
HAL Id: hal-01272564
https://hal.science/hal-01272564

Submitted on 11 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPINORIAL REPRESENTATION OF
SUBMANIFOLDS IN RIEMANNIAN SPACE FORMS

Pierre Bayard, Marie-Amélie Lawn, Julien Roth

To cite this version:
Pierre Bayard, Marie-Amélie Lawn, Julien Roth. SPINORIAL REPRESENTATION OF SUBMANI-
FOLDS IN RIEMANNIAN SPACE FORMS. Pacific Journal of Mathematics, 2017, 291 (1), pp.51-80.
�hal-01272564�

https://hal.science/hal-01272564
https://hal.archives-ouvertes.fr


SPINORIAL REPRESENTATION OF SUBMANIFOLDS IN

RIEMANNIAN SPACE FORMS

PIERRE BAYARD, MARIE-AMÉLIE LAWN AND JULIEN ROTH

Abstract. In this paper we give a spinorial representation of submanifolds
of any dimension and codimension into Riemannian space forms in terms of

the existence of so called generalized Killing spinors. We then discuss several

applications, among them a new and concise proof of the fundamental theorem
of submanifold theory. We also recover results of T. Friedrich, B. Morel and

the authors in dimension 2 and 3.
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1. Introduction

One of the fundamental problems in submanifold theory deals with the existence
of isometric immersions from a Riemannian manifold Mn into another fixed Rie-
mannian manifold Nn+p. If the ambient manifold is a space form Rn+p, Sn+p or
Hn+p, the fundamental theorem of submanifold theory states that the Gauß, Ricci
and Codazzi equations, also called structure equations, are necessary and sufficient
conditions.

In the case of surfaces, another approach is given by the study of Weierstrass
representations. Historically, these representations are describing a conformal mini-
mal immersion of a Riemann surface M into the three-dimensional Euclidean space
R3. Precisely, given a pair (h, g) consisting of a holomorphic and a meromorphic
function, the formula

f(x, y) = <e
∫ (

(1− g2(z))h(z), (1 + g2(z))h(z), 2g(z)h(z)
)
dz,

with z = x + iy some complex coordinate, gives a local parametrization of a min-
imal surface in Euclidean three-space. Conversely every minimal surface can be
parametrized in this way with respect to isothermal coordinates. However, relax-
ing the condition of holomorphicity on the pair (h, g), this representation is much
more general and can actually describe all surfaces in R3 as shown in [9].

At the end of the 1990s, following an idea of U. Abresch and D. Sullivan, R.
Kusner and N. Schmidt reformulated this approach in a more concise and simpler
way in terms of spinor fields (see [12]). These so called spinorial Weierstrass repre-
sentations were studied extensively by B.G. Konopelchenko, I. Taimanov and many
others (see [10, 11, 23, 24] and the references there).

However these formulae were given in local coordinates and remained purely
computational until Friedrich gave in [8] an elegant and geometrically invariant
description using spinor bundles. We point out that the equivalence between the two
approaches was recently showed in [21]. The main idea is to use the identification
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between the ambient spinor bundle restricted to the surface and the spinor bundle
of the surface. Note that the condition to be a spin manifold is not restrictive here
since any oriented surface is also spin. More generally, the restriction ϕ of a parallel
spinor field on Rn+1 to an oriented Riemannian hypersurface Mn is a solution of a
generalized Killing equation

∇ΣM
X ϕ = A(X) · ϕ,

where ∇ΣM and · are respectively the spin connection and the Clifford multiplica-
tion on M , and A is the shape operator of the immersion. Conversely, Friedrich
showed that in the case where M is a surface, if there exists a particular spinor
field ϕ satisfying the generalized Killing equation, where A is an arbitrary field of
symmetric endomorphisms of the tangent bundle, then there exists an isometric im-
mersion of M into R3 with shape operator A. Moreover ϕ is the restriction to M of a
parallel spinor of R3. The proof consists in showing that A indeed satisfies the struc-
ture equations. This result was generalized to surfaces into other three-dimensional
ambient spaces [17, 20, 22], to three-dimensional manifolds into four-dimensional
space forms [14, 20] and also to the two-dimensional pseudo-Riemannian setting
[15]. However the question whether in general a manifold of arbitrary dimension
carrying a generalized Killing spinor can be immersed isometrically into some Eu-
clidean space remained until now unanswered. Some of the few achievement in this
direction were obtained in [1] for real analytic manifolds and in [3, 19] when A is
a Codazzi tensor, showing the existence of an immersion into a Ricci flat manifold
admitting a parallel spinor which restricts to ϕ.

Similarly, in higher codimension, very little is known. In [5], we extended the
approach to the case of surfaces in four-dimensional space forms. The key point
was to use the remark due to Bär [2] that an ambient spinor restricted to an
immersed submanifold M can be identified with a section of the spinor bundle of
the submanifold twisted with the spin bundle of the normal bundle. This was then
extended to the pseudo-Riemannian setting in [4, 6].

Following the same idea, we use in this paper a particular twisted spin bundle
over a spin manifold of arbitrary dimension to give a geometrically invariant spino-
rial representation of submanifolds of Euclidean spaces in any codimension. Note
that our proof does not use the structure equations but merely the existence of a
generalized Killing spinor on the manifold. We later show that one indeed recovers
the previously mentioned result of Friedrich [8] in the case of surfaces in R3, as well
as the one of Lawn-Roth [14] for three-dimensional hypersurfaces and of Bayard-
Lawn-Roth [5] for surfaces in R4 (section 7). It is worth pointing out that the study
of generalized Killing spinors has revealed very interesting applications. Moroianu
and Semmelmann were for instance able to construct new examples of Lagrangian
submanifolds of the nearly Kähler S3 × S3 using the existence of such spinors on
the sphere S3 [18]. Moreover it is well-known that there is a close relationship to
G-structures: for instance a generalized Killing spinor defines a cocalibrated G2-
structure on the manifold in dimension 7 and a half-flat SU(3)-structure in dimen-
sion 6 (see for example [7]). However the existence of such spinors is a non-trivial
problem: our construction is therefore of particular interest.

Besides the above-mentioned, we discuss several other applications. A notable
achievement is a new and concise proof of the fundamental theorem of submanifold
theory. In the special case of surfaces, we show that our approach is equivalent to
the spinorial Weierstrass representations, i.e., we obtain explicit formulas in terms
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of functions involving the components of the spinor field which are holomorphic if
the surface is minimal. Our result can thus be seing as a generalization of most
of the concrete Weierstrass representation formulae existing in the literature: it
provides a general framework to understand formulae appearing in a variety of con-
texts. Moreover, since the basic ideas and constructions behind our representation
are fairly simple, we hope that our result will be useful to obtain new concrete
Weierstrass representation formulae, once some geometric context is specified: this
is especially interesting for surfaces, in low-dimensional pseudo-Riemannian space
forms, under some curvature assumptions.

Finally, in the last section, we extend our result to submanifolds immersed into
the other space forms Sn and Hn, and recover the results of Morel [17] if n = 3.

2. Preliminaries

2.1. The spin representation. Let us denote by Cln the real Clifford algebra on
Rn with its standard scalar product. We consider the representation

ρ : Cln → End(Cln)

a 7→ ξ 7→ aξ

and its restriction to the group Spin(n)

ρ|Spin(n) : Spin(n) → GL(Cln)

a 7→ ξ 7→ aξ.

Note that this is not the adjoint representation of the spin group on the Clifford
algebra, but rather the representation given by left multiplication.
Moreover we want to point out that we are not taking as usual the restriction of
an irreducible representation of the Clifford algebra to the spin group, but that
we consider instead the restriction of the entire real Clifford algebra. This real
representation splits into a sum of 2k copies of spinor spaces of dimension 2n−k,
where the number k depends on the dimension n and can be computed using the
Radon-Hurwitz numbers (we refer to [16] for further details).
If p+ q = n, we have a natural map

Spin(p)× Spin(q)→ Spin(n)

associated to the splitting Rn = Rp ⊕Rq and to the corresponding isomorphism of
Clifford algebras

Cln = Clp⊗̂Clq,
where ⊗̂ denotes the Z2−graded tensor product.
We get thus the following representation, still denoted by ρ,

ρ : Spin(p)× Spin(q) → GL(Cln)(1)

a 7→ ξ 7→ aξ.

