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Abstract

In this supplemental material, we derive approximated expressions for the levels populations

which are used to determine the thermal currents involved in the simple quantum system for which

the only nonzero energy are the coupling between the left and middle TLS and the middle and the

right TLS. We also deduce levels decaying rates and justify, from their values, the Born-Markov

approximation. We finally discuss conditions for which the thermal transistor effect is observed or

not.
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DERIVATION OF THE SIMPLIFIED LEVELS POPULATION EXPRESSIONS

FOR THE CASE ωM = ωL = ωR = 0, ωLM = ωMR = ∆, ωRL = 0

As shown in the letter, in these conditions, the system states are degenerated two by two:

|1〉 = |8〉, |2〉 = |7〉, |3〉 = |6〉 and |4〉 = |5〉. Moreover, E1 = E8 = ∆, E2 = E4 = E5 = E7 =

0 and E3 = E6 = −∆, so that there are only three energy levels (Fig. 2 of the manuscript).

We rename the states |1〉 and |8〉 as |I〉, |2〉 and |7〉 as |II〉, |3〉 and |6〉 as |III〉, |4〉 and |5〉

as |IV 〉. We introduce the new density matrix elements, now reduced to 4, ρI = ρ11 + ρ88,

ρII = ρ22 + ρ77, ρIII = ρ33 + ρ66 and ρIV = ρ44 + ρ55.

We now analyze the density matrix evolution under the Born-Markov approximation, by

solving Eq. (2) of the letter. In steady state, dρ/dt = 0, so that the system is similar to Eqs

(3) with the new levels I, II, III and IV .

ρ̇I = 0 = ΓL
IV−I + ΓM

III−I + ΓR
II−I , (1)

ρ̇II = 0 = ΓL
III−II + ΓM

IV−II + ΓR
I−II , (2)

ρ̇III = 0 = ΓL
II−III + ΓM

I−III + ΓR
IV−III , (3)

ρ̇IV = 0 = ΓL
I−IV + ΓM

II−IV + ΓR
III−IV . (4)

Note that Γij = −Γji and therefore these 4 equations are not independent since their sum

is 0. A supplementary equation based on the conservation of levels occupation probability,

states that

Tr[ρ] = ρI + ρII + ρIII + ρIV = 1 (5)

The decaying rates are function of the populations, as follows

ΓL
I−IV = ∆[ρI − e−∆/TLρIV ]

ΓM
I−III = 2∆[ρI − e−2∆/TMρIII ]

ΓR
I−II = ∆[ρI − e−∆/TRρII ] (6)

ΓL
II−III = ∆[ρII − e−∆/TLρIII ]

ΓM
II−IV = TM [ρII − ρIV ]

ΓR
IV−III = ∆[ρIV − e−∆/TRρIII ]

Equations (1-3) and (5) form the system of equations that has to be solved in order to obtain
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the 4 populations. This system can be put under the form

[M ]



ρI

ρII

ρIII

ρIV


=



0

0

0

1


(7)

with

M =



4∆ −∆e−∆/TR −2∆e−2∆/TM −∆e−∆/TL

−∆ TM + ∆ + ∆e−∆/TR −∆e−∆/TL −TM
2∆ ∆ −2∆e−2∆/TM −∆e−∆/TL −∆e−∆/TR ∆

1 1 1 1


(8)

The temperature TL is taken so that e−∆/TL � 1 (TL/∆ <∼ 4) whereas e−∆/TR � e−∆/TL

(TR/∆ <∼ 8). Moreover, one has always TR ≤ TM ≤ TL. Under these conditions, M reduces

to

M ≈



4∆ 0 −2∆e−2∆/TM −∆e−∆/TL

−∆ TM + ∆ −∆e−∆/TL −TM
2∆ ∆ −∆e−∆/TL ∆

1 1 1 1


(9)

so that the temperature TR does not show up any more and therefore it will not be involved

in the populations expressions.

With this new matrix expression, the system (7) is solved. In particular, the matrix

determinant can also be simplified

det(M) = ∆3[−2e2∆/TL + 7e∆(1/TL+2/TM ) + 3e2∆/TM + 4e∆(1/TL+1/TM )]

+ ∆2TM [−4e2∆/TL + 10e∆(1/TL+2/TM ) + e2∆/TM + 8e∆(1/TL+1/TM )] (10)

≈ ∆2[4∆ + 8TM ]e2∆(1/TL+1/TM ).

