
HAL Id: hal-01272502
https://hal.science/hal-01272502

Submitted on 15 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coordinating partially-informed agents over
state-dependent networks

Benjamin Larrousse, Samson Lasaulce, Michèle Wigger

To cite this version:
Benjamin Larrousse, Samson Lasaulce, Michèle Wigger. Coordinating partially-informed agents over
state-dependent networks. 2015 IEEE Information Theory Workshop (ITW), Apr 2015, Jérusalem,
Israel. �10.1109/ITW.2015.7133152�. �hal-01272502�

https://hal.science/hal-01272502
https://hal.archives-ouvertes.fr


Coordinating Partially-Informed Agents over
State-Dependent Networks

Benjamin Larrousse
Centrale-Supelec

91192 Gif-sur-Yvette, France
benjamin.larrousse@lss.supelec.fr

Samson Lasaulce
CNRS and Centrale-Supelec
91192 Gif-sur-Yvette, France

lasaulce@lss.supelec.fr
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Abstract—We consider a multi-agent scenario with K ≥ 2
agents that have partial information about some random nature
state, and that take actions in a repeated manner. Each agent
also has imperfect observations of the other agents’ past actions
and the nature state realization. Our goal is to characterize the
set of asymptotically implementable distributions on the agents’
actions and the nature state. We solve this problem for general K
when all agents have only causal nature state information (NSI)
and for K = 2 when: one agent has causal NSI and the other
agent has non-causal NSI; or in some special cases when both
agents have non-causal NSI.

I. INTRODUCTION

This paper solves a few special instances of the following
general problem. Consider K ≥ 2 agents, where Agent
k ∈ {1, . . . ,K} produces time-t action1 xk,t ∈ Xk for
t ∈ {1, . . . , T}, T ≥ 1. Each agent has access to some obser-
vations associated with the chosen actions and the realization
of a random process {S0,t}Tt=1 = {S0,1, ..., S0,T } ∈ ST0 ,
which models some process of interest. We call {S0,t} the
nature states. The agents’ actions and the nature states also
affect the agents’ individual payoff functions {ωk}Kk=1, where
ωk : S0×X1× ...×XK → R. The main problem under inves-
tigation is to characterize, for a given observation structure,
the set of feasible average payoffs

W
(T )
k =

1

T

T∑
t=1

ωk(s0,t, x1,t, ..., xK,t), k ∈ {1, . . . ,K}, (1)

in the limit T → ∞. Let PS0,tX1,t...XK,t
denote the

joint distribution on the (K + 1)−tuple (S0, X1, ..., XK) at
time t. By definition, the set of feasible average payoffs
is fully characterized by the set of averaged distributions
1
T

∑T
t=1 PS0,tX1,t...XK,t

(s0, x1, ..., xK) that can be induced by
the agents’ strategies. To reuse the terminology of [1], [2], in
the limit T → ∞, this set will be referred to as the set of
implementable distributions (see Definition 1). Characterizing
the set of implementable distributions for this general problem
is a challenging problem, which motivates the definition of
intermediate problems such as those reported in this paper.

The first special instance of the general problem described
above is due to Gossner et al. [1], who addressed the two-agent
case when: the nature states {S0,t}Tt=1 are i.i.d. (independent

1Throughout the paper, we assume that all alphabets such as Xk are finite.

and identically distributed); at any time t ∈ {1, . . . , T},
Agent 1 knows the past, present, and future realizations
of the nature state (s0,1, ..., s0,T ); Agent 2 knows the past
realizations of the nature state (s0,1, ..., s0,t−1); and both
Agents 1 and 2 have perfect observation of the past actions
(x1,1, x2,1, ..., x1,t−1, x2,t−1). The problem is solved in [1];
Cuff and Zhao presented an alternative proof [3] of the
results in [1] based on more traditional information-theoretic
tools and under the coordination via actions framework. In
[2], the authors address the more general case where at
time t ∈ {2, ..., T} Agent 2 has access to the past realiza-
tions of nature state (s0,1, s0,2, ..., s0,t−1) and to observations
(y2,1, y2,2, . . . , y2,t−1) that are modeled as the outputs of a
discrete memoryless channel (DMC) Γ(y2,t|x1,t); this setup
has independently been addressed in [4]. The work of [2] was
further developed in [5, 6], where at time t Agent 2 has access
to the past outputs (y2,1, ..., y2,t−1) of a more general state-
dependent DMC Γ(y2,t|s0,t, x1,t, x2,t), but not necessarily to
the past realizations (s0,1, . . . , s0,t−1) of the nature state.

