HAL
open science

## Quantum thermal transistor

Karl Joulain, Jérémie Drevillon, Younes Ezzahri, Jose Ordonez-Miranda

## To cite this version:

Karl Joulain, Jérémie Drevillon, Younes Ezzahri, Jose Ordonez-Miranda. Quantum thermal transistor. 2016. hal-01272554v2

HAL Id: hal-01272554
https://hal.science/hal-01272554v2
Preprint submitted on 12 Feb 2016 (v2), last revised 20 May 2016 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.


Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

# Quantum thermal transistor 

Karl Joulain, Jérémie Drevillon, Younès Ezzahri and Jose Ordonez-Miranda<br>Université de Poitiers-CNRS-ENSMA, Institut Pprime, F-86073 Poitiers, France

(Dated: February 12, 2016)


#### Abstract

We demonstrate that a thermal transistor can be made up with a quantum system of 3 interacting sub-systems, coupled to a thermal reservoir each. This thermal transistor is analogous to an electronic bipolar one with the ability to control the thermal currents at the collector and at the emitter with the imposed thermal current at the base. This is achieved determining the heat fluxes by means of the strong-coupling formalism. For the case of 3 interacting spins, in which one of them is coupled to the other 2 , that are not directly coupled, it is shown that high amplification can be obtained in a wide range of energy parameters and temperatures. The proposed quantum transistor could, in principle, be used to develop devices such as a thermal modulator and a thermal amplifier in nano systems.


PACS numbers: 03.65.Yz,05.60.Gg,05.70.-a,44.90.+c

Managing and harvesting wasted heat in energy processes is becoming a big issue due to the limited energy resources and to the constraints of global warming. Heat can be transported by fluids and radiation, as well as guided in good conductors or devices, such as heat pipes. However, there exist no device that can manage the switching of heat amplification, as is the case in electricity.

In the last century, electricity management and its use for logical operations have been realized through the development of two components: the diode [1] and the transistor [2]. By analogy, one can, of course, envisage developing similar thermal devices that could make easier the thermal control. Thus, one of the goals of recent researches in thermal science has been focused on thermal rectifiers, i.e. components which exhibit an asymmetric flux when the temperatures at their ends are inverted. Thermal rectifiers have been designed for phononic [3$13]$ and electronic [12, 14] thermal transport, which has led to the conception and modeling of thermal transistors $[15,16]$. In the framework of thermal radiation, rectifiers have been the subject of numerous theoretical works, both in near-field [17-19] and far-field [20-24]. The most efficient of these devices have involved phase change materials, such as thermochrome [25] materials like $\mathrm{VO}_{2}[26,27]$. This has lead to the design of radiative thermal transistors based on phase change materials too[28, 29].

The last two decades have also seen the emergence of individual quantum systems, such as classical atoms $[30,31]$ or artificial ones, as is the case of quantum dots [32, 33], which have been proposed to develop photon rectifiers [34-36] and transistor [37, 38]. Moreover, given that quantum systems are always coupled to their environment, in particular to a thermal bath, the question of how heat is transferred through a set of quantum systems in interaction, naturally arises [39-41] and have led to several studies reporting thermal rectification [42-45].

The goal of this letter is to demonstrate that a quan-


FIG. 1. Quantum system made up of 3 TLS coupled with each other and connected to a thermal bath.
tum system composed of 3 two-level sub-systems (TLS) can be used as a thermal transistor equivalent to a bipolar electronic one with three entries: the base, the emitter, and the collector. It is shown that a thermal current imposed at the base equivalent, can drive the currents at the two other entries of the system. More importantly, we also show these currents perturbations imposed at the system entry can be amplified.