Then, the approximated populations expressions derivation is straightforward

ρI '
e−2∆/TM

2
+

TM
4∆ + 8TM

e−2∆/TL , (11)

ρII '
∆ + TM
∆ + 2TM

e−∆/TL , (12)

ρIII ' 1− e−∆/TL , (13)

ρIV '
TM

∆ + 2TM
e−∆/TL . (14)
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Similarly, one obtains the decaying rates

ΓL
I−IV = ∆

[
e−2∆/TM

2
− 3TM

4∆ + 8TM
e−2∆/TL

]
, (15)

ΓM
I−III = 2∆

[
−e

−2∆/TM

2
+

TM
4∆ + 8TM

e−2∆/TL

]
, (16)

ΓR
I−II = ∆

[
e−2∆/TM

2
+

TM
4∆ + 8TM

e−2∆/TL

]
, (17)

ΓL
II−III =

−∆TM
∆ + 2TM

e−∆/TL , (18)

ΓM
II−IV =

−∆TM
∆ + 2TM

e−∆/TL , (19)

ΓR
IV−III =

∆TM
∆ + 2TM

e−∆/TL . (20)

and the thermal currents

JL '
∆2TMe

−∆/TL

∆ + 2TM
, (21)

JM ' ∆2
[
− TM

∆ + 2TM
e−2∆/TL + 2e−2∆/TM

]
, (22)

JR ' −
∆2TMe

−∆/TL

∆ + 2TM
. (23)

In Fig. 1 we compare the populations values predicted by their exact expressions from

Eq. (7-8) with the approximate ones. We note that there is not a visible difference, within

a wide range of temperatures TM . We also report the decaying rates in Fig. 2 and Fig. 3 as

well as the comparison of the thermal currents with their approximations formulas, in Fig.

4. The relative error between the exact and asymptotic values is less than 5%. The error

increases when TM approaches TL.

An important point to note in Fig. 2 and Fig. 3 is that the decaying rates never exceed

10−3, under the conditions of our study. These rates are much smaller than 1, meaning that

the system relaxation time is much larger than 1. As the frequency difference involved are

around ∆ = 1, the conditions for the Born-Markov approximation are fulfilled, given that

the inverse frequency difference involved in the problem is small compared to the relaxation

time of the system. Actually, the levels decaying rates increase with temperature so that the

regime where the Born-Markov approximation is not valid is the regime of high temperatures,

which is not considered in the work.

Let us finally note that, if the condition ωM = ωL = ωR = ωLR = 0 is convenient to

achieve the simple calculations presented above with only 4 levels, this condition is not
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necessary to achieve a thermal transistor. Indeed, a thermal transistor can also be obtained

for another simple case when the 3 TLS energies are equal but lower than ∆ and if the

coupling energies between the 3 TLS are not symmetric. In that case, the three TLS are not

degenerated and exhibit two energy levels. The calculations are however more complicated

since the system exhibits at least 6 energy levels. As examples, we report in Fig. 5 thermal

currents in similar cases to the one studied above except that ωL = ωM = ωR = 0.1∆ and

that the coupling between the left and the right TLS ωRL can be 0, 0.3∆, ∆ or 3∆. We see

that except in the symmetric case where ωRL = ∆, JM remains much lower than JL and JR

in a very similar way to the case of the 3 degenerated TLS so that the transistor effect is still

present in these 3 configurations. Note that the case ωLR = 0.3∆ provides higher thermal

currents and a better switch than the case detailed in the letter. This paves the way to the

search of a set of parameters that would optimize the device but which is a task beyond the

goal to this work. On the contrary, in the symmetric case the transistor effect disappears.
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FIG. 1. Populations ρI , ρII , ρIII and ρIV versus TM for ωL = ωM = ωR = 0, ωRL = 0, ωLM =

ωMR = ∆, TL = 0.2∆ and TR = 0.02∆. Comparison is done between populations obtained

form the exact calculations and the approximated expressions derived in the asymptotic regime

considered here.
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FIG. 2. Decaying rates ΓL
III−II , ΓM

IV−II , ΓR
IV−III versus TM for ωL = ωM = ωR = 0, ωRL = 0,

ωLM = ωMR = ∆, TL = 0.2∆ and TR = 0.02∆. Comparison is done between decaying rates

obtained form the exact calculations and the approximated expressions obtained in the asymptotic

regime considered here.

FIG. 3. Decaying rates ΓL
I−IV , ΓM

III−I , ΓR
I−II versus TM for ωL = ωM = ωR = 0, ωRL = 0, ωLM =

ωMR = ∆, TL = 0.2∆ and TR = 0.02∆. Comparison is done between decaying rates obtained form

the exact calculations and the approximated expressions determined in the asymptotic regime

considered here.
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FIG. 4. Thermal currents JL, JM , JR versus TM for ωL = ωM = ωR = 0, ωRL = 0, ωLM = ωMR =

∆, TL = 0.2∆ and TR = 0.02∆. Comparison is done between thermal currents obtained form the

exact calculations and the approximated expressions derived in the asymptotic regime considered

here.
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FIG. 5. Thermal currents JL, JM , JR versus TM for ωL = ωM = ωR = 0.1∆, ωLM = ωMR = ∆,

TL = 0.2∆ and TR = 0.02∆. (a) ωLR = 0. (b) ωLR = 0.3∆. (c) ωLR = ∆. (d) ωLR = 3∆.
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