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Abstract

Spectral Information Divergence (SID) was identified as the most efficient spectral similarity measure. However, we show
that divergence are not adapted to direct use on spectra. Following an idea proposed by Nidamanuri, we construct a spectral
pseudo-divergence based on the Kullback-Leibler divergence. This pseudo-divergence is composed of two parts: a shape and
an intensity similarity measure. Consequently, bidimensional representation of spectral differences are constructed to display the
histograms of similarity between a spectral reference and the spectra from a data-set or an hyperspectral image. We prove the
efficiency of the spectral similarity measure and of the bidimensional histogram of spectral differences on artificial and Cultural
Heritage spectral images.

Index Terms

Hyperspectral, spectral distance, spectral similarity, Kullback-Leibler divergence, spectral discrimination.

I. INTRODUCTION

The recent advances in imaging allow to acquire images with several hundred of channels in the visible and/or the invisible
range of wavelengths. Such spectral accuracy takes a big interest in control by vision or in cultural heritage applications [1],
[2], [3]. After several years of developments in spectral imaging, a new level of processing is required to reach a metrological
level taking benefits of this important spectral resolution. Under this sense, we express the requirement to develop generic,
reproducible and accurate processing [4].

In hyperspectral imaging, reflectance and radiance spectra are analyzed. In the two cases, the initial spectral properties
are continuous and sampled with a high resolution and without overlapping. Due to the multi-channel acquisition, spectra
are generally consider as vectors [5], [6] with dedicated distances measures based on L2(Euclidean) constructions or angular
difference estimations. Such definitions are not unique, other searchers considering spectra as distributions in an equivalent form
to probability density functions[7], [8], [9]. In these cases, several forms of divergence and similarity measures are considered
from the basic Kullback-Leibler to more complex ones. More recently, some authors proposed to consider spectra as lattices or
manifold [10], [11], [12], using essentially ISOMAP structures for distances assessments. Even if spectra was never associated
to the definition of sequences, the associated distances was compared to the others approaches in [13], [14].

In [15] the authors expressed the limits of the distance/similarity measures in front of the visual inspection, which can judge
two spectra as spectroscopically dissimilar, even if they was mathematically nearly identical. Several works were dedicated
to the selection of the better spectral distance/similarity measures using existing databases[16], [17], [18]. In [13], [14], we
develop the theoretical relationship existing between these distance/similarity measures and the spectrum definition. Then using
artificial spectra, limits in the existing distance/similarity measures were shown. Finally, similarity measures, considering the
spectrum as a probability density function, was identified as the most efficient in front the other measures.

The most interesting proposition was proposed in [15] by defining the Normalized Spectral Similarity Score (NS3). This
score combines two measures, one assessing the shape similarity based on a Spectral Angle Measure (SAM) and a second one
based on the L2 (Euclidean) difference of the two considered spectra. In this work, we propose to kept this idea in order to
construct Bidimensional Histograms of Spectral Differences (BHSD) using an adapted distance/similarity measures.

In a first step, we will come back on the nature of spectra in hyperspectral imaging, and especially on the continuous
nature of the initial spectrum (sec. II-A). Then we recall some main used expressions to assess the distance/similarity measure
between two spectra (sec. II-B and II-C). We show then how to develop an adapted spectral similarity measure using the
Kullback-Leibler divergence. Especially, we will show how this construction naturally embed a shape similarity measure, and
a measure about the energy difference between the spectra. Limits of the used spectral distance/similarity measures will be
compared in the section IV using artificial data-sets. Then the application of these similarity measures and bidimensional
histogram of spectral differences will be developed in an application from cultural-heritage domain (sec. IV-D).
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II. SPECTRAL DISTANCES AND DIVERGENCES

In spectral imaging, two kinds of spectra are considered, radiance and reflectance spectra. The first one corresponds to the
energy spectrum emitted by a source and acquired by a spectral sensor. In this case, the surface is considered as a source
emitting a continuous radiance. Consequently, the unit is expressed in Watt(W ) per square meter(m2) for each wavelength
channel expressed in nanometers (nm). So the unit of radiance spectra is expressed in W.m−2.nm−1. The second one corresponds
to the reflectance spectrum allowing to assess the ability of a surface to reflect the light in the direction of the sensor. So, the
obtained measure is a percentage of the transmitted energy over the wavelength. In the two cases, spectra are expressed on
their spectral domain of acquisition between λmin and λmax:

S = {s(λ ),∀λ ⊂ [λmin,λmax]} (1)

A. Sum or integral for distance/similarity expressions?

The initial consideration for spectral distance/similarity measure assessment is then to consider it in the continuous domain
of expression. For example, by considering the spectra as a vector and by using a L2 metrics (or p-order Minkowski distance),
the distance measures will be expressed as:

dL2(S1,S2) =

(∫
λmax

λmin

(s1(λ )− s2(λ )|p
) 1

2

dλ (2)