The system under consideration consists of 3 TLS coupled with each other, each of them being connected to a thermal bath (Fig. 1). The three TLS are labelled with the letters $L$ (left), $M$ (medium) and $R$ (right), as well as the temperature of the thermal bath they are related to. We generalized the strong-coupling formalism developed by Werlang et al. [44] to the system considered here. Indeed, strong-coupling formalism is required to catch thermal effects, such as thermal rectification that appear in a quantum system composed by two TLS [44]. Thermal transistor effects, that we want to emphasize in our study, are close to rectification effects and we therefore chose to follow the same approach. TLS, in our present case are interacting spins that can be in the up state $\uparrow$ or in the down one $\downarrow$. The Hamiltonian of the system is
(in $\hbar=1$ units)

$$
\begin{equation*}
H_{S}=\sum_{J=L, M, R} \frac{\omega_{J}}{2} \sigma_{z}^{J}+\sum_{J=L, M, R} \frac{\omega_{J J+1}}{2} \sigma_{z}^{J} \sigma_{z}^{J+1} \tag{1}
\end{equation*}
$$

where $\sigma_{z}^{J}(J=L, M, R)$ is the Pauli matrix $z$, whose eigenstates for the system $J$ are the states $\uparrow$ and $\downarrow . \omega_{J}$ denotes the energy difference between the two spin states, whereas $\omega_{J J+1}$ stands for the interaction between the spin coupled to the bath $J$ and the spin coupled to the bath $J+1 . H_{S}$ eigenstates are given by the tensorial product of the individual TLS states, so that we have 8 eigenstates labelled as $|1\rangle=|\uparrow \uparrow \uparrow\rangle,|2\rangle=|\uparrow \uparrow \downarrow\rangle,|3\rangle=$ $|\uparrow \downarrow \uparrow\rangle,|4\rangle=|\uparrow \downarrow \downarrow\rangle,|5\rangle=|\downarrow \uparrow \uparrow\rangle,|6\rangle=|\downarrow \uparrow \downarrow\rangle,|7\rangle=|\downarrow \downarrow \uparrow\rangle$ and $|8\rangle=|\downarrow \downarrow \downarrow\rangle$. The coupling between the TLS and the thermal bath constituted of harmonic oscillators [46] is based on the spin-boson model in the $x$ component $H_{T L S-\text { Bath }}^{J}=\sigma_{x}^{J} \sum_{k} g_{k}\left(a_{k}^{J} a_{k}^{J \dagger}\right)$. The three reservoirs $J$ have their hamiltonians equal to $H_{B a t h}^{J}=\sum_{k} \omega_{k} a_{k}^{J \dagger} a_{k}^{J}$. This modelling implies that baths can flip one spin at a time. This means that there are 12 authorized transitions. The left bath $(L)$ induces the transitions $1 \leftrightarrow 5$, $2 \leftrightarrow 6,3 \leftrightarrow 7$ and $4 \leftrightarrow 8$, the middle one $(M)$ drives the transitions $1 \leftrightarrow 3,2 \leftrightarrow 4,5 \leftrightarrow 7$ and $6 \leftrightarrow 8$. The right bath $(R)$ triggers the transitions $1 \leftrightarrow 2,3 \leftrightarrow 4,5 \leftrightarrow 6$ and $7 \leftrightarrow 8$. All other transitions flipping more than one spin are forbidden.

The system state is described by a density matrix, which obeys a master equation. In the Born-Markov approximation, it reads

$$
\begin{equation*}
\frac{d \rho}{d t}=-i\left[H_{s}, \rho\right]+\mathcal{L}_{L}[\rho]+\mathcal{L}_{M}[\rho]+\mathcal{L}_{R}[\rho] \tag{2}
\end{equation*}
$$

As in [44, 48], The Lindbladians $\mathcal{L}_{J}[\rho]$ are written for a ohmic bath according to classical textbooks [47, 48], so that we take expression (4) of [44]. We now consider a steady state situation. We define $\operatorname{Tr}\left(\rho \mathcal{L}_{J}[\rho]\right)=J_{J}$, the heat current injected by the bath $J$ into the system. Averaging the master equation we find $J_{L}+J_{M}+J_{R}=0$, in accordance to the energy conservation.

