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Abstract—We study in this paper1 the problem of binary power
control in interference channels with single-antenna nodes. In
many practical scenarios, letting transmitters (TXs) exchange the
locally available channel state information (CSI) is unpractical.
In such cases, coordinating the power allocation is a difficult
problem and we propose in this work a novel binary power
control policy for maximizing the ergodic sum-rate when each
TX has only access to the instantaneous channel realization of the
direct channel to its own user. We prove rigorously the intuitive
result that the optimal binary power control policy consists in
letting each TX transmits with full power if and only if the
realization of this direct channel is above a threshold. The power
control policy obtained with the algorithm is a “best-response"
power control policy and allows to achieve benefits of coordinated
power allocation at a low cost in terms of backhaul resources
and complexity.

I. INTRODUCTION

A large body of literature has focused on the optimization

of the power control in wireless communications because of

its potential in improving the performance and reducing at

the same time the energy consumption [1]–[3]. Maximizing

the sum rate in the interference channel (IC) is particularly

interesting but is made difficult by its non-convexity. Yet, in

the particular case of two single-antennas transmitters (TXs),

it is shown in [4] that the binary power control is optimal,

thus strongly reducing the complexity of the problem. In the

general case with K users, it is verified by simulations that

binary power control is an efficient power control scheme.

However, maximizing the sum rate requires the obtaining

of the global multi-user channel state information (CSI) at a

central node (or at each TX). The cost of this CSI sharing

is in many practical settings prohibitive such that approaches

running on local CSI have been developed. In particular, this

power control problem has then been modeled in several works

[5]–[8] as a game theoretic problem where each TX aims at

maximizing its own rate. The concavity of the objective is then

used to obtain distributed power control algorithms.

This competitive approach comes however with a price in

terms of performance reduction, called the price of anarchy

[8]. As an answer, we consider the same configuration of only

local CSI, but we focus instead on a cooperative approach

to maximize the sum rate. Although a common utility is not

1The research at IMC leading to these results has received funding from
the EU FP7 grant iJOIN (No. 317941).

intrinsically incompatible with the game theoretic approach,

the sum rate utility is no longer concave and has a more

complicated structure in terms of the CSI, which makes it

impossible to use the above results from the literature. For the

particular i.i.d. case, this problem has been considered with an

asymptotically large number of users in [9], but no algorithm

is provided and the optimality of the thresholding approach is

not shown.

Note that the main difficulty that we will face comes from

the fact that, following practical considerations, we consider a

one-shot optimization problem where no iterative exchange of

information between the TXs is allowed. This problem then

falls in the category of Bayesian games with incomplete in-

formation [10], also called Team Decision [10]–[12] problems

when all the users share the same utility. Despite the existence

of a rich literature on team decision problems, few solutions

have been targeted at wireless scenarios and most techniques

assume restrictive properties for the cost function.

Our main contributions read as follows:

• We show that the optimal power control policy consists

in having each TX transmit if and only if its channel

realization is larger than a given threshold. Hence, finding

the optimal binary-power control policy comes down to

finding the optimal thresholds.

• In the limiting regimes of high and low SNRs, we provide

some optimal thresholds.

• In the general case, we develop an algorithm converging

to a best-response power control policy.

II. SYSTEM SETTING

A. Transmission Scenario

We consider an IC consisting of single-antenna nodes with

K users and with user i being only served by TX i. To make

the contributions of this paper as clear as possible, we focus

on the 2−user case i.e., K = 2. The extension to the K-user

IC with K > 2 is ready for almost all the derived results and

is briefly discussed in Section V. We denote by H ∈ C
2×2

the multi-user channel such that the wireless link between

TX j and RX i is equal to {H}i,j . We assume further that the

transmission occurs in a Rayleigh fast fading environment such

that {H}i,j = ρi,jH̃i,j with H̃i,j ∼ N (0, 1) being a complex

standard Gaussian random variable. The value of ρi,j reflects



the geometry (topology) of the network. Finally, we introduce

the channel gain matrix G ∈ R
2×2 where

{G}i,j , Gi,j , |{H}i,j |
2. (1)

We further consider that the transmitted power Pj at TX j

is chosen between two power levels Pmin
j and Pmax

j with

Pmin
j 6= Pmax

j .