In contrast to the above works, in the present paper we con-
sider more symmetric scenarios where each agent k ∈ {1, 2}
has nature state information (NSI) about {S0,t} and observes
past outputs (yk,1, . . . , yk,t−1) from a state-dependent discrete
memoryless network Γ(y1,t, y2,t|s0,t, x1,t, x2,t). Moreover, the
NSI at the two agents can be only partial. We also make a step
toward the multi-agent scenario with K > 2 by discussing the
complexity of the problem and providing first results.

II. GENERAL PROBLEM FORMULATION

We explain our assumptions in more detail. The na-
ture states {S0,t}Tt=1 are i.i.d. according to the law ρ0.
Each Agent k’s NSI, k ∈ {1, ...,K}, is modeled by
the sequence {Sk,t}Tt=1 ∈ STk , where the (K + 1)-tuples
{(S0,t, S1,t, ..., SK,t)}Tt=1 are i.i.d. according to the joint
distribution ρ0(s0) × k(s1, ..., sK |s0), with sk ∈ Sk. The
observations {Yk,t} at Agent k are best modeled through a
state-dependent network that at each time t takes as inputs
the agents’ actions X1,t, ..., XK,t and the nature state S0,t,
and produces as outputs the observations Y1,t, ..., YK,t. We
assume that this network is memoryless and is described by a
stationary channel law Γ(y1, ..., yK |s0,, x1, ..., xK), i.e., that2

2Throughout this manuscript, we adopt the notations An and an for the
n-tuples (A1, . . . , An) and (a1, . . . , an) and An

m for (Am, . . . , An).
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]
= Γ(y1,t, y2,t|s0,t, x1,t, x2,t). (2)

(2) on top of the next page holds. We distinguish between two
scenarios. In the first scenario, Agent k has causal NSI, i.e.,
it produces its time-t action Xk,t as

Xk,t = σ
(c)
k,t(S

t
k, Y

t−1
k ) (3a)

for some σ(c)
k,t : Stk × Y

t−1
k → Xk. The sequence {σ(c)

k,t}1≤t≤T
is also referred to as the strategy of Agent k under causal NSI.
In the second scenario, Agent k has non-causal NSI, i.e., it
produces its time-t action Xk,t as

Xk,t = σ
(nc)
k,t (STk , Y

t−1
k ) (3b)

for some σ(nc)
k,t : STk × Y

t−1
k → Xk.

Remark 1: The scenario where an agent k has strictly-causal
NSI is contained in the scenario where the agent has no NSI
at all, because strictly-causal NSI can always be modeled with
an enhanced output Ỹk , (Yk, Sk).
The main issue at stake is to find the average joint distributions
that can asymptotically be induced by some strategy profile—
i.e., by some vector of strategies at agents 1, . . . ,K. This is
precisely the notion of implementability defined next.

Definition 1: Fix (c1, . . . , cK) ∈ {c,nc}K . A probability
distribution Q(s0, x1, . . . , xK) is implementable if for every
ε > 0 and sufficiently large T ≥ 1 there exists a strategy
profile (σc1

1,t, . . . , σ
cK

K,t)1≤t≤T which induces at each time t
a joint distribution PS0,tX1,t···XK,t

on the (K + 1)−uple
(S0,t, X1,t, . . . , XK,t) such that for all (s0, x1, x2, . . . , xK) ∈
S0 ×X1 ×X2 × · · · × XK :∣∣∣∣ 1

T

T∑
t=1

PS0,tX1,t···XK,t
(s0, x1, x2, . . . , xK)

−Q(s0, x1, x2, . . . , xK)

∣∣∣∣ ≤ ε. (4)

Definition 1 implies that a distribution Q(s0, x1, ..., xK)
can only be implementable if

∑
x1,...,xK

Q(s0, x1, ..., xK) =
ρ0(s0). The main purpose of this paper is to characterize the
set of implementable distributions, which we will denote Q.