2.2. The twisted spinor bundle Σ. We consider M a p-dimensional Riemann-
ian manifold, E → M a bundle of rank q, with a fibre metric and a compatible
connection. We assume that E and TM are oriented and spin, with given spin
structures

Q̃M
2:1→ QM and Q̃E

2:1→ QE



4 PIERRE BAYARD, MARIE-AMÉLIE LAWN AND JULIEN ROTH

where QM and QE are the bundles of positively oriented orthonormal frames of
TM and E, and we set

Q̃ := Q̃M ×M Q̃E ;

this is a Spin(p)× Spin(q)-principal bundle. We define the associated bundle

Σ := Q̃×ρ Cln
and its restriction

(2) UΣ := Q̃×ρ Spin(n) ⊂ Σ

where ρ is the representation (1) given by left multiplication. We remark that if
we used the adjoint representation instead, we would just get the Clifford algebra
bundle. Again we point out that our spinor bundle Σ is a real vector bundle with
fiber the entire Clifford algebra and not, as usual, an irreducible complex Clifford
module.
The vector bundle Σ is equipped with the covariant derivative ∇ naturally associ-
ated to the spinorial connections on Q̃M and Q̃E .

Remark 1. The bundle Σ is a spinor bundle on TM twisted by a spinor bundle
on E : indeed, let us consider the representations

ρ1 : Spin(p)→ GL(Clp) and ρ2 : Spin(q)→ GL(Clq)

given by left multiplication, and the associated bundles

Σ1 := Q̃M ×ρ1 Clp and Σ2 := Q̃E ×ρ2 Clq
equipped with their natural connections ∇1 and ∇2; then

Σ1 ⊗ Σ2 ' Σ

and
∇1 ⊗ idΣ2

⊕ idΣ1
⊗∇2 ' ∇.

This is a consequence of the fact that the natural isomorphism i : Clp ⊗Clq ' Cln
is an equivalence of representations of Spin(p)×Spin(q), i.e., for g1 ∈ Spin(p) and
g2 ∈ Spin(q),

i ◦ ρ1(g1)⊗ ρ2(g2) = ρ(g1, g2) ◦ i;
indeed, if ξ1 ∈ Clp and ξ2 ∈ Clq,
i(ρ1(g1)⊗ρ2(g2)(ξ1⊗ξ2)) = i(g1ξ1⊗g2ξ2) = g1ξ1g2ξ2 = g1g2ξ1ξ2 = ρ(g1, g2)(i(ξ1⊗ξ2)),

where the products in the third and fourth terms are products in Cln (note that ξ1
and g2 commute since ξ1 belongs to Clp and g2 is a product of an even number of
vectors belonging to Rq).

As in the usual construction in spin geometry, the spin bundle Σ is endowed with
a natural action of the Clifford bundle Cl(TM ⊕ E) : indeed, the Clifford product

Cl(Rp ⊕ Rq)× Cln → Cln

(η, ξ) 7→ η · ξ
is Spin(p)×Spin(q) equivariant, if the action of Spin(p)×Spin(q) on Cl(Rp⊕Rq)
is the adjoint action, and the action on Cln is the left multiplication: we obviously
have, for (g1, g2) ∈ Spin(p)× Spin(q) and g = g1g2 ∈ Spin(n),

(gξg−1) · (gη) = g · (ξη)

for ξ, η ∈ Cln.
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2.3. A Cln-valued bilinear map on Σ. Let us denote by τ : Cln → Cln the
anti-automorphism of Cln such that

τ(x1 · x2 · · ·xk) = xk · · ·x2 · x1

for all x1, x2, . . . , xk ∈ Rn, where ‘·’ denotes as usual the Clifford multiplication,
and set

〈〈., .〉〉 : Cln × Cln → Cln(3)

(ξ, ξ′) 7→ τ(ξ′)ξ.

This map is Spin(n)−invariant: for all ξ, ξ′ ∈ Cln and g ∈ Spin(n) we have

〈〈gξ, gξ′〉〉 = τ(gξ′)gξ = τ(ξ′)τ(g)gξ = τ(ξ′)ξ = 〈〈ξ, ξ′〉〉,
since Spin(n) ⊂ {g ∈ Cl0n : τ(g)g = 1}; this map thus induces a Cln−valued map

〈〈., .〉〉 : Σ× Σ → Cln(4)

(ϕ,ϕ′) 7→ 〈〈[ϕ], [ϕ′]〉〉

where [ϕ] and [ϕ′] ∈ Cln represent ϕ and ϕ′ in some spinorial frame s̃ ∈ Q̃.

Lemma 2.1. The map 〈〈., .〉〉 : Σ×Σ→ Cln satisfies the following properties: for
all ϕ,ψ ∈ Γ(Σ) and X ∈ Γ(TM),

(5) 〈〈ϕ,ψ〉〉 = τ〈〈ψ,ϕ〉〉
and

(6) 〈〈X · ϕ,ψ〉〉 = 〈〈ϕ,X · ψ〉〉.

Proof. We have

〈〈ϕ,ψ〉〉 = τ [ψ] [ϕ] = τ(τ [ϕ] [ψ]) = τ〈〈ψ,ϕ〉〉
and

〈〈X · ϕ,ψ〉〉 = τ [ψ] [X][ϕ] = τ([X][ψ])[ϕ] = 〈〈ϕ,X · ψ〉〉
where [ϕ], [ψ] and [X] ∈ Cln represent ϕ, ψ and X in some given frame s̃ ∈ Q̃. �

Lemma 2.2. The connection ∇ is compatible with the product 〈〈., .〉〉 :

∂X〈〈ϕ,ϕ′〉〉 = 〈〈∇Xϕ,ϕ′〉〉+ 〈〈ϕ,∇Xϕ′〉〉
for all ϕ,ϕ′ ∈ Γ(Σ) and X ∈ Γ(TM).

Proof. If ϕ = [s̃, [ϕ]] is a section of Σ = Q̃×ρ Cln, we have

∇Xϕ = [s̃, ∂X [ϕ] + ρ∗(s̃
∗α(X))([ϕ])] , ∀X ∈ TM,

where ρ is the representation (1) and α is the connection form on Q̃; the term
ρ∗(s̃

∗α(X)) is an endomorphism of Cln given by the multiplication on the left by
an element belonging to Λ2Rn ⊂ Cln, still denoted by ρ∗(s̃

∗α(X)). Such an element
satisfies

τ (ρ∗(s̃
∗α(X))) = −ρ∗(s̃∗α(X)),

and we have

〈〈∇Xϕ,ϕ′〉〉+ 〈〈ϕ,∇Xϕ′〉〉 = τ{[ϕ′]} (∂X [ϕ] + ρ∗(s̃
∗α(X))[ϕ])

+τ {∂X [ϕ′] + ρ∗(s̃
∗α(X))[ϕ′]} [ϕ]

= τ{[ϕ′]}∂X [ϕ] + τ {∂X [ϕ′]} [ϕ]

= ∂X〈〈ϕ,ϕ′〉〉.
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�

3. The spin geometry of a submanifold in Rn

We keep the notation of the previous section, assuming moreover here that M
is a submanifold of Rn and that E → M is its normal bundle. Let as before
Q̃M

2:1→ QM be a spin structure of M . Our goal is to construct Q̃ such that we
obtain an identification

Σ = Q̃×ρ Cln 'M × Cln.
Although this type of result is used in several places in the literature, we could not
find a complete statement or proof. Therefore we will give a detailed proof, which
we believe may be useful in its own right.
Let (e1, . . . ep) resp. (ep+1, . . . ep+q) be orthonormal frames of TM resp. E and
QRn the bundle of positively oriented orthonormal frames of Rn. We can consider
the map

ι : QM ×M QE → QRn

((e1, . . . ep), (ep+1, . . . ep+q)) 7→ (e1, e2, . . . ep+q)

given by the concatenation of frames.
The map

Q̃M ×M QE → QM ×M QE

is obviously a two-to-one covering of QM ×M QE .