Due to the spectral sampling at the core of the spectroradiometer or spectral sensors, discrete versions of the distance
functions are used, like in the equation 3. Nevertheless, in such expressions the relationship to the initial continuous signal is
always forgotten. Such lack induces two main limits, firstly the link to the distance unit is loosed and secondly the distance
measures between spectra can not be independent from the spectral resolution of sensors.

dd
L2
(S1,S2) =

(
kmax

∑
kλ=0

(s1(k)− s2(k))
2

) 1
2

(3)

with k corresponding to the channel index associated to the wavelength range: [λmin + k ·∆λ ;λmin +(k+1) ·∆λ [.
In order to progress in a short future toward a spectral metrology, we selected to preserve the continuous integration, and

so to preserve the link to the physical content. We assume the fact that the reader can easily adapt these expressions in an
equivalent discrete version taking attention to the considered wavelength range and to the wavelength sampling. Now, we will
express some main used distance and similarity measures, starting by measures considering the spectrum as a vector, then by
measures considering it as a probability density function.

B. Distance measures for spectra considered as a vector

Since the last fifteen years, a large number of distances and similarity measures was tried and used to analysis spectral
data. The most popular own to the group of measures considering the spectrum as a vector in an n-dimensional vector space.
Such choice implies that the vector is represented as n-tuples where each channel measure is considered as independent to the
others. The most used distance measures in the spectral domain are deduced from the Lp metrics as for example in [19], [20],
[21]:

dLp(S1,S2) =

(∫
λmax

λmin

|s1(λ )− s2(λ )|p dλ

) 1
p

, (4)

d
χ2

1
(S1,S2) =

∫
λmax

λmin

(s1(λ )− s2(λ ))
2

s1(λ )+ s2(λ )
dλ (5)

dCan(S1,S2) =
∫

λmax

λmin

|s1(λ )− s2(λ )|
s1(λ )+ s2(λ )

dλ (6)

where dLp is the Lp distance, d
χ2

1
one of the two χ2 similarity measure and dCan the Canberra measure.

Even if these distance functions are often used, they are limited in their assessment of shape dissimilarity[14]. Typically, if
we consider two non-overlapped spectra, first one defined on [λ0,λ1] and the second one on [λ2,λ3], with λ2 > λ1, whatever
is the slicing (λ1−λ2), the spectral distance is always dependant to the cumulative energy of each spectrum:∫

λmax

λmin

|s1(λ )− s2(λ )|pdλ =
∫

λ 1
max

λ 1
min

|s1(λ )|pdλ +
∫

λ 2
max

λ 2
min

|s2(λ )|pdλ

with
λmin < λ

1
min < λ

1
max < λ

2
min < λ

2
max < λmax :

{
s1(λ ) = 0 ∀λ ∈ [λmin,λ

1
min[∪[λ 1

max,λmax[
s2(λ ) = 0 ∀λ ∈ [λmin,λ

2
min[∪[λ 2

max,λmax[
(7)
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As radiance or reflectance spectra rarely include null values in the relectance/radiance series, such limitations are difficult to
perceive in real cases. But if we consider a spectrum as a sum of basic functions linked to the physical properties of surfaces
and light, these limitations are problematic.

Another way to assess the similarity between two vectors is to limited it to a shape difference. The most direct expression on
this way estimates the angle between two n-dimensional vectors through the dot product [22]. In spectral imaging, the obtained
angle is known as the Spectral Angle Mapper (eq. 8) and is defined between 0 and π

2 [23]. A normalization relative to the
total amount of energy of the two spectra is applied inside the angle calculation to obtain the independency to the illumination
changes.

Another form is sometimes preferred using the cosinus of the spectral angle to obtained value between 0 and 1, with smallest
values for closest spectra (eq. 8).

P =

∫
s1(λ )s2(λ )dλ√∫

s1(λ )2dλ
√∫

s2(λ )2dλ
,

dSAM(S1,S2) = arccos(P)
dcos(S1,S2) = 1−P (8)

Nevertheless, when the intersections of spectra becomes null, the distance is also saturated as in the previous cases. Such
behaviour is fully understandable. Due the nature of the spectra they can not be considered as vectors, because the acquired
hyperspectral channels produce an ordered sequence of measures, physically correlated.