Our main figure of merit in this work will be the ergodic

sum-rate with the instantaneous sum-rate being given by [13]

R(P1, P2) = log2

(

1+
G1,1P1

1+G1,2P2

)

+log2

(

1+
G2,2P2

1+G2,1P1

)

. (2)

B. A Team Decision Problem

Obtaining accurate global CSI at the TXs is difficult due to

the limited feedback and backhaul resources and the changing

nature of the wireless channel [14]. As a consequence, we

consider that each TX only knows (perfectly) the direct

channel to its RX but does not know the realizations of the

other channel coefficients. The statistical information, which

varies more slowly, is more easily obtained and is supposed to

be common knowledge for each TX. Thus, the power control

function at TX j, which we denote by pj , depends only on

Gj,j and is hence represented as

pj : R
+

→ {Pmin
j , Pmax

j }
Gj,j 7→ pj(Gj,j)

(3)

where R
+
, R

+∪{∞}. The optimization of the power control

function is then written as

(p⋆1, p
⋆
2) = argmax

(p1,p2)∈P

EG[R(p1(G1,1), p2(G2,2))] (4)

where then notation EG indicates that the expectation is taken

over G, and P is defined by

P , {(p1, p2)|pj : R
+
→ {Pmin

j , Pmax
j }, j = 1, 2}. (5)

Optimization problem (4) is a functional optimization problem,

as the optimization is done over the power control functions pj .

Both TXs aim at maximizing a common utility – the ergodic

sum-rate– based on individual information –the knowledge of

Gj,j–, which is a typical Team Decision problem [10]–[12].

Remark 1. It is important to understand that the distributed

CSI structure is reflected in the particular dependencies of the

power control functions. Hence, the distributed power control

problem can be formulated as a centralized optimization

problem as long as the optimization variables are functions

of the adequate variables.

Solving this functional optimization problem is particularly

difficult and we will rely on two main ingredients to simplify

the problem at hand. First, leveraging the particular mono-

tonicity properties of the functions considered, we will show

that this optimization problem can be cast as a much more

simple optimization problem without loss of optimality. The

second ingredient consists in using the notion of best-response

(BR), which we introduce now, so as to obtain an iterative

algorithm (see e.g., [15] [8]).

Definition 1. A best-response power control function is a

power control function (pBR
1 , pBR

2 ) satisfying:










pBR
1 ∈ argmax

(p1,p
BR
2

)∈P

EG[R(p1(G1,1), p
BR
2 (G2,2))]

pBR
2 ∈ argmax

(pBR
1

,p2)∈P

EG[R(pBR
1 (G1,1), p2(G2,2))].

(6)

Intuitively, a best-response power control function is a

power control function being optimal given the power control

functions at the other TXs. This leads easily to the following

well known result [16].

Proposition 1. An optimal power control policy (p⋆1, p
⋆
2) is

also a best-response power control policy.

III. PROPERTIES OF THE TEAM DECISION PROBLEM

Coming back to an optimal power control policy (p⋆1, p
⋆
2),

we provide in this section theoretical results which will be used

when designing the power control algorithm in Section IV.

As a first step, we introduce a smaller optimization space for

the power control functions, namely, the space of threshold

functions.

Definition 2. We denote by T ⊂ P the subset containing

only the power control functions (p1, p2) which can be written

under the form

pj(x) =

{

Pmin
j if x ≤ λj

Pmax
j if x > λj

(7)

for some λj ∈ R
+

. We denote such a power control function

by p
λj

j .

Building upon this definition, we can now show the follow-

ing key property.

Proposition 2. An optimal binary power policy (p⋆1, p
⋆
2) for

the optimization problem (4) belongs to T , i.e., there exists a

pair (λ⋆
1, λ

⋆
2) ∈ R

2 such that

(p⋆1, p
⋆
2) = (p

λ⋆
1

1 , p
λ⋆
2

2 ). (8)

Proof. We know from Proposition 1 that an optimal threshold

is also a best-response thresholds. Hence, this proposition is

shown at the same time as Proposition 4.

Building upon this result, we can obtain an optimal power

control policy at asymptotic SNR.