Let now Q̃Rn
2:1→ QRn be the (unique) spin structure of Rn.

Then the bundle
Q̃ := (Q̃M ×M QE)×QRn Q̃Rn

is a Spin(p)×Spin(q)-principal bundle over M and a four-to-one covering of QM×M
QE . Observe that Q̃ = Q̃M ×M Q̃E , where Q̃E := Q̃/Spin(p) (and the projection

Q̃/Spin(q) → Q̃M is a map of principal Spin(p)-bundles, hence an isomorphism).

Moreover, Q̃E is a spin structure on E, canonically associated to the spin structures
on M and Rn.

Claim. Consider the bundle

Q̃×c Spin(p+ q) := (Q̃× Spin(p+ q))/(Spin(p)× Spin(q)),

where
c : Spin(p)× Spin(q)→ Spin(p+ q)

is the map corresponding to the isomorphism of Clifford algebras Clp⊗̂Clq ∼= Clp+q.
Then there is a canonical isomorphism of Spin(n)-principal bundles,

Q̃×c Spin(p+ q) ∼= Q̃Rn |M .

Proof. Consider the projection π : Q̃→ Q̃Rn to the last factor. Then the map

π̃ : Q̃× Spin(p+ q) → Q̃Rn

(q̃, s) 7→ sπ(q̃)

satisfies π̃(s0q̃, ss
−1
0 ) = π̃(q̃, s) for any s0 ∈ Spin(p) × Spin(q), so π̃ descends to a

map Q̃×c Spin(p+ q)→ Q̃Rn . The source is clearly a Spin(p+ q)-principal bundle
on M , as is the target, and the map is Spin(p+q)-equivariant and the identity over
M . Hence it is an isomorphism of principal bundles. �
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Corollary 1. If now ρ : Spin(p)× Spin(q)→ GL(Cln) is the map given by ρ̃ ◦ c,
where ρ̃ : Spin(n) → GL(Cln) is the representation induced by left multiplication,
we get

Q̃×ρ Cln ∼= Q̃Rn |M ×ρ̃ Cln ∼= M × Cln.

Proof. The first isomorphism is immediate from the claim, and the second follows
since Q̃Rn is trivial. �

Two connections are thus defined on Σ, the connection ∇ introduced in the pre-
vious section and the trivial connection ∂; they satisfy the following Gauss formula:

(7) ∂Xϕ = ∇Xϕ+
1

2

p∑
j=1

ej ·B(X, ej) · ϕ

for all ϕ ∈ Γ(Σ) and all X ∈ Γ(TM), where B : TM × TM → E is the second
fundamental form of M into Rn. We refer to [2] for the proof (in a slightly different
context).

4. Spinorial representation of submanifolds in Rn

We state the main result of the paper. Let M be a p-dimensional Riemannian
manifold and E → M a bundle of rank q, with a fiber metric and a compatible
connection; we assume that E and TM are oriented and spin, with given spin
structures. We keep the notation of Section 2.

Theorem 1. We moreover assume that M is simply connected, and suppose that
B : TM × TM → E is bilinear and symmetric. The following statements are
equivalent:

(1) There exists a section ϕ ∈ Γ(UΣ) such that

(8) ∇Xϕ = −1

2

p∑
j=1

ej ·B(X, ej) · ϕ

for all X ∈ TM.
(2) There exists an isometric immersion F : M → Rn with normal bundle E

and second fundamental form B.
Moreover, F =

∫
ξ where ξ is the Rn−valued 1-form defined by

(9) ξ(X) := 〈〈X · ϕ,ϕ〉〉

for all X ∈ TM.

The representation formula (9) generalizes the classical Weierstrass representa-
tion formula; see Section 7.

Remark 2. Taking the trace of (8) we get

Dϕ =
p

2
~H · ϕ

where Dϕ =
∑p
j=1 ej · ∇ejϕ, and ~H = 1

p

∑p
j=1B(ej , ej) is the mean curvature

vector of M in Rn. This Dirac equation is known to be equivalent to (8) only for
p = 2 or 3 (see e.g. [8, 14, 15, 5]).
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Proof. 2)⇒ 1) is a direct consequence of the Gauss formula (7) for a submanifold
of Rn: the restriction of parallel spinor fields of the ambient space Rn to the sub-
manifold M are obviously solutions of equation (8) (recall that in the paper the
spinors are constructed with the whole Clifford algebra). The immersion takes the
form F =

∫
ξ where ξ is given by (9) for the special choice ϕ = 1Cln |M , since, in

that case, for all X ∈ TM,

ξ(X) = τ [ϕ] [X] [ϕ] = [X] ' X

where [ϕ] = ±1Cln and [X] ∈ Rn represent ϕ and X in one of the two spinorial
frames of Rn above the canonical basis.
1)⇒ 2): We will prove that the 1-form ξ defined in (9) gives us indeed an immersion
preserving the metric, the second fundamental form and the normal connection.
This follows directly from Propositions 4.1 and 4.2 below. �

Proposition 4.1. Assume that ϕ ∈ Γ(UΣ) is a solution of (8) and define ξ by (9).
Then

(1) ξ takes its values in Rn ⊂ Cln;
(2) ξ is a closed 1-form: dξ = 0.

Proof. 1- By the very definition of ξ, we have

ξ(X) = τ [ϕ][X][ϕ]

for all X ∈ TM, where [X] and [ϕ] represent X and ϕ in a given frame s̃ of Q̃.
Since [X] belongs to Rn ⊂ Cln and [ϕ] is an element of Spin(n), ξ(X) belongs to
Rn.
2- We compute, for X,Y ∈ Γ(TM) such that ∇X = ∇Y = 0 at some point x0,

∂X ξ(Y ) = 〈〈Y · ∇Xϕ,ϕ〉〉+ 〈〈Y · ϕ,∇Xϕ〉〉
= (id+ τ)〈〈Y · ϕ,∇Xϕ〉〉

= (id+ τ)〈〈ϕ,−1

2

p∑
j=1

Y · ej ·B(X, ej) · ϕ〉〉.

Hence

dξ(X,Y ) = ∂X ξ(Y )− ∂Y ξ(X)

= (id+ τ)〈〈ϕ, C · ϕ〉〉

with

C := −1

2

p∑
j=1

{Y · ej ·B(X, ej)−X · ej ·B(Y, ej)} .

Now, for X =
∑

1≤k≤p xkek and Y =
∑

1≤k≤p ykek,

p∑
j=1

X · ej ·B(Y, ej) = −B(Y,X) +

p∑
j=1

∑
k 6=j

xkek · ej ·B(Y, ej)

and
p∑
j=1

Y · ej ·B(X, ej) = −B(X,Y ) +

p∑
j=1

∑
k 6=j

ykek · ej ·B(X, ej),
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which yields the formula

C = −1

2

p∑
j=1

∑
k 6=j

ek · ej · (ykB(X, ej)− xkB(Y, ej)).

This shows that τ [C] = −[C], which implies that

τ〈〈ϕ, C · ϕ〉〉 = τ(τ [ϕ]τ [C][ϕ]) = −τ [ϕ]τ [C][ϕ] = −〈〈ϕ, C · ϕ〉〉.

Thus

dξ(X,Y ) = (id+ τ)〈〈ϕ, C · ϕ〉〉 = 0.