III. RESULTS FOR THE TWO-AGENT CASE

In this section we focus on K = 2 agents. We first
characterize the set of implementable distributions Q when
both agents have causal NSI. As our result illustrates, in this
case Q is not increased by communicating over the network.

Theorem 1: Let c1 = c2 = c. The set of implementable
distributions Q consists of the marginal distributions

Q(s0, x1, x2) =
∑
u,s1,s2

[
ρ0(s0)k(s1, s2|s0)PU (u)

×PX1|US1
(x1|u, s1)PX2|US2

(x2|u, s2)

]

where PU and {PXk|USk
}2k=1 are arbitrary (conditional) dis-

tributions over a finite set U and over X1 and X2.
Proof: Omitted.

Communication over the network can enlarge the set of imple-
mentable distributions Q when at least one of the two agents
has non-causal NSI. At first we assume that only Agent 1 has
non-causal NSI while Agent 2 has causal NSI.

Theorem 2: Let c1 = nc and c2 = c. In this
case the set of implementable distributions Q consists
of the marginals Q(s0, x1, x2) of all joint distributions
Q(s0, s1, s2, u, v, x1, x2, y1, y2) that factorize as

Q(s0, s1, s2, u, v, x1, x2, y1, y2)

= ρ0(s0)k(s1, s2|s0)PUVX1|S1
(u, v, x1|s1)

PX2|US2
(x2|u, s2)Γ(y1, y2|s0, x1, x2) (5a)

and that satisfy the mutual information constraint3

IQ(S1;U) ≤ IQ(V ;Y2|U)− IQ(V ;S1|U). (5b)

Proof: Omitted.
In the special case where Agent 2 has no NSI at all i.e., S2 =
const. and Agent 1 has perfect NSI S1 = S0, Theorem 2
recovers a result in [5] [6]; in this case the auxiliary random
variable U can be replaced by Agent 2’s action X2.

It can be seen that the set of implementable distributions Q
in Theorem 2 depends only on Agent 2’s observation Y2 but
not Y1. This shows that a communication from Agent 2—who
has only causal NSI—to Agent 1 does not enlarge Q.

In Proposition 1 we extend the strategy profiles leading
to Theorem 2 to a symmetric scenario where both agents
have non-causal NSI. A key feature of the new strategies is
that the agents use a Wyner-Ziv source-code [7] instead of a
standard source-code. For this reason the left-hand side of (6b)
in Proposition 1 shows the Wyner-Ziv source-coding rate
I(S1;U1|S2) whereas the left-hand side of (5b) in Theorem 2
shows the standard source-coding rate I(S1;U).

Proposition 1: Let c1 = c2 = NC. The set of implementable
distributions Q contains the marginals Q(s0, x1, x2) of
all joint distributions Q(s0, s1, s2, u1, u2, v1, v2, x1, x2, y1, y2)
that factorize as

Q(s0, s1, s2, u1, u2, v2, v1, x1, x2, y1, y2)

= ρ0(s0)k(s1, s2|s0)QU1|S1
(u1|s1)QU2|S2

(u2|s2)

×QX1V1|U1S1
(x1, v1|u1, s1)QX2V2|U2S2

(x2, v2|u2, s2)

×Γ(y1, y2|s0, x1, x2) (6a)

and that satisfy the mutual information constraints

IQ(S1;U1|S2)

≤ IQ(V1;Y2, S2, V2|U1, U2)− IQ(V1;S1|U1, U2) (6b)

3The notation IQ(A;B) indicates that the mutual information should be
computed with respect to the probability distribution Q.



IQ(S2;U2|S1)

≤ IQ(V2;Y1, S1, V1|U2, U2)− IQ(V2;S2|U1, U2). (6c)

Proof: See Section V.
We have a matching converse (Theorem 3) to this Proposi-

tion 1 for two special cases where Agent 2 cannot convey any
interesting information to Agent 1. Either because there is no
way to communicate, see Condition (7), or because Agent 1
is already aware of Agent 2’s NSI, see Condition (8).

