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hybrid dimensional Darcy flow and transport in discrete

fracture networks

F. Xing∗, R. Masson†, S. Lopez‡

February 10, 2016

Abstract

This paper proposes a parallel numerical algorithm to simulate the flow and the transport
in a discrete fracture network taking into account the mass exchanges with the surrounding
matrix. The discretization of the Darcy fluxes is based on the Vertex Approximate Gradient
finite volume scheme adapted to polyhedral meshes and to heterogeneous anisotropic media,
and the transport equation is discretized by a first order upwind scheme combined with an
Euler explicit integration in time. The parallelization is based on the SPMD (Single Program,
Multiple Data) paradigm and relies on a distribution of the mesh on the processes with one layer
of ghost cells in order to allow for a local assembly of the discrete systems. The linear system
for the Darcy flow is solved using different linear solvers and preconditioners implemented in
the PETSc and Trilinos libraries. The convergence of the scheme is validated on two original
analytical solutions with one and four intersecting fractures. Then, the parallel efficiency of the
algorithm is assessed on up to 512 processes with different types of meshes, different matrix
fracture permeability ratios, and different levels of complexity of the fracture network.

1 Introduction

1.1 Hybrid dimensional flow and transport models

This article deals with the simulation of the Darcy flow and transport in fractured porous media for
which the fractures are modelized as interfaces of codimension one. In this framework, the d − 1
dimensional flow and transport in the fractures is coupled with the d dimensional flow and transport
in the matrix leading to the so called hybrid dimensional Darcy flow and transport model.

For the Darcy flow model, we focus on the particular case where the pressure is continuous at the
interfaces between the fractures and the matrix domain. This type of Darcy flow model introduced
in [3] corresponds physically to pervious fractures for which the ratio of the normal permeability
of the fracture to the width of the fracture is large compared with the ratio of the permeability of
the matrix to the size of the domain. Note that it does not cover the case of fractures acting as
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barriers for which the pressure is discontinuous at the matrix fracture interfaces (see [15], [24], [4] for
discontinuous pressure models). It is also assumed in our model that the pressure is continuous at
the fracture intersections. It corresponds to the assumption of a high ratio between the permeability
at the fracture intersections and the width of the fracture compared with the ratio between the
tangential permeability of each fracture and its length. We refer to [16] for a more general reduced
model taking into account discontinuous pressures at fracture intersections in dimension d = 2.

The hybrid dimensional transport model is derived in [3] in the case of a convection diffusion
flux for the matrix and fracture concentration. In this work, a purely advective model is considered.
It requires to specify rigorously the transmission conditions at the matrix fracture interfaces and at
fracture intersections which, to our knowledge, have not been written so far at the continuous level.

The discretization of the hybrid dimensional Darcy flow model with continuous pressures has
been the object of several works. In [22] a cell-centred Finite Volume scheme using a Two Point
Flux Approximation (TPFA) is proposed assuming the orthogonality of the mesh and isotropic
permeability fields. Cell-centred Finite Volume schemes can be extended to general meshes and
anisotropic permeability fields using MultiPoint Flux Approximations (MPFA) following the ideas
[32], [30], and [1], [2] dealing with discontinuous pressure models. In [3] and [20] a Mixed Finite
Element (MFE) method is proposed, and Control Volume Finite Element Methods (CVFE) using
nodal unknowns have been introduced for such models in [29], [26], [25], [19]. A MFE discretization
adapted to non-matching fracture and matrix grids is also studied in [11].

Regarding the hybrid dimensional advective transport model, an explicit first order upwind
scheme combined with the MPFA Darcy fluxes is used in [1], [2], and [30]. At fracture intersec-
tions, the authors neglect the accumulation term and the concentration unknown is eliminated using
the flux conservation equation in order to avoid severe restrictions on the time step caused by the
small volumes. A CVFE method is used in [29] with a first order upwind approximation and a
fully implicit time integration of the two phase flow model to avoid small time steps. Higher order
methods have also been developed in the CVFE method of [25] using a MUSCL type second order
scheme for the saturation equation and also in [20] where a Discontinuous Galerkin method is used
for the transport saturation equation with an Euler implicit time integration in the fracture network
and an explicit time integration in the matrix domain. In [17], a streamline method is developed
in 2D based on the hybrid dimensional Darcy flow velocity field. The solution is very accurate for
purely advective transport but this method requires to expand the fractures and seems difficult to
extend in the case of complex 3D network in practice.