�

We keep the notation of Proposition 4.1, and moreover assume that M is simply
connected; since ξ is closed by Proposition 4.1 we can consider

F : M → Rn

such that dF = ξ. The next proposition follows from the properties of the Clifford
product:

Proposition 4.2. 1. The map F : M → Rn is an isometry.
2. The map

ΦE : E → M × Rn

X ∈ Em 7→ (F (m), ξ(X))

is an isometry between E and the normal bundle of F (M) into Rn, preserving
connections and second fundamental forms. Here, for X ∈ E, ξ(X) still stands for
the quantity 〈〈X · ϕ,ϕ〉〉.

Proof. For X,Y ∈ Γ(TM ⊕ E), we have

〈ξ(X), ξ(Y )〉 = −1

2
(ξ(X)ξ(Y ) + ξ(Y )ξ(X))

= −1

2
(τ [ϕ][X][ϕ]τ [ϕ][Y ][ϕ] + τ [ϕ][Y ][ϕ]τ [ϕ][X][ϕ])

= −1

2
τ [ϕ] ([X][Y ] + [Y ][X]) [ϕ]

= 〈X,Y 〉,

since [X][Y ] + [Y ][X] = −2〈[X], [Y ]〉 = −2〈X,Y 〉. This implies that F is an isome-
try, and that ΦE is a bundle map between E and the normal bundle of F (M) into
Rn which preserves the metrics of the fibers. Let us denote by BF and ∇′F the
second fundamental form and the normal connection of the immersion F ; we want
to show that

(10) ξ(B(X,Y )) = BF (ξ(X), ξ(Y )) and ξ(∇′XN) = ∇′Fξ(X)ξ(N)

for X,Y ∈ Γ(TM) and N ∈ Γ(E). First,

BF (ξ(X), ξ(Y )) = {∂X ξ(Y )}N

where the superscript N means that we consider the component of the vector which
is normal to the immersion. We showed in the proof of Proposition 4.1 that fixing
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a point x0 ∈M, and assuming that ∇Y = 0 at x0 we have

∂X ξ(Y ) = −1

2
(id+ τ)〈〈ϕ, Y ·

p∑
j=1

ej ·B(X, ej) · ϕ〉〉.

and that moreover

Y ·
p∑
j=1

ej ·B(X, ej) = −B(X,Y ) +D

where D is a term which satisfies τD = −D. This implies that

BF (ξ(X), ξ(Y )) =

{
1

2
(id+ τ)〈〈ϕ,B(X,Y ) · ϕ〉〉

}N
= ξ(B(X,Y )),

where the last equality holds since τ [B(X,Y )] = [B(X,Y )] and ξ(B(X,Y )) is
normal to the immersion. We finally show the second identity in (10): we have

∇′Fξ(X)ξ(N) = (∂X ξ(N))N

= 〈〈∇′XN · ϕ,ϕ〉〉N + 〈〈N · ∇Xϕ,ϕ〉〉N + 〈〈N · ϕ,∇Xϕ〉〉N .

The first term in the right hand side is ξ(∇′XN), and we only need to show that

(11) 〈〈N · ∇Xϕ,ϕ〉〉N + 〈〈N · ϕ,∇Xϕ〉〉N = 0.

We have

〈〈N · ∇Xϕ,ϕ〉〉+ 〈〈N · ϕ,∇Xϕ〉〉 = (id+ τ)〈〈N · ∇Xϕ,ϕ〉〉

=
1

2
(id+ τ)〈〈

p∑
j=1

ej ·N ·B(X, ej) · ϕ,ϕ〉〉,

and the identity (11) will thus be proved if we show that this vector is tangent to
the immersion. We have

p∑
j=1

ej ·N ·B(X, ej) = −
p∑
j=1

ej ·B(X, ej) ·N − 2

p∑
j=1

〈B(X, ej), N〉 ej

= −
p∑
j=1

B(X, ej) ·N · ej − 2B∗(X,N)

= −τ

 p∑
j=1

ej ·N ·B(X, ej)

− 2B∗(X,N)

where we have set B∗(X,N) =
∑p
j=1〈B(X, ej), N〉 ej ; thus

1

2
(id+ τ)〈〈

p∑
j=1

ej ·N ·B(X, ej) · ϕ,ϕ〉〉 = −〈〈B∗(X,N) · ϕ,ϕ〉〉,

which is a vector tangent to the immersion since B∗(X,N) belongs to TM ; (11)
follows, which finishes the proof. �
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Remark 3. The group Spin(n) naturally acts on UΣ by multiplication on the right,
and if ϕ ∈ Γ(UΣ) is a solution of (8) and g0 belongs to Spin(n), then ϕ · g0 is also
a solution of (8); in fact, ϕ · g0 defines an immersion which is congruent to the
immersion defined by ϕ : indeed, for all X ∈ Γ(TM),

ξϕ·g0(X) = τ [ϕ · g0][X][ϕ · g0]

= τ(g0)τ [ϕ][X][ϕ]g0

= τ(g0)ξϕ(X)g0,

i.e.

ξϕ.g0 = Ad(g0
−1) ◦ ξϕ;

the linear part of the rigid motion between the immersions defined by ϕ and ϕ · g0

is thus Ad(g0
−1) ∈ SO(n).

5. An application: the Fundamental Theorem of Submanifold Theory

We first recall the equations of Gauss, Ricci and Codazzi for the symmetric
bilinear form B. Let RT and RN stand respectively for the curvature tensors of the
connections on TM and on E. Further, let B∗ : TM × E → TM be the bilinear
map such that for all X,Y ∈ Γ(TM) and N ∈ Γ(E)

〈B(X,Y ), N〉 = 〈Y,B∗(X,N)〉,

then we have, for all X,Y, Z ∈ Γ(TM) and N ∈ Γ(E),

(1) the Gauss equation

RT (X,Y )Z = B∗(X,B(Y,Z))−B∗(Y,B(X,Z)),

(2) the Ricci equation

RN (X,Y )N = B(X,B∗(Y,N))−B(Y,B∗(X,N)),

(3) the Codazzi equation

∇̃XB(Y, Z) = ∇̃YB(X,Z);

in the last equation, ∇̃ denotes the natural connection on T ∗M ⊗ T ∗M ⊗ E.

Proposition 5.1. The equations of Gauss, Ricci and Codazzi on B are the inte-
grability conditions of (8).

Proof. We assume that ϕ ∈ Γ(UΣ) is a solution of (8) and compute the curvature

R(X,Y )ϕ = ∇X∇Y ϕ−∇Y∇Xϕ−∇[X,Y ]ϕ.

We fix a point x0 ∈M, and assume that ∇X = ∇Y = 0 at x0. We have

∇X∇Y ϕ = −1

2

p∑
j=1

ej ·
(
∇̃XB(Y, ej) · ϕ+B(Y, ej) · ∇Xϕ

)
= −1

2

p∑
j=1

ej · ∇̃XB(Y, ej) · ϕ−
1

4

p∑
j,k=1

ej · ek ·B(Y, ej) ·B(X, ek).
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Thus

R(X,Y )ϕ = −1

2

p∑
j=1

ej ·
(
∇̃XB(Y, ej)− ∇̃YB(X, ej)

)
· ϕ

+
1

4

∑
j 6=k

ej · ek · (B(X, ej) ·B(Y, ek)−B(Y, ej) ·B(X, ek)) · ϕ(12)

−1

4

p∑
j=1

(B(X, ej) ·B(Y, ej)−B(Y, ej) ·B(X, ej)) · ϕ.

We compute the last two terms in the following lemma:

Lemma 5.2. Let us set

A :=
1

4

∑
j 6=k

ej · ek · (B(X, ej) ·B(Y, ek)−B(Y, ej) ·B(X, ek))

and

B := −1

4

p∑
j=1

(B(X, ej) ·B(Y, ej)−B(Y, ej) ·B(X, ej)) .

We have

A =
1

2

∑
j<k

{〈B∗(X,B(Y, ej)), ek〉 − 〈B∗(Y,B(X, ej)), ek〉} ej · ek

and

B =
1

2

∑
k<l

〈B(X,B∗(Y, nk))−B(Y,B∗(X,nk)), nl〉nk · nl.