The special case meeting Condition (7) is of particular
interest to power control problems in interference channels [2].
Indeed, it can be checked that (7) is verified when s0 denotes
the global channel state information, xk the transmit power
of transmitter k, and yk the ratio between the transmitter k’s
signal power and receiver k’s interference-plus-noise power.

Theorem 3: Let c1 = c2 = nc. Assume further that one of
the following two conditions holds:

• the network transition law (2) is of the form

Γ(y1, y2|s0, x1, x2) = Γ̃(y1, y2|s0, x1) (7)

for some conditional probability distribution Γ̃; or
• Agent 1 can compute Agent 2’s NSI because

S2,t = f(S1,t), t ∈ {1, . . . , T}, (8)

for some function f : S1 → S2.

In this case, the subset of Q described in Proposition 1 is
exactly the set of implementable distributions Q.

Proof: See Section VI.
For general scenarios the set of implementable distributions
presented in Proposition 1 should be enlarged if the strategies
in Section V are modified so as to employ Kaspi’s two-way
source coding [8] instead of non-interactive Wyner-Ziv coding.

Remark 2: In many applications, an agent might have both
causal and non-causal NSI. For example, when the state {S0,t}
models the weather at some location, on the one hand the
agent can obtain rough non-causal NSI from annual statistics,
and on the other hand it obtains much more reliable causal
NSI by observing the weather at its own location or through
weather forecasts. Our model and results are easily generalized
in this sense. In particular, for the scenario with mixed causal
and non-causal CIS at both agents, the set of implementable
distributionsQ can be derived when Condition (7) or (8) holds.

IV. K ≥ 2 AGENTS

A. Causal NSI at all agents

Theorem 1 readily generalizes to arbitrary
K ≥ 2. Indeed, it can be proved that the
corresponding distributions write as Q(s0, x1, . . . , xK) =∑
u,s1,...,sk

[(∏K
k=1 PXk|USk

(xk|u, sk)

)
× PU (u) ×

k(s1, . . . , sk|s0) × ρ0(s0). Thus, as for two agents,
communication does not enlarge the set of implementable
distributions Q when the agents only have causal NSI.

B. Non-causal NSI at all agents

The general problem is very hard, and includes in particular
the general joint source-channel coding problem as a special
case. This follows from the following proposition:

Proposition 2: Consider a network with transition law Γ that
neither depends on the state S0 nor on the actions of Agents
j + 1, . . . ,K. That means, for some conditional law Γ̃:

Γ(y1, . . . , yK |s0, x1, . . . , xK) = Γ̃(y1, . . . , yK |x1, . . . , xj). (9)

Assume non-causal NSI at all Agents 1, . . . ,K (c1 = · · · =
cK = nc) and that we are interested only in coordinating the
actions of Agents j + 1, . . . ,K with state s0.

In this case, the set of implementable distributions is un-
changed if Agents j + 1, . . . ,K can wait to produce their
actions until they have observed all their channel outputs, i.e.,

Xk,t = σ̃k,t(S
T
k , Y

T
k ), k = j + 1, . . . ,K. (10)

Proof: Omitted.
Notice that the joint source-channel coding problem is

open for almost all networks, including the “simple” 3-node
multi-access, broadcast, and relay channels. Characterizing
the set of implementable distributions Q even for these 3-
node networks thus seems out of reach. Based on the strategy
profiles presented in Section V, one can however readily
identify subsets of Q.

To see this, we briefly recall the strategy profiles presented
in Section V. They operate over subblocks of length n. Agent k
constructs its subblock-b actions Xk,(b−1)n+1, . . . , Xk,bn by
first Wyner-Ziv source-coding its subblock-(b + 1) state
sequence Sk,bn+1, . . . , Sk,(b+1)n and then Gel’fand-Pinsker
channel-coding [9] the resulting compression index.4 At
the end of block b, Agent k decodes the other agent’s
Gelfand-Pinsker code and reconstructs the compressed ver-
sion of the other agent’s block-(b + 1) state sequence.
Thus, each agent knows the compressed versions of both
block-(b + 1) state sequences (S1,bn+1, . . . , S1,(b+1)n) and
(S2,bn+1, . . . , S2,(b+1)n) already before block b + 1 starts. It
can thus use these compressed sequences as additional side-
information in the block-(b+ 1) Gel’fand-Pinsker codes.