C. Distance measures for Spectra considered as a distribution

In [16], [18], [17], authors compare the discrimination performances of distance/similarity measures on different spectrum
databases or spectral image databases. They conclude that Spectral Information Divergence is the most efficient spectral
similarity measure. Such similarity measure assumes that a spectrum can be considered as a probability density function, so a
distribution. Such hypothesis is correct in accordance to the formation of spectrum defined by a sequence of energy measures
over the wavelengths. So this hypothesis directly assumes the high correlation between neighbored spectral bands [24]. From
this hypothesis, authors proposed to work with different kinds of divergence or cumulative distribution functions [25], [8], [9].
If we expect the basic forms of divergence similar to the Euclidean distances, the proposed divergence measures are :

dSmi(S1,S2) = 1−
∫

λmax
λmin

min(s1,λ ,s2,λ )dλ

min(
∫

λmax
λmin

s1,λ dλ ,
∫

s2,λ dλ )
(9)

dJef(S1,S2) =
∫

λmax

λmin

s1(λ ) log
2.s1(λ )

s1(λ )+ s2(λ )
dλ +

∫
λmax

λmin

s2(λ ) log
2.s2(λ )

s1(λ )+ s2(λ )
dλ (10)

dPea(S1,S2) =
∫

λmax

λmin

(
s1(λ )−m(λ )

)2

m(λ )
dλ with m(λ ) =

s1(λ )+ s2(λ )

2
(11)

where dSmi, dJef and dPea are respectively the Smith, Jeffrey and Pearson divergence measures. Inside this family of similarity
measure the most used in the spectral literature is the Spectral Information Divergence (SID), also known as the Kullback-
Leibler divergence. This particular measure will be developed in the section III.

Due to their construction, these functions present less or more the same limitations than the distance/similarity measures
derived from the L2(Euclidean) form. Obviously, the L2(Euclidean) distance based on the cumulated spectra (ECS) solves this
limit in the shape difference analysis [14]. In fact this similarity measure is based on the similarity of Cumulative Distribution
Function.

dECS(S1,S2) =

√∫
λmax

λmin

(ŝ1(λ )− ŝ2(λ ))
2 dλ , with ŝi(λc) =

∫
λc

λmin

si(λ )dλ . (12)

The ECS similarity measure embeds as in a whole the spectral shape and intensity similarities. When only shape differences
are expected for the spectral discrimination, specific measures can be developed. In [26], the authors expressed the proximity
between the Pearsonian Correlation Coefficient and the Spectral Angle Mapper. Thanks to this proximity they proposed to
use the Pearsonian correlation coefficient to express an angle measurement between spectra considered as distributions. This
similarity measure is known as the Spectral Correlation Mapper (eq. 13)[27] and must be compared to the dcos measure (eq.8).
The associated angle dSCMα

is then directly obtained using an inverse cosinus transform (eq.14)[27]. To note that another
interesting form, close in the writing form, was proposed in [28] as the Cross Correlogram Spectral Matching (CCSM) and
named after Spectral Correlation Measure(SCM) in [18].
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dPearCor(S1,S2) =

∫
(s1(λ )−µS1)(s2(λ )−µS2)dλ√∫

(s1(λ )−µS1)
2dλ

√∫
(s2(λ )−µS2)

2dλ
with


µS1 =

∫
s1(λ )dλ

λmax−λmin

µS2 =
∫

s2(λ )dλ

λmax−λmin

dSCM(S1,S2) = 1− 1+dPea(S1,S2)

2
(13)

dSCMα
= arccos(dPea(S1,S2)) (14)

D. The searched distance between spectra

In [15], authors expressed that Spectral Angle Measure (SAM) ”can readily discriminate quite dissimilar materials such as
vegetation from non-vegetation features . . . ”. Nevertheless, farthest in this work they expressed the limits in the angle assessment
for spectral discrimination, when dissimilarities are more linked to intensity variations. In this second case, using L2(Euclidean)
forms of distances/divergence measures are more adapted, but in this case, the shape variations can be under-evaluated. To
solve this constraint, authors constructed a score (Normalized Spectral Similarity Score: NS3). This score combines an angle
measurement based on the dcos similarity measure and a measure from the L2 distance for the energetic difference. This
energetic difference is the root mean square difference between the two spectra averaged over the spectral range of observation
(dRMS) as proposed by [23]. Then the Normalized Spectral Similarity Score is defined by the following quadratic form:

dNS3(S1,S2) =
√
(dRMS(S1,S2))2 +(dcos(S1,S2))2. (15)

The proposed construction embeds as a whole a shape and an intensity difference in a global measure. Such construction is
to compare to perceptual colour distance in colorimetry [29], where the hue difference can be a part of the perceptual distance
∆E. Nevertheless, the NS3 score is empirically constructed. The quadratic form used in the construction is selected by the
authors to define an Euclidean form. But such construction is valid if the two measures (dRMS and dcos) are independent. As
dRMS is sensible to shape changes, such hypothesis is not enabled.

If the ideal spectral distance/similarity don’t yet exist, we have defined the constraints to solve in order to define it. This
searched measure must be correlated to spectral modifications between a spectral reference and a modified spectrum from
this reference [14]. In addition, it must be composed at least of two parts describing the shape difference and the intensity
difference [15], in order to help in the discrimination process. In the following section we develop one expression respecting
these constraints.