Here e1, . . . , ep and n1, . . . , nq are orthonormal basis of Txo
M and Exo

, respectively.

Proof. For the computation of A, we notice that∑
j 6=k

ej · ek ·B(Y, ej) ·B(X, ek) = −
∑
j 6=k

ej · ek ·B(Y, ek) ·B(X, ej),

and get

A =
1

4

∑
j 6=k

ej · ek · (B(X, ej) ·B(Y, ek) +B(Y, ek) ·B(X, ej))

= −1

2

∑
j 6=k

〈B(X, ej), B(Y, ek)〉ej · ek

= −1

2

∑
j<k

{〈B(X, ej), B(Y, ek)〉 − 〈B(Y, ej), B(X, ek)〉} ej · ek

= −1

2

∑
j<k

{〈B∗(Y,B(X, ej)), ek〉 − 〈B∗(X,B(Y, ej)), ek〉} ej · ek.

For the computation of B, we write

B(Y, ej) =
∑
k

〈B(Y, ej), nk〉nk and B(X, ej) =
∑
l

〈B(X, ej), nl〉nl
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and get∑
j

B(Y, ej) ·B(X, ej) =
∑
kl

∑
j

〈B(Y, ej), nk〉〈B(X, ej), nl〉nk · nl

=
∑
kl

∑
j

〈ej , B∗(Y, nk)〉〈ej , B∗(X,nl)〉nk · nl

=
∑
kl

〈B∗(Y, nk), B∗(X,nl)〉nk · nl

=
∑
kl

〈B(X,B∗(Y, nk)), nl〉nk · nl;

thus

B =
1

4

∑
kl

〈B(X,B∗(Y, nk))−B(Y,B∗(X,nk)), nl〉nk · nl

=
1

2

∑
k<l

〈B(X,B∗(Y, nk))−B(Y,B∗(X,nk)), nl〉nk · nl.

�

On the other hand, the curvature of the spinorial connection is given by

R(X,Y )ϕ =
1

2

 ∑
1≤j<k≤p

〈RT (X,Y )(ej), ek〉 ej · ek(13)

+
∑

1≤k<l≤q

〈RN (X,Y )(nk), nl〉 nk · nl

 · ϕ.
We now compare the expressions (12) and (13) using the calculations in Lemma

5.2: since in a given frame s̃ belonging to Q̃, ϕ is represented by an element which
is invertible in Cln (it is in fact represented by an element belonging to Spin(n)),
we may identify the coefficients and get

〈RT (X,Y )(ej), ek〉 = 〈B∗(X,B(Y, ej)), ek〉 − 〈B∗(Y,B(X, ej)), ek〉,

〈RN (X,Y )(nk), nl〉 = 〈B(X,B∗(Y, nk)), nl〉 − 〈B(Y,B∗(X,nk)), nl〉
and

∇̃XB(Y, ej)− ∇̃YB(X, ej) = 0

for all the indices. These equations are the equations of Gauss, Ricci and Codazzi.

We finally show that the equations of Gauss, Codazzi and Ricci are also sufficient
to get a solution of (8): by the computation above, the connection on Σ defined by

(14) ∇′Xϕ := ∇Xϕ+
1

2

p∑
j=1

ej ·B(X, ej) · ϕ

for all ϕ ∈ Γ(Σ) and X ∈ Γ(TM) is then a flat connection. Moreover, this connec-
tion may be regarded as a connection on the principal bundle UΣ (with the group
Spin(n) acting from the right): indeed, ∇ defines such a connection (since it comes
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from a connection on Q̃ and by (2)), and the right hand side term in (14) defines a
linear map

TM → χinvV (UΣ)

X 7→ ϕ 7→ 1

2

p∑
j=1

ej ·B(X, ej) · ϕ

from TM to the vector fields χinvV (UΣ) on UΣ which are vertical and invariant
under the action of the group (these vector fields are indeed of the form ϕ 7→ η · ϕ,
η ∈ Λ2(TM ⊕ E) ⊂ Cl(TM ⊕ E)). Since a flat connection on a principal bundle
admits a local parallel section, there exists a local section ϕ ∈ Γ(UΣ) such that
∇′ϕ = 0, and thus a solution of (8). �

As a consequence of Theorem 1 and Proposition 5.1 we therefore get immediately

Corollary 2 (Fundamental Theorem of Submanifold Theory). We keep the hy-
potheses and notation of Section 2, and moreover assume that M is simply con-
nected and that B : TM × TM → E is bilinear, symmetric and satisfies the equa-
tions of Gauss, Codazzi and Ricci. Then there exists an isometric immersion of M
into Rn with normal bundle E and second fundamental form B. The immersion is
unique up to a rigid motion in Rn.

Proof. As proved in Proposition 5.1, the equations of Gauss, Codazzi and Ricci
are exactly the integrability conditions of (8). By Theorem 1, with a solution
ϕ ∈ Γ(UΣ) of equation (8) at hand, F =

∫
ξ, where ξ is the 1-form defined in (9)

is the immersion. Finally, a solution of (8) is unique up to the multiplication on
the right by an element of Spin(n) (since this is a parallel section of the Spin(n)
principal bundle UΣ, see the proof of Proposition 5.1); the multiplication on the
right of ϕ by an element of Spin(n) and the adding of a constant vector in Rn in
the last integration give an immersion which is congruent to the immersion defined
by ϕ (see Remark 3). �

6. Relation to the Gauss map

We show here that the spinor field representing the immersion is an horizontal
lift of the Gauss map. Let us consider the Grassmannian Grp,n ⊂ Λp(Rn) of the
oriented p-dimensional linear spaces in Rn. Using the natural isomorphism of vector
spaces between the exterior algebra over Rn and Cln, it identifies with the set

Qo = {e1 · e2 · · · ep ∈ Cln, ei ∈ Rn, |ei| = 1, ei ⊥ ej , i, j = 1, . . . , p, i 6= j}.

We recall that for an oriented p-dimensional submanifold F : M → Rn the Gauss
map is defined as the map which assigns each point x ∈M to the oriented tangent
space dF (TxM) considered as a vector subspace of Rn. It can hence be seen as the
map into the Grassmannian

G : M → Qo
x 7→ dF (e1) · dF (e2) · · · dF (ep),

where e1, e2, . . . , ep is a positively oriented orthonormal basis of TxM.
We assume that the immersion F of M into Rn is given by a spinor field ϕ, as

in Theorem 1.
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Proposition 6.1. The spinor field ϕ, which is a section of UΣ, is a lift of the
Gauss map: the diagram

UΣ

χ

��
M

ϕ
55

G

// M ×Qo

commutes, where G(x) = (x,G(x)) and the projection UΣ→M ×Qo is given by

(15) χ : ϕ ∈ UΣx 7→ (x, 〈〈ω · ϕ,ϕ〉〉) ,
where ω is the volume form in Cl(TxM) (the product of the elements of a positively
oriented orthonormal basis of TxM).

It is moreover parallel with respect to the connection

∇′Xϕ := ∇Xϕ+
1

2

p∑
j=1

ej ·B(X, ej) · ϕ

on UΣ.

Proof. We first explain why the map χ as defined indeed has target M × Qo.
Consider the map

Ξ : Σ×M Cl(TM) → M × Cln
(ψ, c) 7→ 〈〈c · ψ,ψ〉〉 =: Ξψ(c).

Suppose ψ ∈ UΣ and c = e1 · · · ek for k orthonormal vectors e1, . . . , ek ∈ TxM .
Then, we can rewrite Ξψ(c) = 〈〈c · ψ,ψ〉〉 in any spinorial frame at x as

(16) τ [ψ][e1] · · · [ek][ψ] = (τ [ψ][e1][ψ])(τ [ψ][e2][ψ]) · · · (τ [ψ][ek][ψ]).