These strategies can be employed over any general network.
They can be improved, for example, by replacing the point-
to-point Gel’fand-Pinsker codes through a network Gel’fand-
Pinsker code [11, 12] that is tailored to the structure of the
network. Or the Wyner-Ziv compression can be replaced by a
network source-code [13]–[15] or coordination-code [16].

For some choices of the network Gel’fand-Pinsker codes or
the network source-codes, the overall coding idea has to be
slightly modified, for example by introducing an additional
block of look-ahead in the forward encoding. This is in
particular the case for the following cascade scenario with
3 agents, where the channel law Γ decomposes as

Γ(y2, y3|s0, x1, x2) = Γ1(y2|s0, x1) · Γ2(y3|s0, x2), (11)

4This idea of forward-encoding the state informations has previously been
used, e.g, in [1, 3, 10].



and where Agent 1 has non-causal NSI S1,t = S0,t and
Agents 2 and 3 have no NSI at all. We let Agent 1 use
the optimal cascade source-code [15] to compress each b-th
subblock of its state sequence, S0,(b−1)n+1, . . . , S0,bn, and to
send the resulting two compression indices in block b − 2
to Agent 2. Agent 2 then forwards one the two compression
indices to Agent 3 in the next block b−1. The sketched strategy
profile leads to the following:

Proposition 3 (3-agent cascade network): The set of im-
plementable distributions Q for the described scenario con-
tains the marginals Q(s0, x1, x2, x3) of all joint distributions
Q(s0, v2, v3, x1, x2, x3, y1, y2) that factorize as

Q(s0, v2, v3, x1, x2, x3, y2, y3)

= Q(s0, x1, x2, x3)QV1V2|S0X1X2X3
(v1, v2|s0, x1, x2, x3)

×Γ1(y2|s0, x1)Γ2(y3|s0, x2)

and that satisfy the following two conditions

IQ(S0;X2, X3) ≤ IQ(V1;Y2|X2, X3)− IQ(V1;S0, X2|X3)

IQ(S0;X3) ≤ IQ(V2;Y3|X3)− IQ(V2;S0|X3).

Proof: Omitted.
The above subset of Q indeed coincides with Q in the special
case when Γ2 does not depend on s0. In general the subset
inclusion is however strict.

V. STRATEGY PROFILE ACHIEVING PROPOSITION 1

Choose distribution Q(s0, s1, s2, u1, u2, v1, v2, x1, x2, y1, y2)
satisfying the three conditions (6) in the theorem.

Fix small ε3 > ε2 > ε1 > 0, and pick positive rates
R1, R2, R̃1, R̃2, R

′
1, R

′
2 so that

R1 +R′1 > I(S1;U1) (13a)
R′1 < I(U1;S2) (13b)
R̃1 > I(V1;S1, U1, U2) (13c)

R1 + R̃1 < I(V1;Y2, S2, U1, U2, V2). (13d)

and

R2 +R′2 > I(S2;U2) (13e)
R′2 < I(U2;S1) (13f)
R̃2 > I(V2;S2, U2, U1) (13g)

R2 + R̃2 < I(V2;Y1, S1, U1, U2, V1). (13h)

By conditions (6b) and (6c) such rates exist.
Codebooks generation: Split the blocklength T into B

blocks each of length n , bT/Bc. For each block
b ∈ {1, . . . , B} and each Agent k ∈ {1, 2} randomly
generate a codebook C(b)

Uk
containing the n-length code-

words {u(b)
k (ik, νk)} for ik ∈ {1, . . . , b2nRkc} and νk ∈

{1, . . . , b2nR′
kc} by drawing all entries of all codewords i.i.d.

according to the marginal distribution QUk
.5 Independent

thereof, randomly generate for each block b ∈ {1, . . . , B}

5In this section all marginals are meant with respect to the joint distribution
Q(s0, s1, s2, u1, u2, v2, v1, x1, x2, y1, y2) in (6a).

and each Agent k ∈ {1, 2} a codebook C(b)
Vk

containing the n-
length codewords

{
v

(b)
k (jk, `k)} for jk ∈ {1, . . . , b2nRkc} and

`k ∈ {1, . . . , b2nR̃kc} by drawing all entries of all codewords
i.i.d. according to the marginal distribution QVk

.
For each block b ∈ {1, . . . , B}, let s(b)

1 and s
(b)
2 denote

the state informations at Agents 1 and 2 corresponding to this
block b.