Proposition 3. Let us assume without loss of generality

that Pmax
1 = Pmax

2 = Pmax and that ρ21,1 ≥ ρ22,2. There

exists an optimal pair of power control functions (p⋆1, p
⋆
2) =

(p
λ⋆
1

1 , p
λ⋆
2

2 ) such that

lim
Pmax→∞
Pmin

i <∞

(λ⋆
1, λ

⋆
2) = (0,∞)

(9)

and
lim

Pmax→0
(λ⋆

1, λ
⋆
2) = (0, 0). (10)

Proof. A detailed proof is available in the auxiliary document

[17].



Proposition 2 is especially useful as it shows that solving (4)

is equivalent to solving:

(λ⋆
1, λ

⋆
2) ∈ argmax

(λ1,λ2)∈R2

EG[R(pλ1

1 (G1,1), p
λ2

2 (G2,2))]. (11)

We now turn to the obtaining of the thresholds (λ⋆
1, λ

⋆
2).

IV. BEST RESPONSE POWER CONTROL ALGORITHM BY

BISECTION

We present here an iterative algorithm where the thresholds

of the power control functions are updated in an iterative

manner following a “best-response" update. We show first in

Subsection IV-A how to update one threshold when the other

threshold is kept fixed, and we describe the full algorithm in

Subsection IV-B. Note that the proposed algorithm requires

to express several conditional expectations and that these

calculations are postponed to Subsection IV-C for the sake

of clarity.

A. A Characterization of the Optimal Threshold

Let us consider without loss of generality that the thresh-

old λ2 is given, i.e., that the power control function at TX 2

is pλ2

2 . We start by introducing a new function ∆ : R
+
→ R

defined as

∆(x),EG|G1,1=x[R(P
max
1 , pλ2

2 )]−EG|G1,1=x[R(P
min
1 , pλ2

2 )]
(12)

where then notation EG|G1,1
indicates that the expectation is

taken over G given G1,1.

Remark 2. For the sake of clarity, we make a slight abuse

of notation by writing Pmin
j (or Pmax

j ) to refer to the power

control function pj(x) = Pmin
j (or Pmax

j ) for all x.

This leads to the following result.

Proposition 4. Let the threshold λ2 be given. There is a unique

best-response thresholds λBR
1 . It is the unique solution of the

equation

∆(x) = 0. (13)

Proof. By definition of the function ∆ in (12), the best-

response power control function p
λBR
1

1 necessarily satisfies:

p
λBR
1

1 (x) =

{

Pmin
1 if ∆(x) ≤ 0

Pmax
1 if ∆(x) > 0.

(14)

The function ∆ is easily seen to be of class C1 and its

derivative can be calculated as

d∆(x)

dx
= E

[

Pmax
1

1 + xPmax
1 +G1,2P2

−
Pmin
1

1 + xPmin
1 +G1,2P2

]

(15)

= E

[

(Pmax
1 − Pmin

1 )(1 +G1,2P2)

(1 + xPmax
1 +G1,2P2)(1 + xPmin

1 +G1,2P2)

]

(16)

which is strictly positive such that the function ∆ is mono-

tonically increasing. In addition, it can be easily seen that

∆(0) ≤ 0, ∆(∞) > 0. (17)

Using the continuity of ∆, it follows that there is a unique

value at which the function ∆ vanishes. By identification with

(14), this point is exactly λBR
1 .

We have hence obtained a useful characterization of the

best-response threshold λBR
1 . In particular, it follows from the

monotonicity of ∆ and the fact that it vanishes only at λBR
1

that it is possible to use the bisection method to obtain λBR
1 .

B. Best-Response Power Control Algorithm

The proposed algorithm consists in applying the best-

response updating rule for each of the threshold. For clarity,

the different steps of the algorithm are put together in Algo-

rithm 1. It remains to prove the convergence of the algorithm.

Proposition 5. Algorithm 1 converges to a best-response

power control function (pBR
1 , pBR

2 ).

Proof. Both TXs optimize a common objective such that this

game is a potential game, for which the best-response update

is known to converge to a Nash Equilibrium [8].