III. AN ADAPTED SPECTRAL SIMILARITY MEASURE

Since Jeffrey [30], divergence measures are designed to measure the dissimilarity between probability functions. In 1951, S.
Kullback and R.A. Leibler defined in [31] the ”mean information for discrimination between two probability distributions” as:

KL(H1,H2) = EH1

[
log
(

H1

H2

)]
=
∫

∞

−∞

h1(x) log
(

h1(x)
h2(x)

)
dx, (16)

where EH1 [.] denotes the expectation value with respect to the probability density H1.
The KL(H1,H2)

1 measure expresses the quantity of information loose when H2 is used to estimate H1. Then Kullback and
Leibler expressed the divergence between the probability laws in a symmetric and nonnegative measure as:

divKL(H1,H2) =
∫

∞

−∞

(h1(x)−h2(x)) log
(

h1(x)
h2(x)

)
dx , KL(H1,H2)+KL(H2,H1). (17)

Using KL divergence in spectral imaging is classic and known as the Spectral Information Divergence (SID)[32], [7].

A. Normalized spectra

Divergence measures was designed to measure the similarity between probability density functions. So to obtain valid
similarity measures, the signals to analyze must respect the construction constraints of probability density functions : to be
a set of measures ordered in accordance to an acquisition criteria, and to have an integral over the full range of the criteria
equal to one. This second constraints corresponds to the equation 18 in the spectral case. Respecting this constraint allows to
obtain similarity measures assessing only to the shape dissimilarities between the two signals.∫

λmax

λmin

hi(x)dx = 1. (18)

1denoted as I(1 : 2) in the original article.
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In order to applied KL-divergence on valid signals, we define the normalized spectrum S from the initial spectrum S. Be a
reflectance spectrum S or energy spectrum defined on [λmin,λmax], the normalized spectrum is defined by:

S =

{
s(λ ) =

s(λ )
k

,∀λ ⊂ [λmin,λmax]

}
and k =

∫
λmax

λmin

s(λ )dλ . (19)

B. The spectral Kullback-Leibler pseudo-divergence

In order to develop a similarity distance solving the constraints expressed in section II-D, we select to start using the Kullback-
Leibler(KL) divergence. In the following section, we will link the KL divergence measure applied on normalized spectra to
a measure applied on the initial spectra, defined as a pseudo-divergence2. We will show that thanks to this construction we
obtain the expected similarity measure including two parts : one dedicated to shape discrimination and another one dedicated
to the global intensity difference.

1) The spectral pseudo KL information for discrimination: Starting from the Kullback-Leibler measure of information for
discrimination (eq. 16) applied on normalized spectra S, we replace them using the normalization weights k and the full spectra
S:

KL(S1,S2) =
∫

λmax

λmin

s1(λ ) log
(

s1(λ )

s2(λ )

)
dλ =

1
k1

∫
λmax

λmin

s1(λ ) log
(

s1(λ )

s2(λ )

)
dλ + log

(
k2

k1

)∫
λmax

λmin

s1(λ )

k1
dλ . (20)

As
∫

λmax
λmin

s1(λ )
k1

dλ = 1, we arrive to a basic and nice relationship introducing the spectral pseudo-information of discrimination
between the full spectra S1 and S2 (eq. 21). So the spectral pseudo-information of Kullback-Leibler KL′(S1,S2) can link to the
spectral information of Kullback-Leibler KL(S1,S2) applied on normalized spectra S1 and S2 (eq. 22):

KL(S1,S2) =
1
k1

∫
λmax

λmin

s1(λ ) log
(

s1(λ )

s2(λ )

)
dλ + log

(
k2

k1

)
(21)

KL′(S1,S2) = k1
(
KL(S1,S2)

)
− k1 log

(
k2

k1

)
. (22)

It is interesting to note that the spectral KL-pseudo-information (eq. 22) is composed of two parts. The first one is correlated
to the shape variations between the two spectra, due to the KL-divergence on the normalized spectra. The second one is
correlated to the spectral difference according to the total energy/reflectance.

2) The spectral KL pseudo-divergence: Following the construction proposed by Kullback and Leibler in order to obtain a
symmetrical measure from the information measure (eq. 17), it is easy to demonstrate that the relationship between information
and divergence is also valid between pseudo-information and pseudo-divergence:

divKL′(S1,S2) = KL′(S1,S2)+KL′(S2,S1). (23)

Replacing in the previous equation the pseudo-informations by their expressions from equation 22, we obtain then the final
expression for the spectral KL-pseudo-divergence:

divKL′(S1,S2) = k1KL(S1,S2)+ k2KL(S2,S1)+(k1− k2) log
(

k1

k2

)
. (24)

Thanks to the expression 24 we have a similarity measure, called pseudo-divergence, due to the fact that radiance/reflectance
spectra can not be considered as probability function. This similarity measure is composed of two parts, the first one assessing
shape similarities and the second one intensity variations. In the following section we will assess the interest of such similarity
measure.