Strategies at Agent k ∈ {1, 2}: Let i(1)
k = j

(B)
k = 1. Before

transmission starts, for each block b ∈ {2, . . . , B}, Agent k
looks for a pair of indices i(b)k ∈ {1, . . . , b2nRkc} and ν(b)

k ∈
{1, . . . , b2nR′

kc} so that(
s

(b)
k , u

(b)
k (i

(b)
k , ν

(b)
k )
)
∈ T nε1 (QSkUk

). (14)

If there is more than one such pair of indices, Agent 1 chooses
one of them at random, otherwise it declares an error. It then
sets j(b−1)

k = i
(b)
k .

Now, at the start of each block b ∈ {1, . . . , B}, just before
it has to produce its time (b − 1)n + 1 input Xk,(b−1)n+1,
Agent k looks for an index `(b)k ∈ {1, . . . , b2nR̃kc} such that(

s
(b)
k , u

(b)
k (i

(b)
k , ν

(b)
k ), u

(b)

k̄
(̂i

(b)

k̄
, ν̂

(b)

k̄
), v

(b)
k (j

(b)
k , `

(b)
k

))
∈ T nε2 (QSkUkUk̄Vk

), (15)

where k̄ is the index in {1, 2} not equal to k and—as we will
see shortly—î

(b)

k̄
and ν̂

(b)

k̄
are indices that Agent k produced

at the end of the previous block (b − 1). If there is at least
one such index `(b)k , Agent k picks one of these candidates at
random, otherwise it declares an error.

In this block b, Agent k produces its actions as follows. For
each τ ∈ {1, . . . , n}, Agent k creates Xk,(b−1)n+τ by applying
the conditional law QXk|SkUkUk̄Vk

to the τ -th components of
the codewords u(b)

k (i
(b)
k , ν

(b)
k ), u

(b)

k̄
(̂i

(b)

k̄
, ν̂

(b)

k̄
), v

(b)
k (j

(b)
k , `

(b)
k )

and to its state information sk,(b−1)n+τ .
At the end of this block b, after observing the last chan-

nel output yk,bn, Agent k also looks for a pair of indices
(ĵ

(b)

k̄
, ˆ̀(b)
k̄

)) ∈
{

1, . . . , b2nRkc
}
×
{

1, . . . , b2nR̃kc
}

such that(
s

(b)
k , u

(b)
k (i

(b)
k , ν

(b)
k ), u

(b)

k̄
(̂i

(b)

k̄
, ν̂

(b)

k̄
),

v
(b)
k (j

(b)
k , `

(b)
k ), v

(b)

k̄
(ĵ

(b)

k̄
, ˆ̀(b)
k̄

), y
(b)
k

)
∈ T nε3 (QSkUkUk̄VkVk̄Yk

). (16)

If there is at least one such pair of indices, it picks one of
them at random. Otherwise it declares an error.

Agent k, further sets î(b+1)

k̄
= ĵ

(b)

k̄
and looks for an index

ν̂
(b+1)

k̄

{
1, . . . , b2nR′

kc
}

such that(
s

(b+1)
k , u

(b+1)

k̄
(̂i

(b+1)

k̄
, ν̂

(b+1)

k̄
)
)
∈ T nε2 (QUk̄Sk

). (17)

Analysis: Omitted.