1.2 Content and objectives of this work

In this work, we focus on the Vertex Approximate Gradient (VAG) scheme introduced in [12] for
diffusion problems and extended in [7] and [8] to hybrid dimensional Darcy flow models. The VAG
scheme uses nodal and fracture face unknowns in addition to the cell unknowns which can be elimi-
nated without any fill-in. Thanks to its essentially nodal feature, it leads to a sparse discretization
on tetrahedral or mainly tetrahedral meshes. The VAG scheme has the major advantage, compared
with the CVFE methods of [29], [26] or [25], to avoid the mixing of the control volumes at the frac-
ture matrix interfaces, which is a key feature for its coupling with the transport model. As shown
in [7] for two phase flow problems, the VAG scheme allows for a coarser mesh size at the matrix
fracture interface for a given accuracy. For the discretization of the transport hybrid dimensional
model, we will use in this work a simple first order upwind scheme with explicit time integration.
The extension to second order MUSCL type discretization will be considered in a future work. Our
main objective in this paper is to develop a parallel algorithm for the VAG discretization of hybrid
dimensional Darcy flow and transport models, and to assess the parallel scalability of the algorithm.

Starting from the hybrid dimensional Darcy flow model of [7] and [8], we first derive the hybrid
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dimensional transport model for a general fracture network taking into account fracture intersections
and the coupling with the matrix domain. Then, the VAG discretization of the Darcy flow model
is recalled and the VAG Darcy fluxes are used to discretize the transport model with an upwind
first order discretization in space and an Euler explicit time integration. A key feature of this
discretization is the definition of the control volumes which is adapted to the heterogeneities of the
porous medium. This can be achieved thanks to the fact that, on the one hand, the VAG scheme
keeps the cell unknowns and, on the other hand, the VAG Darcy fluxes are built independently on
the definition of the control volumes. In particular, the control volumes are built in such a way that,
at matrix fracture interfaces, the volume is taken only in the fracture. Otherwise, the fracture will
be enlarged artificially and the front velocity will not be accurately approximated in the fractures
as it it the case for usual CVFE methods. Note also that we do not eliminate the concentration
unknowns at fracture intersections as it is done in [30], [1] or [2] for cell centred discretizations. In
the case of a nodal discretization like the VAG scheme, this elimination is not possible since these
unknowns are connected to the matrix and it is not needed since the size of the control volumes at
fracture intersections is roughly the same than the size of any control volume located at the matrix
fracture interface.

Our parallelization of the hybrid dimensional flow and transport numerical model is based on the
SPMD (Single Program, Multiple Data) paradigm. It relies on a distribution of the mesh on the
processes with one layer of ghost cells in order to allow for a local assembly of the discrete systems.
The linear system for the Darcy flow is solved using different linear solvers and preconditioners
implemented in the PETSc and Trilinos libraries.

In order to validate the convergence of the scheme, two analytical solutions are built for the
hybrid dimensional flow and transport model. We consider the case of a single non-immersed frac-
ture as well as the case of four intersecting fractures. The analytical solutions for the transport
model are obtained by integration of the matrix and fracture equations along the characteristics of
the velocity field taking into account source terms coming from the matrix fracture transmission
conditions. Then, we study the parallel scalability of the Darcy flow and transport solvers on up
to 512 processes. Our numerical investigation includes different levels of complexity of the fracture
network with a number of fractures ranging from a few to a few hundreds. It covers different types of
meshes namely hexahedral, tetrahedral and prismatic meshes as well as a large range of permeability
ratios between the fracture network and the matrix domain. In addition, the influence of the choices
of the linear solver and of the preconditioner is also studied for the solution of the Darcy flow equation.

