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(Dated: May 20, 2016)

We demonstrate that a thermal transistor can be made up with a quantum system of three
interacting subsystems, coupled to a thermal reservoir each. This thermal transistor is analogous
to an electronic bipolar one with the ability to control the thermal currents at the collector and
at the emitter with the imposed thermal current at the base. This is achieved by determining the
heat fluxes by means of the strong-coupling formalism. For the case of three interacting spins, in
which one of them is coupled to the other two, that are not directly coupled, it is shown that high
amplification can be obtained in a wide range of energy parameters and temperatures. The proposed
quantum transistor could, in principle, be used to develop devices such as a thermal modulator and
a thermal amplifier in nanosystems.

Managing and harvesting wasted heat in energy pro-
cesses is becoming a big issue due to the limited energy
resources and to the constraints of global warming. Heat
can be transported by fluids and radiation, as well as
guided in good conductors or devices, such as heat pipes.
However, there exists no device that can manage the
switching or heat amplification, as is the case in elec-
tricity.

In the last century, electricity management and its use
for logical operations have been realized through the de-
velopment of two components: the diode [1] and the tran-
sistor [2]. By analogy, one can, of course, envisage devel-
oping similar thermal devices that could make the ther-
mal control easier. Thus, one of the goals of recent re-
searches in thermal science has been focused on thermal
rectifiers, i.e. components which exhibit an asymmetric
flux when the temperatures at their ends are inverted.
Thermal rectifiers have been designed for phononic [3–
13] and electronic [12, 14] thermal transport, which has
led to the conception and modeling of thermal transis-
tors [15, 16]. In the framework of thermal radiation,
rectifiers have been the subject of numerous theoretical
works, both in near field [17–19] and far field [20–24].
The most efficient of these devices have involved phase
change materials, such as thermochrome [25] materials
like VO2[26, 27]. This has led to the design of radia-
tive thermal transistors based on phase change materials
too[28, 29].

The last two decades have also seen the emergence
of individual quantum systems, such as classical atoms
[30, 31] or artificial ones, as is the case of quantum dots
[32, 33], which have been proposed to develop photon
rectifiers [34–36], transistors [37, 38] or even electrically
controlled phonon transistors [39]. Moreover, given that
quantum systems are always coupled to their environ-
ment, in particular to a thermal bath, the question of
how heat is transferred through a set of quantum sys-
tems in interaction naturally arises [40–42] and has led
to several studies reporting thermal rectification [43–46].

The goal of this Letter is to demonstrate that a thermal
transistor can be achieved with a quantum system, made

FIG. 1. Quantum system made up of 3 TLS coupled with
each other and connected to a thermal bath.

of 3 two level systems (TLS), which are equivalent to the
three entries of a bipolar electronic transistor. It is shown
that a thermal current imposed at the base can drive the
currents at the two other entries of the system. More
importantly, we also show these currents’ perturbations
imposed at the system entry can be amplified.
The system under consideration consists of three TLS

coupled with each other, each of them being connected to
a thermal bath (Fig. 1). The three TLS are labeled with
the letters L (left), M (medium), and R (right), as well as
the temperature of the thermal bath to which they are
related. We generalized the strong-coupling formalism
developed by Werlang et al. [45] to the system consid-
ered here. Indeed, strong-coupling formalism is required
to catch thermal effects, such as thermal rectification,
that appear in a quantum system composed by two TLS
[45]. Thermal transistor effects, which we want to em-
phasize in our study, are close to rectification effects and
we therefore chose to follow the same approach. TLS, in
our present case, are interacting spins that can be in the
up state ↑ or in the down one ↓. The Hamiltonian of the
system is (in h̄ = 1 units)

HS =
∑

P=L,M,R

ωP

2
σP
z +

∑

P,Q=L,M,R P 6=Q

ωPQ

2
σP
z σ

Q
z (1)

where σP
z (P = L,M,R) is the Pauli matrix z, whose

eigenstates for the system P are the states ↑ and ↓. ωP
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denotes the energy difference between the two spin states,
whereas ωPQ stands for the interaction between the spin
P and the spin Q. HS eigenstates are given by the ten-
sorial product of the individual TLS states, so that we
have eight eigenstates labeled as |1〉 = |↑↑↑〉, |2〉 = |↑↑↓〉,
|3〉 = |↑↓↑〉, |4〉 = |↑↓↓〉, |5〉 = |↓↑↑〉, |6〉 = |↓↑↓〉, |7〉 =
|↓↓↑〉 and |8〉 = |↓↓↓〉. The coupling between the TLS
and the thermal bath constituted of harmonic oscillators
[47] is based on the spin-boson model in the x component

HP
TLS−bath

= σP
x

∑

k gk(a
P
k a

P†
k ). The three reservoirs P

have their Hamiltonians equal to HP
bath

=
∑

k ωka
P†
k aPk .