VI. PROOF OF THEOREM 3

Let Q(s0, x1, x2) be an implementable distribution. Fix ε >
0. By definition, there exists a sufficiently large blocklength
T and strategies {σ(nc)

1,t }Tt=1 and {σ(nc)
2,t }Tt=1 such that for each



t ∈ {1, . . . , T}, the tuple (S0,t, X1,t, X2,t) induced by these
strategies has a joint law PS0,tX1,tX2,t

that satisfies∣∣∣∣ 1

T

T∑
t=1

PS0,tX1,tX2,t
(s0, x1, x2)−Q(s0, x1, x2)

∣∣∣∣ < ε. (18)

Let Z be a random variable that is uniformly distributed over
{1, . . . , T} independent of ST0 , S

T
1 , S

T
2 , X

T
1 , X

T
2 , Y

T
1 , Y

T
2 ,

and define for each t,

Ut , (Y t−1
2 , St−1

2 , ST2,t+1) (19)

Vt , ST1,t+1. (20)

Let U , (UZ , Z), V , (VZ), S0 , S0,Z , S1 ,
S1,Z , S2 , S2,Z , X1 , X1,Z , X2 , X2,Z , Y1 ,
Y1,Z , Y2 , Y2,Z . Denote the probability distribution
of (S0, S1, S2, U, V,X1, X2, Y1, Y2) by PS0S1S2UVX1X2Y1Y2

,
and the probability distribution of (S0, X1, X2) by QS0X1X2

.
It can be shown that by these definitions,

PS0X1X2(s0, x1, x2) =
1

T

T∑
t=1

PS0,tX1,tX2,t
(s0, x1, x2) (21)

and

PS0S1S2UVX1X2Y1Y2
(s0, s1, s2, u, v, x1, x2, y1, y2)

= ρ0(s0)k(s1, s2|s0)PUVX1|S1
(u, v, x1|s1)

× PX2|US2
(x2|u, s2)Γ(y1, y2|s0, x1, x2) (22)

for some conditional probability laws PUVX1|S1
(u, v, x1|s1)

and PX2|US2
(x2|u, s2). In the following, we prove that

IP (S1;U |S2) ≤ IP (V ;Y2, S2|U)− IQ(V ;S1|U). (23)

Recall (18) and (21) and that ε > 0 can be chosen arbitrarily
small. By continuity, (22) and (23) imply that there must
exist a conditional probability distribution QUV S1S2|S0X1X2

so that the joint distribution QS0X1X2
×QUV S1S2|S0X1X2

×Γ
factorizes as

ρ0(s0)k(s1, s2|s0)QUVX1|S1
(u, v, x1|s1)

×QX2|US2
(x2|u, s2)Γ(y1, y2|s0, x1), (24)

and satisfies the mutual information constraint

IQ(S1;U |S2) ≤ IQ(V ;Y2, S2|U)− IQ(V ;S1|U). (25)

To prove (23), we notice that on one hand,

1

T

T∑
t=1

I(S1,t;Y
t−1
2 |ST1,t+1, S

T
2 )

(a)
=

1

T

T∑
t=1

I(S1,t;Y
t−1
2 , ST1,t+1S

t−1
2 , ST2,t+1|S2,t)

= I(S1,Z ;UZ , VZ |S2,Z , Z)

= IP (S1;U, V |S2), (26)

where (a) follows by the i.i.d-ness of the sequence {S1,t}; and
the last two equalities by the definitions of (Z,UZ , VZ , S1,Z)
and (U, V, S1) and the independence of Z and S1.

On the other hand, by the definitions of
(UZ , VZ , Z, Y2,Z , S2,Z) and (U, V, Y2, S2),

1

T

T∑
t=1

I(ST1,t+1;Y2,t|Y t−1
2 , ST2 ) = I(VZ ;Y2,Z |UZ , S2,Z , Z)

= IP (V ;Y2|U), (27)

By Csiszár’s telescoping identity [17], the left-hand sides
of (26) and (27) coincide, and thus:

IP (S1;U, V |S2) ≤ IP (V ;Y2|U, S2), (28)

which by chain rule of mutual information and by the Markov
chain (U, V )(−−S1(−−S2 is equivalent to

IP (S1;U |S2) ≤ IP (V ;Y2|U, S2)− IP (V ;S1|U, S2)

= IP (V ;Y2, S2|U)− IP (V ;S1, S2|U)

= IP (V ;Y2, S2|U)− IP (V ;S1|U). (29)
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