The master equation is a system of 8 equations on the diagonal elements $\rho_{i i}$. If we introduce the net decaying rate from state $|i\rangle$ to the state $|j\rangle$ due to the coupling with bath $J: \Gamma_{i j}^{J}=\omega_{i j}\left[\left(1+n_{\omega}^{J}\right) \rho_{i i}-n_{\omega}^{J} \rho_{j j}\right]=-\Gamma_{j i}^{J}$, the master equation yields

$$
\begin{aligned}
& \dot{\rho}_{11}=0=\Gamma_{51}^{L}+\Gamma_{31}^{M}+\Gamma_{21}^{R}, \\
& \dot{\rho}_{22}=0=\Gamma_{62}^{L}+\Gamma_{42}^{M}+\Gamma_{12}^{R}, \\
& \dot{\rho}_{33}=0=\Gamma_{73}^{L}+\Gamma_{13}^{M}+\Gamma_{43}^{R}, \\
& \dot{\rho}_{44}=0=\Gamma_{84}^{L}+\Gamma_{24}^{M}+\Gamma_{34}^{R}, \\
& \dot{\rho}_{55}=0=\Gamma_{15}^{L}+\Gamma_{75}^{M}+\Gamma_{65}^{R}, \\
& \dot{\rho}_{66}=0=\Gamma_{26}^{L}+\Gamma_{86}^{M}+\Gamma_{56}^{R}, \\
& \dot{\rho}_{77}=0=\Gamma_{37}^{L}+\Gamma_{57}^{M}+\Gamma_{87}^{R}, \\
& \dot{\rho}_{88}=0=\Gamma_{48}^{L}+\Gamma_{68}^{M}+\Gamma_{78}^{R} .
\end{aligned}
$$

These 8 equations are not independent since their sum is 0 . In order to solve the system for the $\rho_{i i}$, one adds the condition $\operatorname{Tr} \rho=1$. Its resolution gives access to all state occupation probabilities as well as to the currents $J_{J}$.

Let us now explicit what we call a thermal transistor, by making the analogy with an electronic one in which the current at the base controls the currents at the collector and at the emitter. The gain of the transistor is defined as the ratio of the current change at the collector or the emitter to the current variation applied at the base. Here, our goal is to show that it is similarly possible to control $J_{L}$ or $J_{R}$ by slightly changing $J_{M}$. We consider that the left and right TLS are both connected to thermal baths, whose respective temperatures $T_{L}$ and $T_{R}$ are fixed. The third bath at temperature $T_{M}$ control the fluxes $J_{L}$ and $J_{R}$ with the help of a current $J_{M}$ injected in the system. If a small change in $J_{M}$ makes a large change in $J_{L}$ or $J_{R}$ i.e if $\left|\alpha_{L, R}\right|=\left|\partial J_{L, R} / \partial J_{M}\right|>1$, then a thermal transistor effect will be observed in the same way as a large collector-current change is present by applying a small electrical current at the base of a bipolar transistor.

We now focus on the conditions for which such a thermal transistor effect can be observed: a transistor will be characterized by the frequencies $\omega_{J}, \omega_{J, J+1}$ and the temperatures $T_{L}$ and $T_{R}$. The last temperature $T_{M}$, that is taken here between $T_{L}$ and $T_{R}$, controls the transistor properties and is related to the current $J_{M}$ through the current conservation condition. A fine parametric study of the system solutions for the density matrix is difficult, due to the large number of parameters involved. To reduce this number and to focus on the physics involved, we restrict our analysis on a simple case for which the three TLS energies are set to 0 , the coupling between the left and right bath is also set to $\omega_{R L}=0$, whereas the two other couplings are equal $\omega_{L M}=\omega_{M R}=\Delta$. The operating temperature $T_{L}$ is taken so that $e^{-\Delta / T_{L}} \ll 1$ $\left(T_{L} / \Delta \lesssim 4\right)$ whereas $e^{-\Delta / T_{R}} \ll e^{-\Delta / T_{L}}\left(T_{R} / \Delta \lesssim 8\right)$.

Under these conditions, system states are degenerated two by two: $|1\rangle=|8\rangle,|2\rangle=|7\rangle,|3\rangle=|6\rangle$ and $|4\rangle=|5\rangle$. Moreover, $E_{1}=E_{8}=\Delta, E_{2}=E_{4}=E_{5}=E_{7}=0$ and $E_{3}=E_{6}=-\Delta$, so that there are only three energy levels (Fig. 2). We rename the states $|1\rangle$ and $|8\rangle$ as $|I\rangle,|2\rangle$ and $|7\rangle$ as $|I I\rangle,|3\rangle$ and $|6\rangle$ as $|I I I\rangle,|4\rangle$ and $|5\rangle$ as $|I V\rangle$. We introduce the new density matrix elements, now reduced to $4, \rho_{I}=\rho_{11}+\rho_{88}, \rho_{I I}=\rho_{22}+\rho_{77}, \rho_{I I I}=\rho_{33}+\rho_{66}$ and $\rho_{I V}=\rho_{44}+\rho_{55}$. In a similar way, net decaying rates between theses states are introduced and the three currents simply read