The paper is organized as follows. Section 2 recalls the geometrical and functional setting in-
troduced in [8] for a general 2D fracture network immersed in a surrounding 3D matrix. Then, the
hybrid dimensional Darcy flow and transport models are introduced. In Section 3, the VAG dis-
cretization is recalled for the Darcy flow model and extended to the transport model. The parallel
implementation of the scheme is detailed in section 4. Section 5 is devoted to the description of
the test cases including the analytical solutions and to the numerical investigation of the parallel
scalability of the algorithm.

2 Hybrid dimensional Darcy Flow and Transport Model in

Fractured Porous Media

2.1 Discrete Fracture Network and functional setting

Let Ω denote a bounded domain of Rd, d = 2, 3 assumed to be polyhedral for d = 3 and polygonal
for d = 2. To fix ideas the dimension will be fixed to d = 3 when it needs to be specified, for instance
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in the naming of the geometrical objects or for the space discretization in the next section. The
adaptations to the case d = 2 are straightforward.

We consider the asymptotic model introduced in [3] where fractures are represented as interfaces
of codimension 1. Let I be a finite set and let Γ =

⋃
i∈I Γi and its interior Γ = Γ \ ∂Γ denote the

network of fractures Γi ⊂ Ω, i ∈ I, such that each Γi is a planar polygonal simply connected open
domain included in an oriented plane Pi of Rd. It is assumed that the angles of Γi are strictly smaller
than 2π and that Γi ∩ Γj = ∅ for all i 6= j. For all i ∈ I, let us set Σi = ∂Γi, Σi,j = Σi ∩ Σj,
j ∈ I \ {i}, Σi,0 = Σi ∩ ∂Ω, Σi,N = Σi \ (

⋃
j∈I\{i}Σi,j ∪Σi,0), and Σ =

⋃
(i,j)∈I×I,i 6=j Σi,j. It is assumed

that Σi,0 = Γi ∩ ∂Ω. We will denote by dτ(x) the d− 1 dimensional Lebesgue measure on Γ. On the

Figure 1: Example of a 2D domain with 3 intersecting fractures Γ1,Γ2,Γ3 and 2 connected compo-
nents Ω1, Ω2.

fracture network Γ, we define the function space L2(Γ) = {v = (vi)i∈I , vi ∈ L2(Γi), i ∈ I}, endowed
with the norm ‖v‖2

L2(Γ) =
∑

i∈I ‖vi‖2
L2(Γi)

. Its subspace H1(Γ) is defined as the space of functions

v = (vi)i∈I such that vi ∈ H1(Γi), i ∈ I with continuous traces at the fracture intersections. The
space H1(Γ) is endowed with the norm ‖v‖2

H1(Γ) =
∑

i∈I ‖vi‖2
H1(Γi)

and its subspace with vanishing

traces on Σ0 =
⋃
i∈I Σi,0 is denoted by H1

Σ0
(Γ).

Let us also consider the trace operator γi from H1(Ω) to L2(Γi) as well as the trace operator γ
from H1(Ω) to L2(Γ) such that (γv)i = γi(v) for all i ∈ I.

On Ω, the gradient operator from H1(Ω) to L2(Ω)d is denoted by ∇. On the fracture network Γ,
the tangential gradient ∇τ acting from H1(Γ) to L2(Γ)d−1 is defined by

∇τv = (∇τivi)i∈I ,

where, for each i ∈ I, the tangential gradient ∇τi is defined from H1(Γi) to L2(Γi)
d−1 by fixing a

reference Cartesian coordinate system of the plane Pi containing Γi. We also denote by divτi the
divergence operator from Hdiv(Γi) to L2(Γi).

The function spaces arising in the variational formulation of the hybrid dimensional Darcy flow
model are

V = {v ∈ H1(Ω) such that γv ∈ H1(Γ)},

and its subspace
V 0 = {v ∈ H1

0 (Ω) such that γv ∈ H1
Σ0

(Γ)}.