Algorithm 1 Iterative Best-Response Update

Inputs: {ρ2ij}i,j , P
min
1 , Pmax

1 , Pmin
2 , Pmax

2 , λinit
1 , λinit

2 , α, ε

Outputs: (pλ
BR
1 , pλ

BR
2 )

• Initialization (m = 0): Set

(λBR
1 (0), λBR

2 (0)) = (λinit
1 , λinit

2 ) (18)

• At step m ≥ 1:

1) Update of P1:

– Initialization (n = 0): Set λlow
1 (0) = 0 and

λ
up
1 (0) = αρ21,1

– At step n ≥ 1: Set

λmid
1 (n) =

λlow
1 (n) + λ

up
1 (n)

2
(19)

– If ∆(λmid
1 (n)) ≤ 0, set

{

λlow
1 (n+ 1) = λmid

1 (n)

λ
up
1 (n+ 1) = λ

up
1 (n)

(20)

otherwise set
{

λlow
1 (n+ 1) = λlow

1 (n)

λ
up
1 (n+ 1) = λmid

1 (n)
(21)

– Proceed until |λup
1 (n)−λlow

1 (n−1)|<ε. Set λBR
1 =

λmid
1 (n)

2) Update of P2: Proceed symmetrically

• Proceed until

|λBR
1 (m)−λBR

1 (m−1)|+|λBR
2 (m)−λBR

2 (m−1)|<ε (22)

Remark 3. The proposed algorithm is performed offline, fol-

lowing a designer point of view. It provides power allocation

functions which can then be applied in a distributed manner

at each TX in the initial Team Decision problem.



C. Auxiliary Calculations

Here, we provide the details on some derivations upon

which the results in the preceding sections have been built.

More precisely, we calculate the expectations arising in the

definition of the function ∆ in (12). The two terms arising

in (12) can be calculated in the same manner such that we

calculate without loss of generality the conditional expectation

for p1 = Pmax
1 . The expression obtained can then be used for

p1 = Pmin
1 to evaluate ∆. Furthermore, the same results can

be used by symmetry to update the threshold of TX 2.
We start by calculating the conditional rate of user 1 before

turning to the conditional rate of user 2.
1) EG|G1,1

[R1(P
max
1 , p2)]: Since p2 depends only on G2,2

it is independent of the channel realizations arising in the

expression of R1. Hence, it holds that

EG|G1,1
[R1(P

max
1 , p2)]

= Pr(G2,2 ≤ λBR
2 )EG|G1,1

[R1(P
max
1 , Pmin

2 )]

+Pr(G2,2>λBR
2 )EG|G1,1

[R1(P
max
1 ,Pmax

2 )] (23)

= (1− e
−

λBR
2

ρ2
2,2 )EG|G1,1

[R1(P
max
1 , Pmin

2 )]

+ e
−

λBR
2

ρ2
2,2 EG|G1,1

[R1(P
max
1 , Pmax

2 )]. (24)

Since the power control functions in (24) are only constant

functions, we can use the expression for the conditional rate

from [18]. This gives for (Pmax
1 , Pmax

2 )

EG|G1,1
[R1(P

max
1 , Pmax

2 )] = log(1 + Pmax
1 G1,1)

+e

1+Pmax
1

G1,1

ρ2
1,2

Pmax
2 E1

(

1+G1,1P
max
1

ρ21,2P
max
2

)

−e
1

ρ2
1,2

Pmax
2 E1

(

1

ρ21,2P
max
2

)

(25)

where E1 is the exponential integral function and is defined

for x > 0 as [19, p. 228]

E1(x) ,

∫ ∞

x

e−t

t
dt. (26)

2) EG|G1,1
[R2(P

max
1 , p2)]: Since G2,2 appears in the rate

expression of user 2, we can not use the same calculation as

previously and we have to integrate over G2,2:

EG|G1,1
[R2(P

max
1 , p2)]

= EG[R2(P
max
1 , p2)] (27)

=

∫ ∞

0

EG|G2,2
[R2(P

max
1 , p2(G2,2)]dG2,2 (28)

=

∫ ∞

λBR
2

EG|G2,2
[R2(P

max
1 , Pmax

2 )]dG2,2

+

∫ λBR
2

0

EG|G2,2
[R2(P

max
1 , Pmin

2 )]dG2,2. (29)

It remains then to replace the conditional rates inside the

two integrals by their expressions using (25). Among the

three terms to integrate, two can be easily obtained in closed

form but one requires to integrate the exponential integral

function E1 defined in (26). Although no closed form could be

obtained, this integration can be easily computed with MAT-

LAB. The algebraic manipulations are simple but relatively

lengthy and are hence provided in the auxiliary document [17].