$$
\begin{align*}
J_{L} & =-\Delta\left[\Gamma_{I-I V}^{L}+\Gamma_{I I-I I I}^{L}\right] \\
J_{M} & =-2 \Delta \Gamma_{I-I I I}^{M}+0 \times \Gamma_{I I-I V}^{M}  \tag{4}\\
J_{R} & =-\Delta\left[\Gamma_{I-I I}^{R}+\Gamma_{I V-I I I}^{R}\right]
\end{align*}
$$

Note that the thermal currents are in units where $\hbar=$ $k_{b}=1$. Transitions between the different states are il-


FIG. 2. Energy levels for $\omega_{L}=\omega_{M}=\omega_{R}=0, \omega_{R L}=0$ and $\omega_{L M}=\omega_{M R}=\Delta$. There are four states $(|I\rangle,|I I\rangle,|I I I\rangle$ and $|I V\rangle$ but three energy levels since $E_{I I}=E_{I V}=0$. The arrows indicates the net decaying rate between the states due do bath $L$ (Red), bath $M$ (Green) and bath $R$ (Blue) for $T_{L}=0.2 \Delta, T_{R}=0.02 \Delta$ and $T_{M}=0.1 \Delta$.


FIG. 3. Inset: thermal currents $J_{L}, J_{M}$ and $J_{R}$ versus $T_{M}$ for $\omega_{L}=\omega_{M}=\omega_{R}=0, \omega_{R L}=0, \omega_{L M}=\omega_{M R}=\Delta, T_{L}=0.2 \Delta$ and $T_{R}=0.02 \Delta$. Main figure: thermal current $J_{M}$ versus $T_{M}$.
lustrated in Fig. 2, for $T_{L} / \Delta=0.2, T_{R} / \Delta=0.02$ and $T_{M} / \Delta=0.1$. The arrow directions shows the transition direction whereas its width depends on the decay time. We see that energy exchanges are mainly dominated by the $I I I-I I$ and $I V-I I I$ transitions. One therefore expects $J_{R}$ and $J_{L}$ to be larger than $J_{M}$. This is illustrated in Fig. 3, where $J_{L}, J_{M}$ and $J_{R}$ are represented versus $T_{M}$, for $T_{L} / \Delta=0.2$ and $T_{R} / \Delta=0.02$. The two currents $J_{L}$ and $J_{R}$ increase linearly with temperature $T_{M}$, at low temperature, and becomes sublinear as $T_{M}$ approaches $T_{L}$. Note that over the whole range, as expected, $J_{M}$ remains lower than $J_{L}$ and $J_{R}$. Thus, $T_{M}$ will be controlled changing slightly the current $J_{M}$ : a tiny change of $J_{M}$ is therefore able to change significantly the values of $J_{L}$ and $J_{R}$. Moreover, one sees that the $J_{M}$ slope remains larger than the ones of $J_{L}$ and $J_{R}$ over a large part of the temperature range. Given the definition of the amplification factor $\alpha$, the comparison of the thermal currents slope is the key element to see if amplification is present.

In Fig. 4, we plot the two amplification coefficients $\alpha_{L}$ and $\alpha_{R}$ versus temperature $T_{M}$. We see that at low $T_{M}, \alpha$ remains much larger than 1 . One also note that $\alpha$