The space V 0 is endowed with the following Hilbertian norm

‖v‖V 0 =
(
‖∇v‖2

L2(Ω)d + ‖∇τγv‖2
L2(Γ)d−1

)1/2

.
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Let Ωα, α ∈ A denote the connected components of Ω \Γ, and let us define the space Hdiv(Ω \Γ) =
{qm = (qm,α)α∈A |qm,α ∈ Hdiv(Ωα)}. Using the orientation of Pi we can define the two sides ± of

the fracture Γi, for all i ∈ I. For all qm ∈ Hdiv(Ω \ Γ), let γ±n,iqm denote the normal trace of qm on
the side ± of Γi with the normal oriented outward to the side ±. Let us define the Hilbert function
space

H(Ω,Γ) = { qm = (qm,α)α∈A, qf = (qf,i)i∈I |qm ∈ Hdiv(Ω \ Γ),
qf,i ∈ L2(Γi)

d−1, divτi(qf,i)− γ+
n,iqm − γ−n,iqm ∈ L2(Γi), i ∈ I},

and its closed Hilbert subspace

W (Ω,Γ) = {(qm,qf ) ∈ H(Ω,Γ) |
∑
α∈A

∫
Ωα

(qm,α · ∇v + div(qm,α)v)dx

+
∑
i∈I

∫
Γi

(qf,i · ∇τiγiv + (divτi(qf,i)− γ+
n,iqm − γ−n,iqm)γiv)dτ(x) = 0 ∀ v ∈ V 0}.

(1)

The last definition corresponds to impose in a weak sense the conditions
∑

i∈I γn,Σiqf,i = 0 on Σ\Σ0

and γn,Σiqf,i = 0 on Σi,N , i ∈ I, where γn,Σi is the normal trace operator on Σi (tangent to Γi) with
the normal oriented outward to Γi, and using the extension of γn,Σiqf,i by zero on Σ \ Σi.

2.2 Hybrid dimensional Darcy Flow Model

In the matrix domain Ω \ Γ (resp. in the fracture network Γ), let us denote by Λm ∈ L∞(Ω)d×d

(resp. Λf ∈ L∞(Γ)(d−1)×(d−1)) the permeability tensor such that there exist λm ≥ λm > 0 (resp.
λf ≥ λf > 0) with

λm|ξ|2 ≤ (Λm(x)ξ, ξ) ≤ λm|ξ|2 for all ξ ∈ Rd,x ∈ Ω,

(resp. λf |ξ|2 ≤ (Λf (x)ξ, ξ) ≤ λf |ξ|2 for all ξ ∈ Rd−1,x ∈ Γ).
We also denote by µ the fluid viscosity and by df ∈ L∞(Γ) the width of the fractures assumed to

be such that there exist df ≥ df > 0 with df ≤ df (x) ≤ df for all x ∈ Γ.
Given ū ∈ V , the strong formulation of the hybrid dimensional Darcy flow model amounts to find

u ∈ V and (qm,qf ) ∈ W (Ω,Γ) such that u− ū ∈ V 0 and
div(qm,α) = 0 on Ωα, α ∈ A,

qm,α = −Λm
µ
∇u on Ωα, α ∈ A,

divτi(qf,i)− γ+
n,iqm − γ−n,iqm = 0 on Γi, i ∈ I,

qf,i = −df Λf
µ
∇τiγiu on Γi, i ∈ I.

(2)

The weak formulation of (2) amounts to find u ∈ V such that u − ū ∈ V 0 and satisfying the
following variational equality for all v ∈ V 0:∫

Ω

Λm(x)

µ
∇u(x) · ∇v(x)dx +

∫
Γ

df (x)
Λf (x)

µ
∇τγu(x) · ∇τγv(x)dτ(x) = 0. (3)

The existence and uniqueness of the solution to (3) derives from the Lax Milgram theorem and a
Poincaré inequality stated in [8].

