [1, ...,n] (3)

where ξi(x, t) are called the Riemann coordinates of (2), which are constant along
the characteristic curves described by:

dx
dt

= λi(ξ (x, t)) (4)

and ξ = [ξ1,ξ2, ...,ξn]T . Using the transformation with Riemann coordinates, the
system (2) can be expressed in the form of (1).

Let assume the following.

Assumption 1. The following inequalities hold for all ξ ∈Θ :

0 < λ1(ξ ) < λ2(ξ ) < ... < λn(ξ ) (5)

If Λ(ξ ) = Λ , then (1) is a linear hyperbolic system given by:

∂tξ (x, t)+Λ∂xξ (x, t) = 0 (6)

We consider the following boundary controls for the quasilinear hyperbolic system
(1):
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Ẋc = AcXc(t)+Bcuc(t) (7)
Yc(t) = CcXc(t)+Dcuc(t)

with

Yc(t) = ξ (0, t), uc = Kξ (1, t) (8)

where Xc ∈Rnx , Ac ∈Rnx×nx , Bc ∈Rnx×n, Cc ∈Rn×nx , Dc ∈Rn×n, K ∈Rn×n, u∈Rn

and nx ≥ 1. Define the initial condition for (1) and (7) as:{
ξ (x,0) = ξ 0(x), ∀x ∈ [0,1]

Xc(0) = X0
c

(9)

where ξ 0(x)∈ L2((0,1);Rn) and X0
c ∈Rnx . It has been proved that there exist δ0 > 0

and T > 0 such that for every ξ 0 ∈H2((0,1),Rn) satisfying |ξ 0|H2((0,1),Rn) ≤ δ0 and
the zero-order and one-order compatibility conditions, the Cauchy problem ((1), (7)
and (9)) has a unique maximal classical solution satisfying (see e.g. [12] and [17],
among other references):

|ξ (., t)|H2((0,1),Rn) ≤ δ0 ∀t ∈ [0,T ) (10)

Moreover, for linear hyperbolic systems (6), T = +∞ holds.

3 Dynamic Boundary Stabilization of Hyperbolic Systems

In this section, we give sufficient conditions for the dynamic boundary stabilization
of linear, LPV and quasilinear hyperbolic systems (Sections 3.1, 3.2 and 3.3, re-
spectively). More precisely, we address the problem of finding the boundary control
gain K (according to (7)) such that (1) is exponentially stable.

3.1 Stability of Linear Hyperbolic Systems with Dynamic
Boundary Conditions

Sufficient conditions for the exponential stability of (6) with boundary conditions
(7) and initial condition (9) are obtained with the following theorem:

Theorem 1. [Stability analysis] Along with Assumption 1, assume that there exist
two diagonal positive definite matrices P1 ∈ Rnx×nx and P2 ∈ Rn×n and a scalar
µ > 0 such that the following matrix inequality is satisfied,
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M =

AT
c P1 +P1Ac +CT

c ΛP2Cc P1BcK +CT
c ΛP2DcK

+µΛP1
KT BT

c P1 +KT DT
c ΛP2Cc KT DT

c ΛP2DcK− e−µΛP2

� 0 (11)

Then, there exist two constant values a > 0 and b > 0 such that, for all ξ 0 ∈
L2((0,1);Rn) and X0

c ∈ Rnx , the solution of (6), (7) and (9) satisfies, for all t ≥ 0

||Xc(t)||2 + ||ξ (t)||L2(0,1) ≤ be−at
(
||X0

c ||2 + ||ξ 0||L2(0,1)

)
(12)

Proof: Given the diagonal positive definite matrices P1 and P2, consider (as an exten-
sion of the Lyapunov function proposed in [13]) the quadratic strict Lyapunov func-
tion candidate defined for all continuously differentiable functions ξ : [0,1]→ Θ

as:

V (ξ ,Xc) = XT
c P1Xc +

∫ 1

0

(
ξ

T P2ξ
)

e−µxdx (13)

where µ is a positive scalar. Note that (13) has some similarities with respect to
the Lyapunov function proposed in [30] for boundary control with integral action.
Computing the time derivative V̇ of V along the classical C1-solutions of (6) with
boundary conditions (7) and initial condition (9), yields to:

V̇ = ẊT
c P1Xc +XT

c P1Ẋc +
∫ 1

0

(
ξ̇

T P2ξ +ξ
T P2ξ̇

)
e−µxdx (14)