FIG. 4. Amplification factors $\alpha_{L}$ (red) and $\alpha_{R}$ (dashed blue) versus $T_{M}$ for $\omega_{L}=\omega_{M}=\omega_{R}=0, \omega_{R L}=0, \omega_{L M}=\omega_{M R}=$ $\Delta, T_{L}=0.2 \Delta$ and $T_{R}=0.02 \Delta$.
diverges for a certain value of the temperature for which $J_{M}$ has a minimum. This occurs for $T_{M} \simeq 0.1251 \Delta$. In these conditions, a infinitely small change in $J_{M}$ makes a change in $J_{L}$ and $J_{R}$. As $T_{M}$ is closer to $T_{L}$, the amplification factor drastically decreases to reach values below 1, i.e a regime where we cannot talk anymore of a transistor effect. Note also that, in between, there exist a temperature where $J_{M}=0$. This is the temperature for which the bath $M$ is at thermal equilibrium with the system since it does not inject any thermal current in it. At this temperature ( $T_{M} \simeq 0.156 \Delta$ ), $J_{L}=-J_{R}=7.97 \times 10^{-4}$. Amplification still occurs since $\alpha_{L}=8.88$ and $\alpha_{R}=-9.88$.

All these observations can be explained by examining carefully populations and currents expressions. In the present case, if we limit the calculation to first order of approximations on $e^{-\Delta / T_{L}}$ and $e^{-\Delta / T_{M}}$, one can roughly estimate the populations by

$$
\begin{align*}
\rho_{I} & \simeq \frac{e^{-2 \Delta / T_{M}}}{2}+\frac{T_{M}}{4 \Delta+8 T_{M}} e^{-2 \Delta / T_{L}},  \tag{5}\\
\rho_{I I} & \simeq \frac{\Delta+T_{M}}{\Delta+2 T_{M}} e^{-\Delta / T_{L}},  \tag{6}\\
\rho_{I I I} & \simeq 1-e^{-\Delta / T_{L}}  \tag{7}\\
\rho_{I V} & \simeq \frac{T_{M}}{\Delta+2 T_{M}} e^{-\Delta / T_{L}} . \tag{8}
\end{align*}
$$

$\rho_{I I I}$ remains very close to 1 and $\rho_{I I}$ to $10^{-2} . \rho_{I}$ and $\rho_{I V}$ keep much lower, but change by one to two orders of magnitude with temperature. Note that the sum of (5-8) is not 1 , but the error on $\rho$ 's is less than $1 \%$ over the temperature range.

We now explicitly correlate the three thermal currents with temperature.

$$
\begin{align*}
J_{L} & \simeq \frac{\Delta^{2} T_{M} e^{-\Delta / T_{L}}}{\Delta+2 T_{M}}  \tag{9}\\
J_{M} & \simeq \Delta^{2}\left[-\frac{T_{M}}{\Delta+2 T_{M}} e^{-2 \Delta / T_{L}}+2 e^{-2 \Delta / T_{M}}\right]  \tag{10}\\
J_{R} & \simeq-\frac{\Delta^{2} T_{M} e^{-\Delta / T_{L}}}{\Delta+2 T_{M}} \tag{11}
\end{align*}
$$

Note here again that the sum of the three currents is not zero despite of the fact that expressions remain close to the exact solution. The largest error is on $J_{L}$ and $J_{R}$ around $T_{M}=T_{L}$ where it reaches $5 \%$. These formula retrieve the linear dependance of the thermal currents for small values of $T_{M}$. One also note that, when we compare with (8), $J_{L}$ and $J_{R}$ are driven by $\rho_{I V}$, i.e the state population at the intermediate energy $\left(E_{I V}=0\right)$. Looking at the authorized transitions, one expects that $J_{M}$ is driven by the population of the most energetic state, i.e $\rho_{I}$. The main difference between $\rho_{I V}$ and $\rho_{I}$ is the temperature dependance, which is linear in one case and exponential $\left(e^{-2 \Delta / T}\right)$ in the other case. The result is that even when $T_{M}$ is close to $T_{L}, \rho_{I}$ remains low. Therefore, $J_{M}$ keeps low values in the whole temperature range due to the low values of $\rho_{I}$. If we look more carefully at $J_{M}$, one notices that it is the sum of two terms. The first one is roughly linear on $T_{M}$. It is similar to the one that appears in $\rho_{I V}$. $J_{M}$ depends on the population of state $I V$, which also influences the population of state $I$ with the transition $I V-I$. The increase of $\rho_{I V}$ with $T_{M}$ makes easier the $I V-I$ transition, and raises $\rho_{I}$. This increases the decaying of state $I$ through the $I-I I I$ transition. This term is negative and decreases as $T_{M}$ increases. This can be seen as a negative differential resistance since a decreasing of $J_{M}$ (cooling in $M$ ) corresponds to an increase of the temperature $T_{M}$. In this temperature range, it can easily be shown that the amplification factor $\left|\alpha_{L}\right| \approx\left|\alpha_{R}\right| \approx e^{\Delta / T_{L}}$. A second term in $J_{M}$, is the classical $e^{-\Delta / T_{M}}$ Boltzmann factor term, which makes the population of state $I$ increase with $T_{M} . J_{M}$ is a trade off between these two terms. At low temperature, the linear term is predominant. As $T_{M}$ increases, the term $e^{-\Delta / T_{M}}$ takes over. As a consequence, there is a point where $\rho_{I}$ increasing reverses the $I-I V$ transition, so that the $I-I I I$ transition competes with both $I-I V$ and $I-I I$ transitions. $I-I I I$ is then reversed. With these two terms competing, there is a temperature for which $J_{M}$ reaches a minimum and a second temperature where $J_{M}=0$, as already described.