The k vectors on the right-hand side are still orthonormal, so Ξψ(c) lies in the
corresponding Grassmannian Grk,n. Consequently χ(ψ) = Ξψ(ω) lies in M ×Qo.

We next verify the formula for the Gauss map. Recall that the immersion is given
by F =

∫
ξ, where ξ is the 1-form defined by ξ(X) = 〈〈X · ϕ,ϕ〉〉 for all X ∈ TM.

Thus, dF = ξ. We fix a positively oriented and orthonormal frame (e1, . . . , ep) of

TM, and a spinorial frame s̃ ∈ Q̃ which is above (e1, . . . , ep). Then, ω = e1 · · · ep.
In any spinorial frame, τ [ϕ][v][ϕ] = ξ(v) for all v ∈ TxM . Therefore (16) yields that
χ(ϕ) = ξ(e1)ξ(e2) · · · ξ(ep) = G(x). This proves the first part of the proposition.

Finally, ϕ is horizontal with respect to the connection ∇′ since it is a solution of
(8). �

7. Special cases: minimal surfaces, hypersurfaces, and surfaces in R4

7.1. Minimal surfaces in Rn. If J denotes the natural complex structure on M,
the 1-form

ξ̃(X) := ξ(X)− iξ(JX), X ∈ TM,

is C-linear, with values in the complexified Clifford algebra C̃ln = Cln ⊕ iCln; in
general

F =

∫
<e ξ̃ =

∫
<e
(
f̃(z)dz

)
where z is a complex parameter of M and f̃ is a smooth function. Note that ξ̃ and
f̃ take in fact their values in Cn := Rn ⊕ iRn ⊂ C̃ln.
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Proposition 7.1. The form ξ̃ is closed (and thus holomorphic) if and only if
~H = 0. In that case, we have

F = <e
∫
f̃(z)dz

where f̃ is a holomorphic function.

Proof. We assume that (e1, e2) is a local orthonormal frame on M, positively ori-
ented, such that ∇e1 = ∇e2 = 0 at a point x0. We thus have

dξ̃(e1, e2) = ∂e1 (ξ(e2) + iξ(e1))− ∂e2 (ξ(e1)− iξ(e2)) .

Noticing that, for j, k ∈ {1, 2},

∂ej (ξ(ek)) = ∂ej 〈〈ek · ϕ,ϕ〉〉
= 〈〈ek · ∇ejϕ,ϕ〉〉+ 〈〈ek · ϕ,∇ejϕ〉〉
= (id+ τ)〈〈ek · ∇ejϕ,ϕ〉〉,

we obtain

dξ̃(e1, e2) = i (id+ τ)〈〈e1 · ∇e1ϕ+ e2 · ∇e2ϕ,ϕ〉〉
+(id+ τ)〈〈e2 · ∇e1ϕ− e1 · ∇e2ϕ,ϕ〉〉.

The first term on the right hand side is

i (id+ τ)〈〈e1 · ∇e1ϕ+ e2 · ∇e2ϕ,ϕ〉〉 = i (id+ τ)〈〈 ~H · ϕ,ϕ〉〉
= 2i 〈〈 ~H · ϕ,ϕ〉〉

since, by (8),

Dϕ := e1 · ∇e1ϕ+ e2 · ∇e2ϕ = ~H · ϕ

and τ [ ~H] = [ ~H]. The second term is

(id+ τ)〈〈e2 · ∇e1ϕ− e1 · ∇e2ϕ,ϕ〉〉 = −(id+ τ)〈〈e1 · ∇e1ϕ+ e2 · ∇e2ϕ, e1 · e2 · ϕ〉〉
= −(id+ τ)〈〈 ~H · ϕ, e1 · e2 · ϕ〉〉
= 0,

using again that Dϕ = ~H · ϕ and since τ
(

[ ~H][e1][e2]
)

= −[ ~H][e1][e2]. We thus

obtain the formula

dξ̃(e1, e2) = 2i 〈〈 ~H · ϕ,ϕ〉〉

which may be written in the form

(17) dξ̃ = −µ2 〈〈 ~H · ϕ,ϕ〉〉 dz ∧ dz

where µ is such that the metric is µ2dzdz. This gives the first part of the lemma.

Assuming that ~H = 0, the 1-form ξ̃ is closed, and the Cn−valued function f̃ such
that ξ̃ = f̃dz is holomorphic; the result follows. �

The aim now is to obtain explicit formulas in terms of holomorphic functions
involving the components of the spinor field. We first note the following expression
of f̃ in terms of the spinor field ϕ :
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Lemma 7.2. We have

f̃ = µ {τ [ϕ]eo1[ϕ]− iτ [ϕ]eo2[ϕ]}

where the real function µ is such that the metric is

µ2(dx2 + dy2)

in z = x+iy, [ϕ] represents the spinor field ϕ in a spinorial frame above ( 1
µ∂x,

1
µ∂y),

and eo1, e
o
2 are the first two vectors of the canonical basis of Rn ⊂ Cln.

Proof. We have

f̃ = ξ̃ (∂x) = τ [ϕ][∂x][ϕ]− iτ [ϕ][∂y][ϕ]

and the result follows since [ 1
µ∂x] = eo1 and [ 1

µ∂y] = eo2 in such a spinorial frame. �

7.1.1. Minimal surfaces in R3. Assuming that n = 3 and H = 0, we easily get by
a computation using Lemma 7.2 that

F =

∫
<e(f̃(z)dz) = <e(

∫
f̃(z)dz)

where f̃ =
(
i f2 (1 + g2), f2 (1− g2), fg

)
with

f = 2µz2
1 , g = −iz2

z1
;

the complex functions z1, z2 are the components of ϕ in a spinorial frame above
( 1
µ∂x,

1
µ∂y), and the functions f and g are holomorphic, since so are

√
µz1 and

√
µz2

(this is a consequence of the Dirac equation Dϕ = 0, in z = x + iy). This is the
classical Weierstrass representation of minimal surfaces in R3.

7.1.2. Minimal surfaces in R4. In the case of a surface in R4, we may also recover
the explicit formulas of Konopelchenko and Landolfi [11] expressing a general im-
mersion in terms of 4 complex functions, which are solutions of first order PDE’s;

the functions are holomorphic if ~H = 0. We do not include the calculations, since
the general representation in Theorem 1 easily reduces to the spinor representa-
tion given in [5] if p = 2 and n = 4 (see Section 7.3), and the equivalence of this
representation with the Konopelchenko-Landolfi representation is proved in [21].

Remark 4. For surfaces in Rn, n ≥ 5, it is still possible to obtain an explicit
representation in terms of the components of the spinor field which represents the

surface, with holomorphic datas if ~H = 0, if the bundle E is assumed to be flat. We
do not know if such a representation is possible without this additional assumption.

7.2. Hypersurfaces in Rn. We set p = n − 1, and assume that M is a p-
dimensional Riemannian manifold and E is the trivial line bundle on M , oriented
by a unit section ν ∈ Γ(E). We moreover suppose that M is simply connected and
that h : TM ×TM → R is a given symmetric bilinear form. According to Theorem
1, an isometric immersion of M into Rp+1 with normal bundle E and second fun-
damental form B = hν is equivalent to a section ϕ of Γ(UΣ) solution of the Killing
equation (8). Note that QE 'M and the double covering

Q̃E → QE
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is trivial, since M is assumed to be simply connected. Fixing a section s̃E of Q̃E
we get an injective map

Q̃M → Q̃M ×M Q̃E =: Q̃

s̃M 7→ (s̃M , s̃E).

Using

Clp ' Cl0p+1 ⊂ Clp+1

(induced by the Clifford map Rp → Clp+1, X 7→ X · ep+1), we deduce a bundle
isomorphism

Q̃M ×ρ Clp → Q̃×ρ Cl0p+1 ⊂ Σ(18)

ψ 7→ ψ∗.

It satisfies the following properties: for all X ∈ TM and ψ ∈ Q̃M ×ρ Clp,

(X ·M ψ)∗ = X · ν · ψ∗

and

∇X(ψ∗) = (∇Xψ)∗.