IV. RESULTS AND APPLICATIONS

We develop the assessment of this new spectral similarity measure under three points of view. First one will explore the
validation criteria defined in [14] using artificial spectra constructed using Gaussian functions. This first validation level will
enable that the expected theoretical properties are respected. The second point of view will allow to analyze the discrimination
between shape and intensity using bidimensional histogram of spectral differences. Finally, we will explore how this new
similarity measure associated to this bidimensional histogram of spectral differences can be interesting for Cultural Heritage
applications.

2The divergence term can be only used for data respecting the constraints of probability density functions, as we kept the form of the divergence expression
the term pseud-divergence is more adapted.
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(a) Magnitude changes (b) Slicing transformation (c) Standard-deviation changes

(d) Measure response (e) Measure response (f) Measure response

Fig. 1. Basic transformations and associated responses of spectral L2 distance, SAM similarity and KL-pseudo-divergence measures.

A. Pseudo-divergence response to basic spectral transformations

In order to compare the spectral distance and similarity measure, a behaviour constraint is proposed in [13] then in [14].
The constraint implies that a valid distance/similarity measure must be correlated to the transformation parameter, used to
transform an initial spectrum, whatever the parameter value is. To assess the validity of an important set of distance/similarity
measures, we selected to use a Gaussian function3 and three kinds of transformation: magnitude change, translation over the
wavelengths and standard-deviation changes, which was not assessed in the previous works.

Figure 1 shows the 3 data-sets, in first case (fig 1.(a)) the transformation modifies the Gaussian magnitude without modifying
the standard-deviation (no energy preservation). The parameter range varies from values lower than the unity to two units. The
spectral reference is drawn in red and corresponds to a parameter equal to one. For the second data-set (fig 1.(b)), the applied
transformation is a translation over the wavelengths. The used parameter range allows to explore spectrum locations around
the reference (red curve) with a displacement corresponding to at maximum twice the larger of the reference spectrum. In the
third data-set (fig 1.(c)), we explore the impact of shape modifications varying the standard-deviation. The reference spectrum
is always drawn in red at the middle of the parameter range.

In this work, we compare the KL-pseudo-divergence(KLPD) to SAM similarity and to the L2 (Euclidean) distance measures
as the most used measures. The proposed results will be directly comparable to an extended set of distance/similarity measures
in [14]. So in this work the purpose is only to assess the performance of the KL-pseudo-divergence with the two most known
approaches.

Without surprise, the L2 and KLPD measures are able to assess a magnitude variation between spectra and SAM is not sensible
to change in intensity (fig 1.(d)). Even if the dynamic of the KPLD is not symmetric due to the logarithmic expression, the
similarity is not saturated. As developed previously, L2 (Euclidean) and SAM measures saturate when the intersection between
spectra becomes null (fig 1.(d)). In this case, the shape similarity measure at the core of the KLPD ensures the response
symmetry. In the third case, as the intersection between spectra is preserved, the three distance measures can be correlated to
the parameter variations (fig 1.(d)). Even if the KLPD seems saturated, it is not the case (see Appendix). In [14], we conclude
that ECS similarity measure respects the constraints of response to basic transforms. However, the ECS similarity measure do
not naturally separate shape variations from intensity variations. Consequently, it can not be retain for the following parts of
this work.

B. Bidimensional Histograms of Spectral Differences (BHSD)

Thanks to the idea to decompose a spectral distance/similarity measure in two parts, we propose to create bidimensional
representations of spectral differences. Such construction becomes crucial to assess or characterize distributions of spectra. The
mean interest of Bidimensional Histogram of Spectral Differences (BHSD) is to be easy to understand.

3As the purpose is to assess the correlation between the measure and the transformation parameter, there is no interest to use a more complex spectrum.
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(a) Bicolour synthetic image. (b) Spectra from the two subsets (yellow and red
curves) and chosen references (black and blue curves).

Fig. 2. Image generated using randomly transformed Gaussian functions.

In the following, we proposed to compare three kinds of bidimensional representation. The first one comes directly from the
Nidamanuri and Zbell proposition [15], using as horizontal axis the dcos(S1,S2) measure coming from the SAM measures; and
as vertical axis the L2(Euclidean) distance between the two spectra d2(S1,S2) (eq.25). As explained in section II-D, the proposed
construction by Nidamanuri is not optimal. So, for the second construction, we propose a direct construction using the angle
measure using dSAM(S1,S2) for the horizontal axis and the difference of the cumulated energy for the vertical axis (eq.26).
Finally, the third representation is directly deduced from the spectral KL-pseudo-divergence (KLPD) using

(
k1KL(S1,S2)+

k2KL(S1,S2)
)

(shape similarity) as horizontal axis and (k1− k2) log
(

k1
k2

)
(energy similarity) as vertical axis (eq.27).