After integration by parts, the following is obtained:

V̇ =
(
XT

c
(
AT

c P1 +P1Ac
)

Xc
)
+
(
ξ (1)T KT BT

c P1Xc +XT
c P1BcKξ (1)

)
−
[
e−µx

ξ
T

ΛP2ξ
]∣∣1

0−µ

∫ 1

0

(
ξ

T
ΛP2ξ

)
e−µxdx

(15)

where ξ (1) = ξ (1, t). The previous equation can be written using the boundary
conditions (7) as:

V̇ =
(
XT

c
(
AT

c P1 +P1Ac
)

Xc
)
+
(
ξ (1)T KT BT

c P1Xc +XT
c P1BcKξ (1)

)
− e−µ

ξ (1)T
ΛP2ξ (1)+XT

c CT
c ΛP2CcXc +XT

c CT
c ΛP2DcKξ (1)

+ξ (1)T KT DT
c ΛP2CcXc +ξ (1)T KT DT

c ΛP2DcKξ (1)−µ

∫ 1

0

(
ξ

T
ΛP2ξ

)
e−µxdx

=−µXT
c ΛP1Xc−µ

∫ 1

0

(
ξ

T
ΛP2ξ

)
e−µxdx+

[
Xc

ξ (1)

]T

M
[

Xc
ξ (1)

]
(16)

where the matrix M is defined as in (11). The matrix inequality M � 0 implies that
the last term of (16) is always negative or zero. This gives the inequality:
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V̇ ≤−µXT
c ΛP1Xc−µ

∫ 1

0

(
ξ

T
ΛP2ξ

)
e−µxdx (17)

From (5) it can be proved that there always exists a ρ > 0 such that Λ −ρIn×n � 0
(e.g. ρ could be the smallest eigenvalue of Λ ). Moreover, the diagonality of P1, P2
and Λ implies that:

V̇ ≤−µρV (ξ ,Xc) (18)

Therefore, the function (13) is a Lyapunov function for the hyperbolic system (6)
with boundary conditions (7). Integrating the inequality (18) from 0 to t gives:

V (t)≤V (0)e−µρt (19)

To obtain the final result (12), we bound the Lyapunov function as follows:

min{λmin(P1),λmin(P2)}(||Xc(t)||2 + ||ξ (t)||L2(0,1))≤

V (t)≤max{λmax(P1),λmax(P2)}(||Xc(t)||2 + ||ξ (t)||L2(0,1))
(20)

where λmin and λmax are the minimum and maximum eigenvalues of the considered
matrices, respectively. Then, using (19) together with (20) gives:

||Xc(t)||2 + ||ξ (t)||L2(0,1) ≤
min{λmin(P1),λmin(P2)}
max{λmax(P1),λmax(P2)}

(
||X0

c ||2 + ||ξ 0||L2(0,1)

)
e−µρt

(21)

which implies that a = µρ and b = min{λmin(P1),λmin(P2)}/max{λmax(P1),λmax(P2)}
in (12). �

Note that the matrix inequality (11) considers, through the Lyapunov matrices P1
and P2 , the dynamic coupling between the system and its boundary conditions. In-
equality (11) along with (18) implies that µ is a tuning parameter of the controller
design as it explicitly enables to set the convergence speed of the Lyapunov func-
tion. Another interesting convergence feature can be deduced from (18): a faster
convergence is obtained for larger values of ρ . This implies that hyperbolic systems
with high convective velocities converge faster, which is physically consistent.
The following corollary gives a sufficient condition for the design of a stabilizing
controller for the particular case where Cc is a diagonal matrix, Dc = 0 and n = nx.

Corollary 1. [Design of a stabilizing controller] Along with Assumptions 1, if Cc is
diagonal and Dc = 0 and if there exist a diagonal positive definite matrix Q ∈Rn×n

and a scalar µ > 0 such that the following linear matrix inequality is satisfied,[
QAT

c +AcQ+CcΛQCc + µΛQ BcKQ
QT KT BT

c −e−µΛQ

]
� 0 (22)
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then there exist two values a > 0 and b > 0 such that, for all ξ 0(x) ∈ L2((0,1);Rn)
and X0

c ∈ Rn, the solution of (6) with boundary conditions (7) and initial condition
(9) satisfies (12) for all t ≥ 0.