The section ϕ ∈ Γ(UΣ) solution of (8) thus identifies to a section ψ of Q̃M ×ρ Clp
solution of

∇Xψ = −1

2

p∑
j=1

h(X, ej)ej ·M ψ = −1

2
T (X) ·M ψ

for all X ∈ TM, where T : TM → TM is the symmetric operator associated to h.
We deduce the following result:

Theorem 2. Let T : TM → TM be a symmetric operator. The following two
statements are equivalent:

(1) there exists an isometric immersion of M into Rp+1 with shape operator T ;

(2) there exists a normalized spinor field ψ ∈ Γ(Q̃M ×ρ Clp) solution of

(19) ∇Xψ = −1

2
T (X) ·M ψ

for all X ∈ TM.

Here, a spinor field ψ ∈ Γ(Q̃M ×ρ Clp) is said to be normalized if it is represented

in some frame s̃ ∈ Q̃M by an element [ψ] ∈ Clp ' Cl0p+1 belonging to Spin(p+ 1).

We will see below explicit representation formulas in the cases of the dimensions
3 and 4.

7.2.1. Surfaces in R3. Since Cl2 ' Σ2 we have

Q̃M ×ρ Cl2 ' ΣM,

and ϕ is equivalent to a normalized spinor field ψ ∈ Γ(ΣM) solution of

∇Xψ = −1

2
T (X) ·M ψ

for all X ∈ TM ; this equation is also equivalent to the equation Dψ = Hψ. This is
the result obtained by Friedrich in [8].
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We now write the representation formula (9) using a special model for Cl3, and
indicate how to recover the representation formula given in [8]. We first consider
the Clifford map

(x1, x2, x3) ∈ R3 7→
(
x 0
0 −x

)
∈ H(2),

where x = −ix3 + j(x1 + ix2), which identifies Cl3 to the set{(
x 0
0 y

)
, x, y ∈ H

}
and R3 ⊂ Cl3 to the set of the imaginary quaternions; we also consider the ideal of
Cl3

(20) Σ3 =

{(
y 0
0 0

)
, y ∈ H

}
⊂ Cl3,

which is a model of the spin representation. Now ϕ, section of UΣ = Q̃×ρ Spin(3),

is equivalent to a unit spinor field ϕ′ ∈ Γ(Q̃×ρ Σ3) (obtained by projection) and a
direct computation yields

(21) 〈〈X · ϕ,ϕ〉〉 = i Im 〈X · ϕ′, ϕ′〉+ j〈X · ϕ′, α(ϕ′)〉

for all X ∈ TM, where the brackets 〈., .〉 stand for the natural hermitian product
on Σ3 and α : Σ3 → Σ3 is the natural quaternionic structure. The representation
formula given by the right hand side term of (21) appears in [8]. Finally, the
identification (18) for the dimension p = 2

Q̃M ×ρ Cl2 → Q̃×ρ Cl03 ⊂ Σ

ψ 7→ ψ∗

identifies ϕ ∈ Γ(UΣ) to a unit spinor field ψ ∈ Γ(ΣM), and it may be proved by a
computation that

〈〈X · ϕ,ϕ〉〉 = i2Re〈X · ψ+, ψ−〉+ j
(
〈X · ψ+, α(ψ+)〉 − 〈X · ψ−, α(ψ−)〉

)
where the brackets 〈., .〉 stand here for the natural hermitian product on Σ2 and
α : Σ2 → Σ2 is the natural quaternionic structure; this is the explicit formula of
the immersion in terms of ψ given in [8].

7.2.2. Hypersurfaces in R4. Since Cl3 ' Σ3 ⊕ Σ′3 where Σ3 and Σ′3 are the two
(non-equivalent) irreducible representations of Cl3, we get two unit spinor fields
ψ1 ∈ Γ(ΣM), ψ2 ∈ Γ(Σ′M) solutions of (19). Noting finally that there is a natural
identification

i : Σ′M → ΣM

satisfying

i(X · ψ) = −X · i(ψ)

for all X ∈ TM and ψ ∈ Σ′M, the spinor fields ψ1 and i(ψ2) ∈ Γ(ΣM) satisfy

(22) ∇Xψ1 = −1

2
T (X) ·M ψ1 and ∇X i(ψ2) =

1

2
T (X) ·M i(ψ2).



20 PIERRE BAYARD, MARIE-AMÉLIE LAWN AND JULIEN ROTH

We thus recover a result of [14]: the immersion is equivalent to two spinor fields on
the hypersurface which are solutions of (22). We may also obtain a new explicit
representation formula. On one hand, we note that

(23) 〈〈X · ϕ,ϕ〉〉 =

(
0 ξ1xξ2

ξ2xξ1 0

)
in Cl04, where ϕ ∈ Γ(UΣ) and X ∈ TM are respectively represented in Cl04 by(

ξ1 0
0 ξ2

)
and

(
0 x
x 0

)
,

with ξ1, ξ2 ∈ H and x ∈ =m H. On the other hand, Σ3 naturally identifies to H
(see (20)) and the bilinear map

Σ3 × Σ3 → H
(ξ, ξ′) 7→ ξ′ξ

induces a pairing
〈〈., .〉〉ΣM : ΣM × ΣM → H

on ΣM = Q̃M ×ρ Σ3. If

ψ = ψ1 + ψ2, ψ1 ∈ ΣM, ψ2 ∈ Σ′M

is such that ϕ = ψ∗ (by (18), with p = 3), the spinor fields ψ1 and i(ψ2) ∈ ΣM are
respectively represented by ξ1 and ξ2, and we readily get

(24) 〈〈X ·M i(ψ2), ψ1〉〉ΣM = ξ1xξ2.

The identities (23) and (24) identify

〈〈X · ϕ,ϕ〉〉 ' 〈〈X ·M i(ψ2), ψ1〉〉ΣM ;

this gives an explicit representation of the immersion into R4 in terms of the two
spinor fields ψ1 and i(ψ2) of ΣM introduced in [14].

7.3. Surfaces in R4. For a surface in R4, Theorem 1 with p = 2 and n = 4 reduces
to the result obtained in [5], since the bundle Σ naturally identifies to the bundle
ΣM ⊗ΣE in that case (see Remark 1, observing that the representation of Spin(2)
on Cl2 by left multiplication is also the usual complex spin representation Σ2).
Note that we may similarly recover the main results in [4, 6] concerning immersions
in R3,1 and R2,2, if we consider in our constructions the Clifford algebras Cl3,1 and
Cl2,2 instead of Cl4.

8. Spinorial representation of submanifolds in Sn and Hn

We extend here Theorem 1 to the other space forms.

8.1. Submanifolds of Sn. Let M be a Riemannian manifold of dimension p, and
E be a bundle on M of rank q = n − p, with a fibre metric and a compatible
connection; we assume that TM and E are spin, and consider

Σ := Q̃×ρ Cln+1

where Q̃ = Q̃M ×M Q̃E is the Spin(p) × Spin(q) principal bundle given by the
two spin structures and ρ : Spin(p)× Spin(q)→ Aut(Cln+1) is the representation
obtained by the composition of the maps

(25) Spin(p)× Spin(q)→ Spin(n) ⊂ Spin(n+ 1)
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and

(26) Spin(n+ 1)→ Aut(Cln+1).

The maps in (25) correspond to the decompositions

Rp ⊕ Rq =: Rn ⊂ Rn ⊕ Ren+1 =: Rn+1,

and in (26) the action of Spin(n+1) on Cln+1 is the multiplication on the left. We
also define

UΣ = Q̃×ρ Spin(n+ 1) ⊂ Σ.

Let us denote by ν the element of the Clifford bundle Q̃ ×Ad Cln+1 such that its

component in an arbitrary frame s̃ ∈ Q̃ is the constant vector en+1 (note that for
all g ∈ Spin(p)× Spin(q) ⊂ Spin(n) ⊂ Spin(n+ 1), Ad(g)(en+1) = en+1).