Finally, one can summarize the conditions needed for the system to undergo a thermal transistor effect. Two baths (here $L$ and $R$ ) induces transitions between 2 highly separated states with an intermediate energy level, whereas the third one ( $M$ ) makes only a transition between the two extremes. This will first make $J_{M}$ much smaller that $J_{L}$ and $J_{R}$, and second, it will set a competition between a direct decay of the highest level to the ground level and a decay via the intermediate one. This competition between the two terms makes the thermal dependance of $J_{M}$ with $T_{M}$ slow enough to obtain a high amplification.

In conclusion, we have shown that it is possible to make a thermal transistor with 3 coupled TLS linked to 3 different thermal baths. One TLS is coupled to the 2 others, whereas the 2 other are not directly coupled. The TLS related to the two other plays the same role as the base in
a bipolar transistor, while the two other TLS can be seen as the emitter and the collector. We found a temperature regime where a thermal current variation imposed at the base generates an amplified variation at the emitter and the collector. This regime is typically such that temperature corresponds to an energy one order of magnitude smaller than the coupling energy between the TLS. This means that a transistor effect will be observed at ambient temperature for a coupling between the TLS with a typical frequency in the visible. With this kind of thermal transistor one can expect to modulate or amplify thermal fluxes in nanostructures made up of elementary quantum objects.