This modeling implies that baths can flip one spin at a
time. This means that there are 12 authorized transi-
tions. The left bath (L) induces the transitions 1 ↔ 5,
2 ↔ 6, 3 ↔ 7, and 4 ↔ 8, the middle one (M) drives the
transitions 1 ↔ 3, 2 ↔ 4, 5 ↔ 7, and 6 ↔ 8. The right
bath (R) triggers the transitions 1 ↔ 2, 3 ↔ 4, 5 ↔ 6,
and 7 ↔ 8. All other transitions flipping more than one
spin are forbidden.

The system state is described by a density matrix,
which obeys a master equation. In the Born-Markov ap-
proximation, it reads

dρ

dt
= −i[Hs, ρ] + LL[ρ] + LM [ρ] + LR[ρ]. (2)

As in [45, 49], the Lindbladians LP [ρ] are written for an
Ohmic bath according to classical textbooks [48, 49], so
that we take expression (4) of [45]. We now consider
a steady state situation. We define Tr(ρLP [ρ]) = JP ,
the heat current injected by the bath J into the system.
Averaging the master equation we find JL+JM+JR = 0,
in accordance with the energy conservation.
The master equation is a system of eight equations on

the diagonal elements ρii. If we introduce the net de-
caying rate from state |i〉 to the state |j〉 due to the
coupling with bath P with the help of Bose-Einstein
distribution nP

ω = (eω/TP − 1)−1 (in kb = 1 units):
ΓP
ij = ωij

[(

1 + nP
ω

)

ρii − nP
ω ρjj

]

= −ΓP
ji, the master

equation yields

ρ̇11 = 0 = ΓL
51 + ΓM

31 + ΓR
21,

ρ̇22 = 0 = ΓL
62 + ΓM

42 + ΓR
12,

ρ̇33 = 0 = ΓL
73 + ΓM

13 + ΓR
43,

ρ̇44 = 0 = ΓL
84 + ΓM

24 + ΓR
34,

ρ̇55 = 0 = ΓL
15 + ΓM

75 + ΓR
65, (3)

ρ̇66 = 0 = ΓL
26 + ΓM

86 + ΓR
56,

ρ̇77 = 0 = ΓL
37 + ΓM

57 + ΓR
87,

ρ̇88 = 0 = ΓL
48 + ΓM

68 + ΓR
78.

These eight equations are not independent since their
sum is 0. In order to solve the system for the ρii, one adds
the condition Trρ = 1. Its resolution gives access to all
state occupation probabilities as well as to the currents
JJ .

Let us now explain what we call a thermal transistor
effect, by making the analogy with an electronic one in
which the current at the base controls the currents at
the collector and at the emitter. A transistor effect is
obtained when the collector and emitter currents can be
modulated, switched and amplified by the current im-
posed at the base. The gain of the transistor is defined
as the ratio of the current change at the collector or the
emitter to the current variation applied at the base. Here,
our goal is to show that it is similarly possible to control
JL or JR by slightly changing JM . We consider that the
left and right TLS are both connected to thermal baths,
whose respective temperatures TL and TR are fixed. The
third bath at temperature TM controls the fluxes JL and
JR with the help of a current JM injected into the sys-
tem. Let us define the dynamical amplification factor
α:

αL,R =
∂JL,R

∂JM
. (4)

If a small change in JM makes a large change in JL or
JR, i.e. |αL,R| > 1 then a thermal transistor effect will
be observed in the same way as a large collector-current
change is present by applying a small electrical current
at the base of a bipolar transistor.

We now focus on the conditions for which such a ther-
mal transistor effect can be observed: a transistor will be
characterized by the frequencies ωP , ωPQ and the tem-
peratures TL and TR. The last temperature TM , that is
taken here between TL and TR, controls the transistor
properties and is related to the current JM through the
current conservation condition. A fine parametric study
of the system solutions for the density matrix is difficult,
due to the large number of parameters. To reduce this
number and to focus on the physics involved, we restrict
our analysis to a simple case for which the two couplings
ωLM = ωMR = ∆ whereas the last coupling ωRL and
the three TLS energies are equal to 0. As shown be-
low, this configuration provides a good transistor effect
that can be interpreted with simple calculations. Note
that the transistor effect disappears when the three cou-
plings are equal (symmetric configuration), but it still
occurs and can even be optimized if the three TLS en-
ergies are nonzero, but lower than ∆ as discussed in the
Supplemental Material [50]. The operating temperature
TL is taken so that e−∆/TL ≪ 1 (TL/∆ <

∼ 0.25) whereas
e−∆/TR ≪ e−∆/TL (TR/∆ <

∼ 0.0625).