Proof: Given a diagonal positive definite matrix P, consider the quadratic strict
Lyapunov function candidate defined for all continuously differentiable functions
ξ : [0,1]→Θ as:

V (ξ ,Xc) = XT
c PXc +

∫ 1

0

(
ξ

T Pξ
)

e−µxdx (23)

where µ is a positive scalar. Performing the same procedure as the one presented in
the proof of Theorem 1 and considering Dc = 0, the following equality is obtained

V̇ =−µXT
c ΛPXc−µ

∫ 1

0

(
ξ

T
ΛPξ

)
e−µxdx+

[
Xc

ξ (1)

]T

H
[

Xc
ξ (1)

]
(24)

where

H =
[

AT
c P+PAc +CcΛPCc + µΛP PBcK

KT BT
c P −e−µΛP

]
(25)

Note that (22) is equivalent to H � 0. This is obtained by multiplying both sides
of (25) by diag

(
P−1,P−1

)
, commuting P−1 with Cc (both matrices being diagonal)

and performing the variable transformations Q = P−1 and Y = KQ. Therefore, as
H � 0 and Λ −ρIn×n � 0, the function (23) is a Lyapunov function for the hyper-
bolic system (6) with boundary conditions (7). �

This corollary is interesting because, for systems where Cc is diagonal and Dc = 0,
it provides a constructive approach to obtain the boundary control gain K using con-
vex optimization algorithms after determining a suitable value of µ > 0 (e.g. chosen
to obtain a good performance versus robustness trade-off for the system considered).

3.2 Stability of Parameter-Varying Linear Hyperbolic Systems with
Dynamic Boundary Conditions

Let Zϕ be a non empty convex set of Rl . Consider the general class of first-order
LPV hyperbolic systems of order n defined as follows:

∂tξ (x, t)+Λ(ϕ)∂xξ (x, t) = 0 ∀x ∈ [0,1], t ≥ 0 (26)

where ξ : [0,1]× [0,+∞)→Θ , ϕ is a varying parameter vector that takes values in
the parameter space Zϕ , Λ(ϕ) : Zϕ →Rn×n is a diagonal and invertible matrix func-
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tion (called the characteristic matrix) such that Λ(ϕ)= diag(λ1(ϕ),λ2(ϕ), ...,λn(ϕ)).

Assumption 2: Assume that the following inequalities hold for all ϕ ∈ Zϕ :

0 < λ1(ϕ) < ... < λn(ϕ) (27)

Consider the following dynamic boundary conditions for (26):

Ẋc = Ac(ϕ)Xc +Bc(ϕ)u (28)
Yc = CcXc +Dcu

with

Yc = ξ (0, t), u = Kξ (1, t) (29)

where Xc ∈ Rnx , Ac : Zϕ → Rnx×nx , Bc : Zϕ → Rnx×n, Cc ∈ Rn×nx , Dc ∈ Rn×n, K ∈
Rn×n, u ∈ Rn and nx ≥ 1. Define the initial condition for (26) as done in (9).
Let the polytope Zϕ be defined as follows:

Zϕ := {[ϕ1, ...,ϕl ]T ∈ Rl | ϕi ∈ [ϕ
i
,ϕ i], ∀ i = 1, ..., l} (30)

for given l ∈ N+ and the parameter extremities ϕ
i
, ϕ i (minimum and maximum,

respectively). We thus consider that all the admissible values of the vector ϕ are
constrained in a hyperrectangle in the parameter space Zϕ . Consider the polytopic
linear representation of the parameter varying characteristic matrix for all ϕ ∈ Zϕ

[3]:

Λ(ϕ) =
Nϕ

∑
i=1

αi(ϕ)Λ(wi) (31)

where wi ∈ Zϕ are the Nϕ = 2l vertices of the polytope formed by all extremities
(ϕ i and ϕ

i
) of each varying parameter ϕ ∈ Zϕ , ∑

2l

i=1 αi(ϕ)Λ(wi) : Zϕ → Rn×n and
αi(ϕ) is a scheduling function αi : Zϕ → [0,1] defined as:

αi(ϕ) =
∏

l
k=1 |ϕk−C(wi)k|
∏

l
k=1 |ϕk−ϕ

k
|

(32)

where C(wi)k is the kth component of the vector C(wi) defined as:

C(wi)k =

{
ϕk, if(wi)k = ϕ

k
ϕ

k
, otherwise (33)
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The scheduling functions αi have the following properties [3]:

αi(ϕ)≥ 0,
Nϕ

∑
i=1

αi(ϕ) = 1 (34)

The polytopic representation (31) can also be considered for the matrices Ac(ϕ) and
Bc(ϕ) of the boundary conditions (28) using the same scheduling function (32). De-
fine the polytopic linear representation (PLR) of the parameter varying hyperbolic
system (26) with boundary conditions (28) as follows:

∂tξ (x, t)+
Nϕ

∑
i=1

αi(ϕ)Λ(wi)∂xξ (x, t) = 0

∀ϕ ∈ Zϕ , ∀x ∈ [0,1], t ≥ 0

(35)

with boundary conditions

Ẋc =
Nϕ

∑
i=1

αi(ϕ)Ac(wi)Xc +
Nϕ

∑
i=1

αi(ϕ)Bc(wi)u

ξ (0, t) = CcXc +Dcu

(36)

Based on the PLR (35) - (36), the following theorem states a sufficient condition to
ensure the exponential stability for system (26) with boundary conditions (28) and
initial condition (9) for all ϕ ∈ Zϕ . This result is already proven in [10], but, since it
will be useful for next sections, and the application considered in this chapter, let us
recall it.

Theorem 2. [Stability analysis] Along with Assumptions 2, assume that there exist
two diagonal positive definite matrices P1 ∈ Rnx×nx and P2 ∈ Rn×n and a scalar
µ > 0 such that the following matrix inequality is satisfied, for all i = 1, ...,Nϕ ,

Mi =

Ac(wi)T P1 +P1Ac(wi)+CT
c Λ(wi)P2Cc P1Bc(wi)K +CT

c Λ(wi)P2DcK
+µΛ(wi)P1

KT Bc(wi)T P1 +KT DT
c Λ(wi)P2Cc KT DT

c Λ(wi)P2DcK− e−µΛ(wi)P2

� 0

(37)

Then there exist two constant values a > 0 and b > 0 such that, for all ξ 0 ∈
L2((0,1);Rn) and X0

c ∈ Rnx , the solution of (26), (28) and (9) satisfies (12), for
all t ≥ 0.

Proof: Consider once again the Lyapunov function candidate (13). Computing the
time derivative V̇ of V along the classical C1-solutions of (26) with boundary con-
ditions (28) and initial conditions (9), gives the following:
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V̇ = ẊT
c P1Xc +XT

c P1Ẋc +
∫ 1

0

(
ξ̇

T P2ξ +ξ
T P2ξ̇

)
e−µxdx (38)

After integration by parts and taking into account (26) and (28), the following is
obtained:

V̇ =
2l

∑
i=1

αi(ϕ)
[(

XT
c
(
Ac(wi)T P1 +P1Ac(wi)

)
Xc
)
+
(
ξ (1)T KT Bc(wi)T P1Xc

+XT
c P1Bc(wi)Kξ (1)

)
−
[
e−µx

ξ
T

Λ(wi)P2ξ
]∣∣1

0−µ

∫ 1

0

(
ξ

T
Λ(wi)P2ξ

)
e−µxdx

](39)

The previous equation can be written using the boundary conditions (28) as follows:

V̇ =
2l

∑
i=1

αi(ϕ)
[(

XT
c
(
Ac(wi)T P1 +P1Ac(wi)

)
Xc
)
+
(
ξ (1)T KT Bc(wi)T P1Xc

+XT
c P1Bc(wi)Kξ (1)

)
− e−µ

ξ (1)T
Λ(wi)P2ξ (1)+XT

c CT
c Λ(wi)P2CcXc

+XT
c CT

c Λ(wi)P2DcKξ (1)+ξ (1)T KT DT
c Λ(wi)P2CcXc

+ξ (1)T KT DT
c Λ(wi)P2DcKξ (1)−µ

∫ 1

0

(
ξ

T
Λ(wi)P2ξ

)
e−µxdx

]
=

2l

∑
i=1

αi(ϕ)

[
−µXT

c Λ(wi)P1Xc−µ

∫ 1

0

(
ξ

T
Λ(wi)P2ξ

)
e−µxdx

+
[

Xc
ξ (1)

]T

Mi

[
Xc

ξ (1)

]]