This work pertains to the French Government Program "Investissement d'avenir" (LABEX INTERACTIFS, ANR-11-LABX-0017-01). K.J. thanks Alexia Auffèves for fruitful and inspiring discussions.
[1] V. E. Lashkaryov, Izv Akad Nauk SSSR Ser Fiz 5, 442 (1941).
[2] J. Bardeen and W. H. Brattain, Proceedings of the IEEE 86, 29 (1998).
[3] M. Terraneo, M. Peyrard, and G. Casati, Phys. Rev. Lett. 88, 094302 (2002).
[4] B. Li, L. Wang, and G. Casati, Phys. Rev. Lett. 93, 184301 (2004).
[5] B. Li, J. Lan, and L. Wang, Phys. Rev. Lett. 95, 104302 (2005).
[6] C. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314, 1118 (2006).
[7] B. Hu, L. Yang, and Y. Zhang, Phys. Rev. Lett. 97, 124302 (2006).
[8] N. Yang, N. Li, L. Wang, and B. Li, Phys. Rev. B 76, 020301 (2007).
[9] J. Hu, X. Ruan, and Y. P. Chen, Nano Lett. 9, 2730 (2009).
[10] E. Pereira, Phys. Rev. E 83, 031106 (2011).
[11] G. Zhang and H. Zhang, Nanoscale 3, 4604 (2011).
[12] N. Roberts and D. Walker, Int. J. Therm. Sci. 50, 648 (2011).
[13] K. Garcia-Garcia and J. Alvarez-Quintana, Int. J. Therm. Sci. 81, 76 (2014).
[14] D. Segal, Phys. Rev. Lett. 100, 105901 (2008)
[15] L. Wang and B. Li, Phys. Rev. Lett. 99, 177208 (2007).
[16] W. Chung Lo, L. Wang, and B. Li, J. Phys. Soc. Jpn. 77, 054402 (2008).
[17] C. R. Otey, W. T. Lau, and S. Fan, Phys. Rev. Lett. 104, 154301 (2010).
[18] S. Basu and M. Francoeur, Appl. Phys. Lett. 98, 113106 (2011).
[19] P. Ben-Abdallah and S.-A. Biehs, Appl. Phys. Lett. 103, 191907 (2013).
[20] P. J. van Zwol, L. Ranno, and J. Chevrier, J. Appl. Phys. 111, 063110 (2012).
[21] K. Ito, K. Nishikawa, H. Iizuka, and H. Toshiyoshi, Appl. Phys. Lett. 105, 253503 (2014).
[22] E. Nefzaoui, J. Drevillon, Y. Ezzahri, and K. Joulain, Appl. Opt. 53, 3479 (2014).
[23] E. Nefzaoui, K. Joulain, J. Drevillon, and Y. Ezzahri, Appl. Phys. Lett. 104, 103905 (2014).
[24] K. Joulain, Y. Ezzahri, J. Drevillon, B. Rousseau, and D. De Sousa Meneses, Opt. Expr. 23, A1388 (2015).
[25] J. Huang, Q. Li, Z. Zheng, and Y. Xuan, Int. J. Heat Mass Tran. 67, 575 (2013).
[26] F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
[27] M. Rini, A. Cavalleri, R. W. Schoenlein, R. Lpez, L. C. Feldman, R. F. Haglund, L. A. Boatner, and T. E. Haynes, Opt. Lett. 30, 558 (2005).
[28] P. Ben-Abdallah and S.-A. Biehs, Phys. Rev. Lett. 112, 044301 (2014).
[29] K. Joulain, Y. Ezzahri, J. Drevillon, and P. BenAbdallah, Appl. Phys. Lett. 106, 133505 (2015).
[30] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 76, 1800 (1996).
[31] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. Pinkse, and G. Rempe, Nature 428, 50 (2004).
[32] J. Claudon, J. Bleuse, N. Malik, M. Bazin, P. Jaffrenou, G. Gregersen, C. Sauvan, P. Lalanne, and J. Grard, Nat. Phot. 3, 116 (2009).
[33] A. Dousse, J. Suffczyski, A. Beveratos, O. Krebs, A. Lematre, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, Nature 466, 217 (2010).
[34] Z. Yu and S. Fan, Nat. Phot. 3, 91 (2009).
[35] E. Mascarenhas, D. Gerace, D. Valente, S. Montangero, A. Auffèves, and M. F. Santos, EPL 106, 54003 (2014).
[36] E. Mascarenhas, M. F. Santos, A. Auffeves, and D. Ger-
ace, arXiv preprint arXiv:1510.01472 (2015).
[37] J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Gtzinger, and V. Sandoghdar, Nature 460, 76 (2009).
[38] O. V. Astafiev, A. A. Abdumalikov, A. M. Zagoskin, Y. A. Pashkin, Y. Nakamura, and J. S. Tsai, Phys. Rev. Lett. 104, 183603 (2010).
[39] D. Manzano, M. Tiersch, A. Asadian, and H. J. Briegel, Phys. Rev. E 86, 061118 (2012).
[40] A. Bermudez, M. Bruderer, and M. B. Plenio, Phys. Rev. Lett. 111, 040601 (2013).
[41] N. Pumulo, I. Sinayskiy, and F. Petruccione, Phys. Lett. A 375, 3157 (2011).
[42] R. Scheibner, M. Knig, D. Reuter, A. D. Wieck, C. Gould, H. Buhmann, and L. W. Molenkamp, New J. Phys. 10, 083016 (2008).
[43] E. Pereira and H. C. F. Lemos, J.Phys. A: Math. Gen. 42, 225006 (2009).
[44] T. Werlang, M. A. Marchiori, M. F. Cornelio, and D. Valente, Phys. Rev. E 89, 062109 (2014).
[45] T. Chen and X.-B. Wang, Physica E 72, 58 (2015).
[46] A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).
[47] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[48] H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford ; New York, 2002).