BHSDNS3 :
{

shape : 1−dcos(S1,S2)
energy : L2(S1,S2)

(25)

BHSDSAM :

{
shape : SAM(S1,S2)

energy :
∫

λmax
λmin

(s1(λ )− s2(λ ))dλ
(26)

BHSDKLPD :

{
shape : k1KL(S1,S2)+ k2KL(S2,S1)

energy : (k1− k2) log
(

k1
k2

) (27)

The comparison will be developed in two cases. Firstly, we illustrate the discrimination ability offered by a BHSD structure
in the case of an artificial spectrum set, then on data coming from Cultural Heritage.

C. BHSD applied on artificial dataset

For this first experiment we consider an image composed of two non-uniform regions, defined by a particular distribution
of spectra (fig. 2.(a)). These distributions are defined by basic transformations (magnitude, spectral slicing, standard-deviation)
applied on a Gaussian function. The two initial Gaussian functions are close with non-null intersection. The transformation
parameters are randomly selected using a uniform distribution. Some spectra coming from the two subsets are visible in figure
2.(b) in yellow and red. The black and blue spectra are two references used to process the BHSD. The distance/similarity
measures are computed between the spectrum at each location and the reference. The first reference (black) is chosen as being
closest to the shape of the two spectral distributions, rather than the second reference as farthest (null intersection).

Figure 3 presents the three Bidimensional Histograms of Spectral Differences, where the distances/similarities are computed
between the spectra from image in figure 2.(a) and the reference drawn in black (fig. 3.(b)). In the three cases, the two
distributions are clearly discriminated. For the representation coming from the NS3 score (fig. 3.(a)), as the shape measure is
correlate to the intensity measure, the distribution hull is organized among the diagonal. The non-linearity in the SAM response,
and consequently in the cosinus extracted from the spectral angle explains why the two distributions have not the same size
on the horizontal axis. For the second BHSD representation using the SAM and the difference of cumulated energy (fig.3.b),
the non-linearity in the angle assessment of SAM explains the shape difference between the histograms of two subsets. The
difference of the total energy as vertical axis allows to remove the correlation between axis, solving the problem presented in
NS3 score.

Figure 3.(c) finally presents the Bidimensional Histogram of Spectral Differences processed using the two parts of the
spectral KL-pseudo-divergence. The first distribution starting from the left is the closest one from the reference, corresponding
to the red spectra in figure 2.(b). Non-linearity of the KLPD shape similarity measure also induces differences in the horizontal
size of the spectral difference distributions.



8

As no constraint can be imposed on reference location and shape, in a second experiment we consider a reference far from the
initial spectral sets (blue reference in figure 2.(b). Figure 4 shows the corresponding BHSD. As explained in section II-B, due
to the null intersection between the reference and the spectra from the two distributions, the SAM measure and the associated
cosinus version (NS3 case) are saturated. Consequently the angle measurement can not express the shape variations (fig. 4.(a)
and 4.(b)). Rather than the proposed representation based on the spectral KL-pseudo-divergence (fig. 4.(c)) that allows to well
represent the two spectral distributions. To note slicing the reference over wavelengths changes the range of shape variations
from [0;450] to [1500;4500] (fig. 3.(c) and 4.(c)).

D. Applications of BHSD on Cultural Heritage applications

In Cultural Heritage domain, it is crucial to identify pigments in painting without destructive approaches. In this context,
hyperspectral imaging offers a real solution only limited by the lack of accuracy in spectral distance assessment. Thanks to
the spectral KL-Pseudo-Divergence (KLPD) and to the Bidimensional Histogram of Spectral Differences (BHSD), we propose
a solution to this limit.

For this applicative part, we show the interest of the proposed solutions to analyze the spectral distribution of some colours
from the Borbonicus codex4. The hyperspectral images from the Borbonicus codex was acquired by the Research Center on the
Collection from the French National Museum of Natural History. Page 30 is presented in figure 5.(a) using Colour Matching
Functions (CMF) to transform the spectral image into RGB colour space [34]. This image was acquired using an hyperspectral
sensor in the visible range (840 channels between 400nm to 1000nm, 1600×1700 pixels/page).

1) BHSD to analyze spectral distribution of colour: In a first experiment, we will take attention to the green colour of this
page 30. The spectra corresponding to the green colour is selected using a threshold and validated by experts. In figure 5, we
show some of the selected spectra and their corresponding colour.

In a first consideration, we select the spectrum drawn in red in figure 5.(b) as the reference to analyze the spectral distribution
of green pigments. The Bidimensional Histogram of Spectral Differences of the green pixels is presented in figure 6.(c). In
this figure, we added also the unidimensional histograms corresponding to the shape (chromatic) and intensity similarities. As
the similarity measures are positive and as the reference is in the middle of the spectral distribution, the spectral distribution
presents a peak at the origin of the representation. A small subset of spectra appears in the top-right corner of the distribution.
We can compare this representation with those constructed using the spectral angle mapper (SAM) as shape similarity measure
in figure 7. Due to the used intensity measure processing a difference between the cumulated sum of reflectance, the intensity
similarity presents negative values. In this representation, the smallest distribution identified previously appears also in the
top-right corner.