Remark 4. In addition, many accurate approximations for the

exponential integral exist and can be found in [19, p. 229].

They can then be used to obtain an approximate closed form

expression. In [17], the following approximation from [19, p.

229] is used and shown to lead to no noticeable loss over a

wide range of parameters:

1

2
log

(

1 +
2

x

)

≤ e−x
E1(x) ≤ log

(

1 +
1

x

)

. (30)

V. EXTENSION TO THE K-USER IC

We have discussed the 2-user IC but all of the results pre-

sented in Section III directly generalize to the K-user IC with

TX j having only instantaneous access to the channel gainGj,j

and the statistics of the multi-user channel. In particular, this

means that the optimal binary power control functions are also

threshold functions, that we can find optimal threshold values

tending to zero at low SNR, and that only one TX emits at

high SNR. Finally, it is also possible to apply the bisection

method to obtain a best-response function, i.e., Algorithm 1

directly extends to K users. The only property which does

not easily extend is the possibility to write explicitly the

integration because the distribution of the interference is much

more complicated in the general case. As a consequence, we

will use Monte-Carlo averaging to evaluate the conditional

expectations arising in Algorithm 1.

VI. SIMULATIONS

We show in Fig. 1 the ergodic sum-rate attained with

the best-response power control function obtained using Al-

gorithm 1 averaged over 10000 Monte-Carlo realizations of

the channel. We also choose as parameters for Algorithm 1,

ε = 10−3 and α = 10. We consider for the sake of expo-

sition the most simple channel setting with ρ2i,j = 1, ∀i, j
and Pmax

1 = Pmax
2 = Pmax and Pmin

1 = Pmin
2 = 0.

We compare the performance of our algorithm with the two

distributed power control policies conventionally used: the

egoistic (or competitive) power control scheme where both

TXs transmit with full power and the round robin solution

where each TX transmits with its maximal power during half

the time. Round-robin leads to perfect coordination between

the TXs but no opportunistic use of the channel diversity. In

addition we also show the performance achieved with perfect

CSI at both TXs, which is hence an (a priori) non reachable

bound. Finally, we use a linear search to approach the optimal

thresholds of the Team Decision problem (4) and not only the

best-response optimization problem (5).

It can be seen that the best-response power control out-

performs conventional solutions from the literature. It also

converges to the optimal solutions at low (egoistic power

control) and high SNR (round-robin), respectively. Comparing

to the optimal thresholds obtained with the linear search,



we can see the good match between the two solutions. This

confirms that best-response power control policies are a good

practical way to approach the optimal power control policies.
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Fig. 1: Average sum-rate as a function of the maximum per-TX

transmit power Pmax with K = 2.

Finally, we consider in Fig. 2 the same parameters but with

K = 5. Algorithm 1 is used in combination with Monte-Carlo

averaging to evaluate the conditional expectations. It can be

seen that the distributed power control policy performs closer

to the centralized case than in the two-user case. In the case of

i.i.d. Rayleigh fading, it is known that the proposed distributed

power control achieves the same scaling in the number of

users as centralized power control [9], and we conjecture this

property to be also valid for different variance profiles.
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Fig. 2: Average sum-rate as a function of the maximum per-TX

transmit power Pmax with K = 5.

VII. CONCLUSION

We have shown that the binary power control using only

local CSI to maximize the sum rate can cast as a Team De-

cision problem and requires solving a functional optimization

problem. Exploiting the particular structure of this problem,

we have developed a a simple algorithm converging to a best-

response power control policy. The proposed algorithm can be

computed off-line and once the optimal power control policies

have been found, the TXs are only required to compare the

channel realizations to the obtained thresholds. Hence, the

coordinated power control proposed can be used in settings

with low coordination and computation capabilities. Studying

the efficiency of the best-response power allocation functions

obtained is an interesting and challenging research problem.
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