Under these conditions, the system states are degen-
erated two by two and there are only three energy levels
(see Fig. 2 and Supplemental Material [50]). We rename
the states |1〉 and |8〉 as |I〉, |2〉 and |7〉 as |II〉, |3〉 and |6〉
as |III〉, and |4〉 and |5〉 as |IV 〉. We introduce the new
density matrix elements, ρI = ρ11 + ρ88, ρII = ρ22 + ρ77,
ρIII = ρ33 + ρ66, and ρIV = ρ44 + ρ55. Introducing the
net decaying rates between these states, the three cur-
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FIG. 2. Energy levels for ωL = ωM = ωR = 0, ωRL = 0, and
ωLM = ωMR = ∆. There are four states (|I〉, |II〉, |III〉, and
|IV 〉 but three energy levels since EII = EIV = 0. The arrows
indicates the net decaying rate between the states due to bath
L (red), bath M (green), and bath R (blue) for TL = 0.2∆,
TR = 0.02∆, and TM = 0.1∆.

FIG. 3. Inset: thermal currents JL, JM , and JR versus TM for
ωL = ωM = ωR = 0, ωRL = 0, ωLM = ωMR = ∆, TL = 0.2∆,
and TR = 0.02∆. Main figure: thermal current JM versus
TM .

rents simply read

JL = −∆
[

ΓL
I−IV + ΓL

II−III

]

JM = −2∆ΓM
I−III (5)

JR = −∆
[

ΓR
I−II + ΓR

IV −III

]

Transitions between the different states are illustrated
in Fig. 2, for TL/∆ = 0.2, TR/∆ = 0.02, and TM/∆ =
0.1. The arrow directions show the transition direction
whereas its width depends on the decay time. We see that
energy exchanges are mainly dominated by the III − II
and IV − III transitions. One therefore expects JR and
JL to be larger than JM . This is illustrated in Fig. 3,
where JL, JM , and JR are represented versus TM , for
TL/∆ = 0.2 and TR/∆ = 0.02. The two currents JL
and JR increase linearly with temperature TM , at low
temperature, and become sublinear as TM approaches
TL. Note that over the whole range, as expected, JM
remains lower than JL and JR. Thus, TM will be con-
trolled by changing slightly the current JM : a tiny change
of JM is therefore able to change significantly the values
of JL and JR. JL and JR can even be switched off when
JM approaches 0 for small temperatures TM , so that the

FIG. 4. Amplification factors αL (red) and αR (dashed blue)
versus TM for ωL = ωM = ωR = 0, ωRL = 0, ωLM = ωMR =
∆, TL = 0.2∆ and TR = 0.02∆.

system exhibits the transistor switching property. More-
over, one sees that the JM slope remains larger than the
ones of JL and JR over a large part of the temperature
range. Given the definition of the amplification factor α,
the comparison of the thermal currents slope is the key
element to see if amplification is present.

In Fig. 4, we plot the two amplification coefficients αL

and αR versus temperature TM . We see that at low TM ,
α remains much larger than 1. One also notes that α
diverges for a certain value of the temperature for which
JM has a minimum. This occurs for TM ≃ 0.1251∆. In
these conditions, an infinitely small change in JM makes
a change in JL and JR. As TM approaches TL, the am-
plification factor drastically decreases to reach values be-
low 1, i.e a regime where we cannot speak anymore of
a transistor effect. Note also that, in between, there
exists a temperature where JM = 0. This is the tem-
perature for which the bath M is at thermal equilib-
rium with the system since it does not inject any ther-
mal current in it. At this temperature (TM ≃ 0.156∆),
JL = −JR = 7.97×10−4. Amplification still occurs since
αL = 8.88 and αR = −9.88.