(40)

where the matrix Mi is defined as in (37). The definition αi ≥ 0 and the matrix
inequality Mi � 0 from (37) imply that the last term of (40) is always negative or
zero. This gives the following inequality:

V̇ ≤
2l

∑
i=1

αi(ϕ)
[
−µXT

c Λ(wi)P1Xc−µ

∫ 1

0

(
ξ

T
Λ(wi)P2ξ

)
e−µxdx

]
(41)

From (27), it can be proved that there always exists a ρ > 0 such that Λ(ϕ)−
ρIn×n � 0 (e.g. ρ could be the smallest eigenvalue of Λ(ϕ) over Zϕ ). Moreover, the
diagonality of P1, P2 and Λ implies that:

V̇ ≤−µρV (ξ ,Xc) (42)

Therefore, the function (13) is a Lyapunov function for the hyperbolic system (26)
with boundary conditions (28). �

Note that Theorem 2 allows verifying whether the boundary control gain K stabilizes
the hyperbolic system (26) with boundary conditions (28) for all varying parameters
that belong to the convex set Zϕ .
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As done for linear hyperbolic systems, the following corollary gives sufficient con-
ditions for the design of a stabilizing controller for the particular case where Cc is a
diagonal matrix, Dc = 0 and n = nx.

Corollary 2. [Design of a stabilizing controller] Along with Assumptions 2, if Cc is
diagonal and Dc = 0 and if there exist a diagonal positive definite matrix Q ∈Rn×n

and a scalar µ > 0 such that the following linear matrix inequality is satisfied, for
all i ∈ 1, ...,Nϕ ,[

QAc(wi)T +Ac(wi)Q+CcΛ(wi)QCc + µΛ(wi)Q Bc(wi)Y
Y T Bc(wi)T −e−µΛ(wi)Q

]
� 0 (43)

where Y = KQ, then there exist two values a > 0 and b > 0 such that, for all
ξ 0(x) ∈ L2((0,1);Rn) and X0

c ∈ Rn, the solution of (26) with boundary conditions
(28) and initial condition (9) satisfies (12) for all t ≥ 0.

Proof: Consider once again the Lyapunov function candidate (23). Performing the
same procedure as the one presented in the proof of Theorem 2 and considering
Dc = 0, the following equality is obtained

V̇ =
2l

∑
i=1

αi(ϕ)

[
−µXT

c Λ(wi)PXc−µ

∫ 1

0

(
ξ

T
Λ(wi)Pξ

)
e−µxdx

+
[

Xc
ξ (1)

]T

Hi

[
Xc

ξ (1)

]] (44)

where

Hi =
[

Ac(wi)T P+PAc(wi)+CcΛ(wi)PCc + µΛ(wi)P PBc(wi)K
KT Bc(wi)T P −e−µΛ(wi)P

]
(45)

Note that (22) is equivalent to Hi � 0. This is obtained by multiplying both sides
of (45) by diag

(
P−1,P−1

)
, commuting P−1 with Cc (both matrices being diagonal)

and performing the variable transformations Q = P−1 and Y = KQ. Therefore, as
Hi � 0 and Λ(ϕ)−ρIn×n � 0, the function (23) is a Lyapunov function for the hy-
perbolic system (26) with boundary conditions (28). �

3.3 Stability of Quasi-Linear Hyperbolic Systems with Dynamic
Boundary Conditions

Some sufficient conditions have been found in [12] to exponentially stabilize one-
dimensional quasilinear hyperbolic systems with static boundary conditions on a
bounded interval by means of Lyapunov techniques.
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To represent the variation of the characteristic matrix with respect to the state, let us
define the convex set Zξ as follows:

Zξ := {[ξ1, ...,ξn]T ∈ Rn | ξi ∈ [ξ i,ξ i
], ∀ i = 1, ...,n} (46)

where ξ i and ξ
i

are some maximal and minimal values for ξi, respectively. In other
words, the matrix Λ(ξ ) belongs to the matrix variation domain [6]:

Dξ =

{
Λ : Λ =

2n

∑
i=1

βiΛ(vi),βi ≥ 0,
2n

∑
i=1

βi = 1

}
(47)

where vi ∈ Zξ are the Nξ = 2n vertices of the polytope formed by all the state ex-
tremities ξ i and ξ

i
. From this formulation we propose the following theorem, which

gives sufficient conditions for the exponential stability of (1) with boundary condi-
tions (7) and initial conditions (9) over the characteristic matrix variation domain
Dξ .