In order to obtain a better representation of the spectrum distribution, the reference must be chosen as sufficiently different
to the spectrum to analyze. For the second experiment, we selected an equi-energetic spectrum (draw in blue in figure 5.(a))
as reference(fig. 8). As expected the BHSD shape using the KL-pseudo-divergence is fully developed without the symmetrical
effect due to a reference at the center of the distribution (fig. 8.(b)). In the two BHSD using SAM and the KL-pseudo-
divergence we perceive a second kernel in the main distribution, quietly sliced in shape and intensity. The smallest and isolated
distribution is also preserved in the two representations as close to the equi-energetic reference. We need to be care to the
negative values of intensity differences in the BHSD using the SAM measure. That explains why this representation using
SAM is the symmetrical one from those using the KL-pseudo-divergence.

4The Borbonicus codex is composed of 3 sections painted between 1522 and probably 1540 with a length of 14 meters, comprising 36 fan-folded sheets
each of 0.39×0.39 meter. It is stored at the Palais Bourbon in Paris.

(a) NS3 bidimensional representation (b) SAM + energy difference (c) SP-KL divergence

Fig. 3. Bidimensional Histograms of Spectral Differences (BHSD) for spectra from figure 2 using as reference the spectrum in black (fig. 2.(b)).
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(a) NS3 bidimensional representation (b) SAM + energy difference (c) SP-KL divergence

Fig. 4. Bidimensional Histograms of Spectral Differences (BHSD) for spectra from figure 2 using as reference the spectrum in blue (fig. 2.(b)).

Finally, we can extract some spectra corresponding to the two kernels in the main distributions5. The corresponding spectra
are visible in figure 8.(c). As expected, we observe the small differences in intensity and shape. Such differences are difficult
to identify without BHSD representations.

2) BHSD for colour contrast analysis: Working with artificial reference will be important to develop a metrology for spectral
data by preserving the physical link to the optical properties of surfaces. Nevertheless, a great part of the hyperspectral imaging
interest is related to the human perception of the analyzed surfaces. In this context, one of the major question is relative to the
contrast assessment. In this last set of results on real data, we propose first to analyze the BHSD of the spectra corresponding
to the green pixels using as reference the median spectrum corresponding to the background of the page, so the support of
the painting. The average support reflectance is visible in figure 10.(c) associated to the standard-deviation of each channel.
The median spectrum is the closest to the average one in the sense of the Vector Median Filter (VMF) from Astola [35].
However, the median spectrum is not blured by the averaging process. We will then observe inside a single BHSD the spectra
corresponding to two different colours (red and blue) in reference to the median spectrum of the support.

In the first case, we search to observe the contrast between the green pixels and the support. In order to do that, the median
spectrum from the support is extracted using the Vector Median Filter from Astola[35]. In figure 9, the two BHSD using
the SAM and KL-pseudo-divergence are presented. Surprisingly, the BHSD using the SAM similarity measure is slightly
modified comparing to the previous representation obtained with an equi-energetic reference. Rather than the BHSD using the
KL-pseudo-divergence showing a reduced shape difference between the reference and the spectra corresponding to the green.
As it can be observed in figure ??, the difference between the equi-energetic and the support spectra is important and must
induced significative differences in shape similarity. The non-linearity of the SAM similarity measure explains such results and
consequently limitations. As the shape dissimilarities between the reference and the analyzed spectra are important and due to
the fact that the intersection between the spectra are not null, the SAM measure looses in discrimination capacity.

5The spectra are extracted around the coordinates (100 ; 420) and (125 ; 580) in the BHSD using the KL-pseudo-divergence (fig. 8.(b)).

(a) Colour reproduction by CMF of page 30.

(b) Green spectra and the selected spectral refer-
ences in red and blue.

(c) Corresponding colours to the selected green spectra
transformed in RGB using CMF.

Fig. 5. Page 30 from the Borbonicus Codex[33] and some extracted spectra corresponding to green colour.



10

(a) Chromatic differences (b) Intensity differences (c) Bidimensional representation

Fig. 6. Unidimensional and bidimensional histograms of similarity measure from the spectral pseudo-divergence processed for the green pixels in the codex,
distances are computed between the spectrum for each green pixel on the median green spectrum.

The second result illustrates better this lack in discrimination of the SAM measure when the shape dissimilarities are
important. In this case, we construct a dataset including blue and red spectra, and we compute the BHSD using as reference
the median spectrum from the support of page 30 (fig. 10). As expected, the two spectral subset are well separated in the
BHSD using the KL-Pseudo-Divergence (fig. 10.(b)). The spectral distribution corresponding to the blue colour is closest from
the support spectra (location : (75;90)). We observe that the intensity differences between the two colours are reduced and that
the discrimination is easily performed using the shape difference part of the spectral KL-Pseudo-Divergence. By opposition
this discrimination is quiet impossible when the SAM measure is used to construct the BHSD (fig. 10.(a)).