All these observations can be explained by examining
carefully the populations and currents expressions (see
Supplemental Materials [50] for details). In the present
case, if we limit the calculation to first order of approx-
imations on e−∆/TL and e−∆/TM , one can roughly esti-
mate the populations by

ρI ≃
e−2∆/TM

2
+

TM

4∆+ 8TM
e−2∆/TL , (6)

ρII ≃
∆+ TM

∆+ 2TM
e−∆/TL , (7)

ρIII ≃ 1− e−∆/TL , (8)

ρIV ≃
TM

∆+ 2TM
e−∆/TL . (9)

ρIII remains very close to 1 and ρII to 10−2. ρI and ρIV
are much lower but change by 1 to 2 orders of magnitude
with temperature. Note that the sum of (6-9) is not 1,
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but the error on ρ’s is less than 1% over the temperature
range.

We now explicitly correlate the three thermal currents
with temperature.

JL ≃ −JR ≃
∆2TMe−∆/TL

∆+ 2TM
, (10)

JM ≃ ∆2

[

−
TM

∆+ 2TM
e−2∆/TL + 2e−2∆/TM

]

. (11)

Note here again that the sum of the three currents is
not zero despite of the fact that expressions remain close
to the exact solution. The largest error is on JL and JR
around TM = TL where it reaches 5%. These formula
retrieve the linear dependence of the thermal currents
for small values of TM . One also notes that, when we
compare with (9), JL and JR are driven by ρIV , i.e., the
state population at the intermediate energy (EIV = 0).
Looking at the authorized transitions, one expects JM to
be driven by the population of the most energetic state,
i.e., ρI . The main difference between ρIV and ρI is the
temperature dependence, which is linear in one case and
exponential (e−2∆/T ) in the other case. The result is that
even when TM is close to TL, ρI remains low. Therefore,
JM keeps low values in the whole temperature range due
to the low values of ρI . If we look more carefully at
JM , one notices that it is the sum of two terms. The
first one is roughly linear on TM . It is similar to the
one that appears in ρIV . JM depends on the popula-
tion of state IV , which also influences the population of
state I with the transition IV − I. The increase of ρIV
with TM makes easier the IV − I transition, and raises
ρI . This increases the decaying of state I through the
I − III transition. This term is negative and decreases
as TM increases. This can be seen as a negative differ-
ential resistance since a decreasing of JM (cooling in M)
corresponds to an increase of the temperature TM . In
this temperature range, it can easily be shown that the
amplification factor |αL| ≈ |αR| ≈ e∆/TL . A second term
in JM , is the classical e−∆/TM Boltzmann factor term,
which makes the population of state I increase with TM .
JM is a tradeoff between these two terms. At low temper-
ature, the linear term is predominant. As TM increases,
the term e−∆/TM takes over. As a consequence, there is a
point where ρI increasing reverses the I − IV transition,
so that the I−III transition competes with both I−IV
and I − II transitions. I − III is then reversed. With
these two terms competing, there is a temperature for
which JM reaches a minimum and a second temperature
where JM = 0, as already described.

One can summarize the conditions needed for the
system to undergo a thermal transistor effect. Two
baths (here L and R) induce transitions between two
highly separated states with an intermediate energy level,
whereas the third one (M) makes only a transition be-
tween the two extremes. This will first make JM much

smaller than JL and JR, and second, it will set a compe-
tition between a direct decay of the highest level to the
ground level and a decay via the intermediate one. This
competition between the two terms makes the thermal
dependance of JM with TM slow enough to obtain a high
amplification.
Finally, one can wonder what kind of real system could

make such a thermal quantum transistor. A simple TLS
related to a bath could be, for example, a quantum dot
with a single bound state, embedded in a material at
temperature T . The TLS is the quantum dot and the
bath is the material at temperature T . The transistor
proposed in this Letter could be made of three quantum
dots each of them embedded in a nanoparticle. The three
nanoparticles could be deposited on a substrate and the
distance between them adjusted in order that the cou-
pling energy between quantum dots reaches the desired
value ∆. The nanoparticles temperature could be con-
trolled by electrical means.
In conclusion, we have shown that it is possible to make

a thermal transistor with three coupled TLS linked to
three different thermal baths. One TLS is coupled to the
two others, whereas these last are not directly coupled.
The TLS related to the two others plays the same role as
the base in a bipolar transistor, while the two other TLS
can be seen as the emitter and the collector. We found
a temperature regime where a thermal current variation
imposed at the base generates an amplified variation at
the emitter and the collector. This regime is typically
such that temperature corresponds to an energy one or-
der of magnitude smaller than the coupling energy be-
tween the TLS. This means that a transistor effect will be
observed at ambient temperature for a coupling between
the TLS with a typical frequency in the visible. With
this kind of thermal transistor one can expect to modu-
late or amplify thermal fluxes in nanostructures made up
of elementary quantum objects.
This work pertains to the French Government Pro-
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