Theorem 3. [Stability analysis] Along with Assumptions 1, assume that there exist
two diagonal positive definite matrices P1 ∈ Rnx×nx and P2 ∈ Rn×n and a scalar
µ > 0 such that the following matrix inequality is satisfied, for all i = 1, ...,Nξ ,AT

c P1 +P1Ac +CT
c Λ(vi)P2Cc P1BcK +CT

c Λ(vi)P2DcK
+µΛ(vi)P1

KT BT
c P1 +KT DT

c Λ(vi)P2Cc KT DT
c Λ(vi)P2DcK− e−µΛ(vi)P2

� 0 (48)

Then there exist two constant values a > 0 and b > 0 such that, for all ξ 0 ∈ Zξ and
X0

c ∈ Rnx , the solution of (1), (7) and (9) satisfies (12), for all t ≥ 0.

Proof: The proof of this theorem is very similar to the one developed for Theorem
2. The main difference is that in this case, the stability is proved over the convex set
of the state variation Zξ instead of the parameter space Zϕ . �

Similarly to the Corollaries 1 and 2, the following corollary can be formulated for
quasilinear hyperbolic systems:

Corollary 3. [Design of a stabilizing controller] Along with Assumption 1, if Cc is
diagonal and Dc = 0 and if there exist a diagonal positive definite matrix Q ∈Rn×n

and a scalar µ > 0 such that the following linear matrix inequality is satisfied, for
all i ∈ 1, ...,Nξ ,[

QAT
c +AcQ+CcΛ(vi)QCc + µΛ(vi)Q BcY

Y T BT
c −e−µΛ(vi)Q

]
� 0 (49)

where Y = KQ, then there exist two values a > 0 and b > 0 such that, for all
ξ 0(x)∈ Zξ and X0

c ∈Rn, the solution of (1) with boundary conditions (7) and initial
condition (9) satisfies (12), for all t ≥ 0.
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This corollary completes our results on dynamic boundary stabilization of hyper-
bolic systems.

4 Boundary Temperature Control Example

To further investigate the phenomenon of fluid transport in a Poiseuille flow with
dynamics at the boundary conditions, an experimental setup has been designed to
test and validate advanced control strategies. Figure 1 shows the schematic of the
proposed device.

Speed Sensor

Heating column

Input ventilator

Temperature sensor 1

Output ventilator

Temperature sensor 2

Temperature sensor 3

Fig. 1: Schematic of the experimental setup

This device mainly consists of a heating column encasing a resistor, a tube, two
ventilators, a gas velocity meter and distributed temperature sensors. The control
problem is to regulate the outlet temperature of the tube by driving the power dissi-
pated on the heating resistor at different air flow speeds (exogenous inputs produced
by fans) through the tube. Only the outlet temperature and the flow speed will be
considered as measurements for the closed loop boundary control strategy.

The modeling of the experimental setup presented in Figure 1 is done by consid-
ering two subsystems: the heating column and the tube. A zero-dimensional model
(0-D) (control volume approach with heat exchanges coming from the heating resis-
tor) represents the heating column. For the tube, a one dimensional (1-D) transport
model is used to describe the gas density variations in the tube.



14 Felipe Castillo, Emmanuel Witrant, Christophe Prieur and Luc Dugard

4.1 Heating Column Model

Figure 2 presents the schematic of the 0-D control volume approach considered for
the heating column.

Tin

min mout

p0, T0, V0, m0

d
Wd
Q

Pin ..

Fig. 2: Schematic of the control volume approach

Consider the internal energy of a perfect gas:

U0 = Cvm0T0 (50)

where U0 is the gas internal energy, T0 the gas temperature, m0 the mass inside the
column and Cv the specific heat of the gas for constant volume. The time derivative
of (50) is:

U̇0 = Cvm0Ṫ0 +CvT0ṁ0 (51)

Using the first law of thermodynamics, the dynamics of the internal energy of the
gas inside the column can also be given by:

U̇0 = ∑hiṁi +dQ+dW (52)

where hi is the specific enthalpy getting in and out of the volume with a mass flow
rate ṁi, dQ quantifies the heat exchanges and dW is the work done by the gas. In
the case of the heating column, there are two flows interacting with the volume
characterized by the input mass flow rate ṁin and the output mass flow rate ṁout .
As the gas does not perform any work, then dW = 0. In order to write (52) in terms
of temperature, the specific enthalpy of a gas, defined by h = CpT , where Cp is the
specific heat constant at constant pressure, is used. Therefore, (52) can be expressed
as:
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U̇0 = CpTinṁin−CpT0ṁout +dQ (53)

where Tin is the heating column input temperature. To simplify the model, consider
the following set of two hypotheses:

Hypotheses 1:

• The pressure dynamics is much faster than the temperature dynamics, which al-
lows considering a quasi-steady behavior of the mass and pressure;

• p0 ≈ pin, where pin is the input pressure;

Hypotheses 1 allow writing (51) and (53), respectively as:

U̇0 = Cvm0Ṫ0 (54)

U̇0 = Cpṁin(Tin−T0)+dQ (55)

To simplify, overall in the 1-D model (see next sub-section), the temperature dy-
namics can be expressed in terms of the gas density by introducing the following
change of variable (perfect gases law):

ρ0 =
pin

RT0
(56)

Taking the time derivative of (56) yields

Ṫ0 =− R
pin

T 2
0 ρ̇0 (57)

Equalizing (54) and (55) and using (56) - (57) along with the perfect gases law
to replace the mass inside the control volume m0 in terms of the pressure and the
specific gas constant R, the following is obtained:

ρ̇0 =−RγTinṁin

pinV0
ρ0−

R
pinV0Cv

ρ0dQ+
γṁin

V0
(58)

where ρ0 = m0/V0 is the density inside the heating column, V0 is the column volume
and γ = Cp

Cv
.
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4.2 Tube Model

To model the dynamics of the fluid inside the tube, the one-dimensional Euler equa-
tions are considered for a perfect gas and a constant tube cross section. These equa-
tions can be written in terms of the primitive variables (density ρ , particle speed u
and pressure p) as follows (see [33]):

∂V
∂ t

+A(V)
∂V
∂x

+C(V) = 0 (59)

V =

ρ

u
p

 ;A =

u ρ 0
0 u 1

ρ

0 a2ρ u

 ;C =

 0
G

(γ−1)ρ(q+uG)


where a =

√
γ p
ρ

is the speed of sound, G is a term associated with the friction losses
and q is a term associated with the wall heat exchanges. In order to simplify (59),
the following set of hypotheses are considered.

Hypotheses 2:

• the propagation speed of the entropy wave (average energy and mass) inside the
tube is much slower than the speed of the sound u << a;

• the pressure inside the tube is considered constant (equal to the atmospheric pres-
sure) because the pressure differential introduced by the fans is very small;

• the heat exchanges and the friction in the tube are neglected: q = 0 and G = 0.

Hypotheses 2 imply ∂u(x,t)
∂x ≈ 0 and ∂ p(x,t)

∂x = 0. This reduces system (59) to the
following convection equation:

∂ρ(x, t)
∂ t

+u(t)
∂ρ(x, t)

∂x
= 0 (60)

where u(t) is the time-varying convection parameter of (60). The gas speed u(t) in
the tube is measured. Using Hypotheses 2 allows expressing the input mass flow
rate as:

ṁin = u(t)ρ(0, t)At (61)

where At is the tube cross section area. With (61), the boundary conditions of (60)
can be expressed as:
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ρ̇0 =−RγTinu(t)ρ(0, t)At

pinV0
ρ0−

R
pinV0Cv

ρ0dQ+
γu(t)ρ(0, t)At

V0
;

ρ(0, t) = ρ0

(62)

4.3 Output Temperature Boundary Control

The output temperature boundary control is designed for (60) with boundary condi-
tions (62). Define the density error as:

ξ = ρ−ρre f (63)

where ρre f is the desired output density. It is easy to show that system (60) with
boundary conditions (62) can be expressed in an LPV form as follows:

∂ξ (x, t)
∂ t

+Λ(ϕ)
∂ξ (x, t)

∂x
= 0 (64)

with boundary conditions:

ξ̇0 = Ac(ϕ)ξ0 +Bc(ϕ)dQ+Ec(ϕ) (65)

and with the varying parameters defined as follows:

ϕ1 = u(t), ϕ2 = ρ0, ϕ3 = ρ0u(t), (66)

for suitable functions Ac(ϕ), Bc(ϕ) and Λ(ϕ).
Only ϕ1 is measured. ϕ2 and ϕ3 are considered as uncertain parameters as no tem-
perature measurement is taken inside the heating column. Strictly speaking, system
(65) is quasi-LPV because one of the parameters is a state. However, as ρ0 can be
easily bounded from the knowledge of the operating conditions of the experimental
setup, then the system can be considered as an LPV one. Define the control input
as:

dQ = F(ϕ,ρre f )+Kξ (L, t) (67)

where F(ϕ,ρre f ) is defined as:

F(ϕ,ρre f ) =−Bc(ϕ)−1Ec(ϕ)

= Cvγu(t)At

( pin

R
−Tinρre f

) (68)

This yields to the system (60) with boundary conditions (62), which corresponds to
the system considered in Theorem 2. Note that dQ is independent of the uncertain
parameters ϕ2 and ϕ3, which is crucial for the boundary control implementation.
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Define the convex subset Zϕ in order to operate the experimental setup between the
temperatures of 290 K and 323 K and a flow speed between 0.63 m/s and 3.82 m/s:

Zϕ :={[ϕ1,ϕ2,ϕ3]T ∈ R3,ϕ1 ∈ [0.63,3.82],
ϕ2 ∈ [0.968,1.08],ϕ3 ∈ [0.61,4.12]}

(69)

In order to design the boundary control for system (60) with boundary conditions
(62), consider the control architecture presented in Figure 3.

K

F(u(t),Rhoref)

rho T

rho T Tref
Rhoref

dQ

u(t) T(L,t)

Fig. 3: Flow Tube Control Architecture

4.4 Simulation results

Consider the following system parameters: pin = 1× 105 Pa, Tin = 300 K, V0 =
4× 10−3 m3, At = 6.4× 10−3 m2, and L = 1.5 m where L is the tube’s length.
Applying Theorem 2 leads to the following control gain and Lyapunov function
parameter P:

K =−654, P = 1 (70)

which ensure that the equilibrium ξ = 0 is exponentially stable ∀ϕ ∈ Zϕ . In order to
illustrate the effectiveness of the proposed boundary control strategy, some simula-
tion results of system (60) with boundary conditions (62) and the boundary control
(70) are presented for different flow speeds. The results obtained are presented in
Figures 4 and 5. A change of temperature reference from 300K to 320K (which can
be transformed into a density reference using the perfect gases law) is introduced at
1s.
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Fig. 4: Output temperature boundary control results for 3 different flow speeds

Fig. 5: Control Input for 3 different flow speeds

As depicted in Figure 4, the system effectively follows the change of reference for
the different flow speeds. The faster the flow speed, the faster the convergence, as
the fluid transport time is smaller as remarked from the proof of Theorem 1. Figure
5 shows the respective control inputs obtained for the simulation results. It appears
that the power dissipated by the heating resistor has to be greater as the flow speed
increases. This is due to the fact that in this case, the gas residence time inside the
heating column is smaller and the amount of energy absorbed by the gas is less
important.
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5 Chapter Summary

This chapter focused on the stabilization of linear, LPV and quasilinear first-order
hyperbolic systems with dynamic boundary conditions and their application to tem-
perature boundary control in a Poiseuille flow. We found sufficient conditions for
boundary control design for linear, LPV and quasilinear strict hyperbolic systems
with n rightward convecting PDEs with dynamic boundary conditions. An exten-
sion of the strict Lyapunov function proposed in [13] was used to demonstrate the
exponential stability of this class of infinite dimensional systems. In Theorem 1, we
presented the sufficient conditions for the boundary control design for linear hyper-
bolic systems with dynamic boundary control, for all ξ 0 : [0,1]→Θ . In Theorem
2, a polytopic formulation was considered to state sufficient conditions for bound-
ary control design for LPV hyperbolic systems with LPV dynamics at the boundary
conditions over a convex set Zϕ . Then, in Theorem 3, by representing the nonlinear
characteristic matrix Λ(ξ ) in a polytopic representation, sufficient conditions for
exponential stability were found for all ξ 0 ∈ Zξ . Finally, an application of the main
results of this chapter are illustrated by developing a temperature boundary control
for an experimental setup specially designed to study the mass transport. Simula-
tion results have shown the effectiveness of the proposed dynamic boundary control
techniques.
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ditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control
Optim, 47:1460–1498, 2008.
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