3) Discussion: These last results finish to prove the interest of the Bidimensional Histogram of Spectral Differences (BHSD)
using the spectral Kullback-Leibler Pseudo-Divergence. It is possible to construct and propose other BHSD taking benefit
from the existing shape similarity measures as Spectral Angle Measure (SAM), Spectral Correlation Angle Measure. . . But
the robustness can not be ensured. Finally this result is in accordance with the remarks from Nidamanuri[15] about the
limits of spectral angle measures. They are also in accordance to our previous work on the theoretical comparison of
spectral distance/similarity measures[13], [14]. In these two works, it was shown that the non-linear responses of these
angle measurement becomes saturated when the spectra have a null-intersection. But as previously explained such theoretical
construction is never observed. Nevertheless in this work, we prove in a real case the impact of these angle measurements.
The last result (fig. 10.(a)) is certainly the better illustration of these limits with the impossibility to discriminate the spectra
from the blue colour from those of the red colour. Such limits are due to an unadapted definition associated to a spectrum. A
spectrum can not be considered as a vector or a probability density function but as a spectral series.

Thanks to an adapted definition, we defined the spectral KL pseudo-divergence. This writing form is a valid measure,
respecting the theoretical behaviour defined in [14] and respecting the decomposition proposed by Nidamanuri [15]. As
demonstrated in the proposed results, the spectral discrimination is robust whatever the reference choices are. We can also
note that the writing form is generic, due to relationship to the continuous integrals. Consequently, the validity proofs and
bidimensional histogram representations developed in the visible domain are directly extendable to the other spectral domains.

The last element of discussion is about the spectral reference choice. The different BHSD of the green colour processed
using different references are not exactly similar. These variations are expected, because each representation can be consider
as a projection of the n-dimensional spectral series into a two-dimensional space defined by the reference. By changing the

(a) Spectral Angle Mapper (b) Intensity differences (c) Bidimensional representation

Fig. 7. Unidimensional and bidimensional histograms of similarity measure from basic similarity measures for the green pixels in the codex, distances are
computed between the spectrum for each green pixel on the median green spectrum.
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(a) SAM+Energetics. (b) KL-pseudo-divergence. (c) Extracted spectra from the main distribution
and the isolated one.

Fig. 8. Bidimensional histograms of spectral differences using an equi-energetic reference and extracted spectra.

(a) SAM+Energetics. (b) KL-pseudo-divergence.

Fig. 9. Bidimensional histograms of spectral differences using as reference the median spectrum from the support.

reference, we change the point of view on these n-dimensional spectral series. So to obtain a more complete understanding
about the spectral distribution, several references should be combined.

V. CONCLUSION

In this paper we addressed the question of the distance/similarity assessment between spectra with the objective to produce
a distance/similarity function valid in accordance to the mathematical and physical sense. We selected to decompose the
spectral distance/similarity measure in two parts dedicated to intensity and shape differences as proposed by Nidamanuri [15].
Measures based on Kullback-Leibler divergence are actually identified as the most efficient when applied on existing spectral
image databases [16], [18], [17]. In addition in [14], it was shown that a spectrum can not be considered as a probability
density function, neither as a vector. Thanks to all these bibliographic results and considering a spectrum as a spectral series,
we constructed a spectral Kullback-Leibler-pseudo-divergence enabling all these constraints.

(a) SAM+Energetics. (b) KL-pseudo-divergence. (c) Mean Spectrum and standard-deviation for
each spectral channel of the support reflectance.

Fig. 10. Bidimensional histograms of spectral differences of blue and red spectra using as reference the median spectrum from the support.
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As a direct consequence of the similarity construction, we proposed a bidimensional representation of the spectral differences,
adapted for the analysis of histograms of spectral differences. We show that such representations are easy to interpret and allow
to identify the structure of the n-dimensional variations of the spectra. In the next trends, such representations will offer great
perspectives in the spectrum classification.

In a real case coming from an application in Cultural Heritage, we prove the limits of others bidimensional histograms
of spectral differences based on angle measurements like spectral angle mapper (SAM). In this using case, we illustrate the
pigment identification problem using the proposed pseudo-divergence and the bidimensional histogram of spectral differences.
The following article will assess the accuracy of the Bidimensional Histogram of Spectral Differences and the relationship to
the physical content. In this following work, we will consider the combination of several references to improve the spectral
discrimination between close spectra.

APPENDIX

A. Kullback-Leibler Divergence for Gaussian spectral distributions
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where hi is a density function for a multivariate Gaussian distribution with mean µi and covariance matrix Σi. |.| denotes the
determinant of a matrix.

Let h1 and h2 are two n-dimensional Gaussian spectral distributions.
Let τ = µ1−µ2 is the translation parameter and k1, k2 ∈ R\{0}.
We so have:
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We note that KL divergence is independant of the amplitude.
In the case of spectral distributions we so have:
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