Theorem 3. Let B : TM × TM → E be a symmetric and bilinear map. The
following two statements are equivalent:

(1) There exists an isometric immersion F of M into Sn with normal bundle
E and second fundamental form B.

(2) There exists a spinor field ϕ ∈ Γ(UΣ) satisfying

(27) ∇Xϕ = −1

2

p∑
j=1

ej ·B(X, ej) · ϕ+
1

2
X · ν · ϕ

for all X ∈ TM.

Moreover we have the representation formula

(28) F = 〈〈ν · ϕ,ϕ〉〉 ∈ Sn ⊂ Rn+1,

where the brackets 〈〈., .〉〉 are defined as in (3)-(4).

Proof. We only prove that (2) implies (1), using the explicit formula (28). Setting
F = 〈〈ν · ϕ,ϕ〉〉, we have

F = [ϕ]−1en+1[ϕ] = Ad([ϕ]−1)(en+1)

where [ϕ] ∈ Spin(n+ 1) represents ϕ in some frame s̃ ∈ Q̃ and Ad : Spin(n+ 1)→
SO(n+ 1) is the natural double covering; thus F belongs to Sn. We will need the
following

Lemma 8.1. If ϕ ∈ Γ(UΣ) is a solution of (27) then F = 〈〈ν ·ϕ,ϕ〉〉 is such that,
for all X ∈ TM,

(29) dF (X) = 〈〈X · ϕ,ϕ〉〉.

Proof. We first observe that ∇ν = 0 : if α is the connection form on Q̃ and s̃ ∈ Γ(Q̃)
is a local frame, then ν = [s̃, en+1] and

∇Xν = [s̃, ∂Xen+1 +Ad∗(α(s̃∗(X)))(en+1)] = 0

for all X ∈ TM, since en+1 is constant and α takes values in Λ2Rn ⊂ Cln. Thus,
for all X ∈ TM,

dF (X) = 〈〈ν · ∇Xϕ,ϕ〉〉+ 〈〈ν · ϕ,∇Xϕ〉〉
= (id+ τ)〈〈ν · ∇Xϕ,ϕ〉〉

= −1

2
(id+ τ)

p∑
j=1

〈〈ν · ej ·B(X, ej) · ϕ,ϕ〉〉+
1

2
(id+ τ)〈〈X · ϕ,ϕ〉〉.
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But

τ〈〈ν · ej ·B(X, ej) · ϕ,ϕ〉〉 = 〈〈ϕ, ν · ej ·B(X, ej) · ϕ〉〉
= 〈〈B(X, ej) · ej · ν · ϕ,ϕ〉〉
= −〈〈ν · ej ·B(X, ej) · ϕ,ϕ〉〉

since the three vectors B(X, ej), ej and ν are mutually orthogonal, and

τ〈〈X · ϕ,ϕ〉〉 = 〈〈ϕ,X · ϕ〉〉 = 〈〈X · ϕ,ϕ〉〉.

Thus (29) follows. �

By the lemma and the properties of the Clifford product, F is an isometric
immersion, and the map

E → TSn

X ∈ Em 7→ (F (m), 〈〈X · ϕ,ϕ〉〉)

identifies E with the normal bundle of F (M) into Sn; it moreover identifies the
connection on E with the normal connection of F (M) in Sn and B with the second
fundamental form. We omit the proof since it is very similar to the proof of Lemma
4.2. �

Remark 5. Taking the trace of (27) we get

(30) Dϕ =
p

2

(
~H − ν

)
· ϕ

where ~H = 1
p

∑p
j=1B(ej , ej) is the mean curvature vector of M in Sn.

Remark 6. We may also obtain a proof using spinors of the fundamental theo-
rem of submanifold theory in Sn, showing, as in Section 5, that the equations of
Gauss, Codazzi and Ricci in a space of constant sectional curvature 1 are exactly
the integrability conditions of (27).

We finally show how to recover the spinorial characterization of a surface in S3

given by Morel in [17]. In the model Cl4 ' H(2) we have

ϕ =

(
[ϕ+] 0

0 [ϕ−]

)
, F =

(
0 [ϕ+][ν][ϕ−]

−[ϕ−][ν][ϕ+] 0

)
and

ξ(X) =

(
0 [ϕ+][X][ϕ−]

−[ϕ−][X][ϕ+] 0

)
where [ϕ+], [ϕ−], [ν] and [X] ∈ H represent ϕ+, ϕ−, ν and X in some spinor frame
adapted to the immersion in S3; thus Lemma 8.1 gives

F ' [ϕ+][ν][ϕ−] and dF (X) ' [ϕ+][X][ϕ−].

If [ϕ+] is given, this system has a solution [ϕ−], unique up to the multiplication by
S3 on the right. The spinor field ϕ is thus essentially determined by its component
ϕ+, which may be identified with a spinor field ψ ∈ Γ(ΣM) solution of

Dψ = Hψ − iψ, |ψ| = 1;

details are given in [5]. This is the spinor characterization of an immersion in S3

given in [17].
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8.2. Submanifolds of Hn. We now consider the n-dimensional hyperbolic space
Hn as a hypersurface of the Minkowski space Rn,1. Since the constructions of the
paper may be also carried out in a linear space with a semi-riemannian metric,
we obtain a spinor representation of a submanifold in Hn exactly as we did for a
submanifold in Sn. We thus only state the results here, and refer to the previous
section for the proofs. Let M be a riemannian manifold of dimension p, and E be
a bundle on M of rank q = n−p, with a Riemannian fibre metric and a compatible
connection; we assume that TM and E are spin, and consider

Σ := Q̃×ρ Cln,1
where Q̃ = Q̃M ×M Q̃E is the Spin(p) × Spin(q) principal bundle given by the
two spin structures and ρ : Spin(p) × Spin(q) → Aut(Cln,1) is the representation
obtained by the composition of the maps

(31) Spin(p)× Spin(q)→ Spin(n) ⊂ Spin(n, 1)

and

(32) Spin(n, 1)→ Aut(Cln,1).

The maps in (31) correspond to the decompositions

Rp ⊕ Rq =: Rn ⊂ Rn ⊕ Ren+1 =: Rn,1,
and in (32) the action of Spin(n, 1) on Cln,1 is the multiplication on the left; here
en+1 is a vector with negative norm −1. We also define

UΣ = Q̃×ρ Spin(n, 1) ⊂ Σ.

Let us denote by ν the element of the Clifford bundle Q̃ ×Ad Cln,1 such that its

component in an arbitrary frame s̃ ∈ Q̃ is the constant vector en+1.

Theorem 4. Let B : TM × TM → E be a symmetric and bilinear map. The
following two statements are equivalent:

(1) There exists an isometric immersion F of M into Hn with normal bundle
E and second fundamental form B.

(2) There exists a spinor field ϕ ∈ Γ(UΣ) satisfying

(33) ∇Xϕ = −1

2

p∑
j=1

ej ·B(X, ej) · ϕ−
1

2
X · ν · ϕ

for all X ∈ TM.

Moreover we have the representation formula

(34) F = 〈〈ν · ϕ,ϕ〉〉 ∈ Hn ⊂ Rn,1,
where the brackets 〈〈., .〉〉 are defined as in (3)-(4).

We may also recover the spinor characterization of an immersion of a surface in
H3 given by Morel in [17]: if M is a surface and (e1, e2) is an orthonormal basis of

TM, setting ~HH3 := 1
2 (B(e1, e1) +B(e2, e2)) we see that (33) is equivalent to

Dϕ = ( ~HH3 + ν) · ϕ

where ϕ is a spinor field which is represented in a frame s̃ ∈ Q̃ by [ϕ] belonging
to Spin(3, 1). This is exactly the spinor representation of an immersion in H3 as
described in [4] Section 5, where it is moreover proved that it is equivalent to the
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spinor characterization given in [17].
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