2.3 Hybrid dimensional transport model

Let γn be the normal trace operator on ∂Ω with the normal oriented outward to Ω. Let us define
∂Ω− = {x ∈ ∂Ω | γnqm(x) < 0}, Σ−i,0 = {x ∈ Σi,0 | γn,Σiqf,i(x) < 0}, i ∈ I, as well as the following
subset of Σ \ Σ0:

Σ− = {x ∈ Σ \ Σ0 |
∑
i∈I

|γn,Σiqf,i(x)| 6= 0}.
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We consider a linear purely advective model with velocity qm in the matrix domain and qf in the
fracture network. The matrix concentration is denoted by cm (cm,α in each connected component Ωα,
α ∈ A) and the fracture concentration, standing for the average concentration in the fracture width,
is denoted by cf (cf,i in each fracture Γi, i ∈ I). The 2D equation in the fracture network is as usual
obtained by integration of the 3D advection equation in the width of the fractures. For a purely
advective equation, the transmission condition at the matrix fracture interfaces states that the input
normal flux in the matrix is obtained using the upwind fracture concentration cf . At the fracture
intersection Σ−, an additional unknown cf,Σ− must be introduced and the transmission conditions
state that the normal fluxes sum to zero and that the input normal fluxes are obtained using the
upwind concentration cf,Σ− .

Let be given the input boundary conditions c̄m ∈ L∞(∂Ω−), c̄f,i ∈ L∞(Σ−i,0), i ∈ I, and the initial

conditions c0
m ∈ L∞(Ω \ Γ), c0

f ∈ L∞(Γ). Let us denote by φm(x) the porosity in the matrix and
by φf (x) the porosity in the fracture network. The transport hybrid dimensional model amounts to

find cm ∈ L∞
(

(Ω \ Γ)× (0, T )
)

, cf ∈ L∞
(

Γ× (0, T )
)

, and cf,Σ− ∈ L∞
(

Σ− × (0, T )
)

, such that one

has: 

φm∂tcm,α + div(cm,αqm,α) = 0 on Ωα × (0, T ), α ∈ A
φfdf∂tcf,i + divτi(cf,iqf,i) = γ+

n,icmqm + γ−n,icmqm on Γi × (0, T ), i ∈ I,
(γ±n,icmqm)− = cf (γ

±
n,iqm)− on Γi × (0, T ), i ∈ I,

(γn,Σicf,iqf,i)
− = cf,Σ−(γn,Σiqf,i)

− on (Σi \ Σi,0)× (0, T ), i ∈ I,∑
j∈I

γn,Σjcf,jqf,j = 0 on (Σ \ Σ0)× (0, T ),

(γncmqm)− = c̄m(γnqm)− on ∂Ω× (0, T ),
(γn,Σicf,iqf,i)

− = c̄f,i(γn,Σiqf,i)
− on Σi,0 × (0, T ), i ∈ I,

cm = c0
m on (Ω \ Γ)× {t = 0},

cf = c0
f on Γ× {t = 0},

(4)

where the notations a+ = max(a, 0) and a− = min(a, 0) are used for all a ∈ R.

3 Vertex Approximate Gradient Discretization (VAG)

3.1 VAG discretization of the Darcy flow model

In the spirit of [12], we consider generalised polyhedral meshes of Ω. Let M be the set of cells that
are disjoint open polyhedral subsets of Ω such that

⋃
K∈MK = Ω. For all K ∈ M, xK denotes the

so-called “centre” of the cell K under the assumption that K is star-shaped with respect to xK . We
then denote by FK the set of interfaces of non zero d − 1 dimensional measure among the interior
faces K ∩ L, L ∈ M \ {K}, and the boundary interface K ∩ ∂Ω, which possibly splits in several
boundary faces. Let us denote by

F =
⋃
K∈M

FK

the set of all faces of the mesh. Remark that the faces are not assumed to be planar, hence the
term “generalised polyhedral mesh”. For σ ∈ F , let Eσ be the set of interfaces of non zero d − 2
dimensional measure among the interfaces σ ∩ σ′, σ′ ∈ F \ {σ}. Then, we denote by

E =
⋃
σ∈F

Eσ
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the set of all edges of the mesh. Let Vσ =
⋃
e,e′∈Eσ ,e 6=e′

(
e ∩ e′

)
be the set of vertices of σ. For each

K ∈M we define VK =
⋃
σ∈FK Vσ, and we also denote by

V =
⋃
K∈M

VK

the set of all vertices of the mesh. It is then assumed that for each face σ ∈ F , there exists a so-called
“centre” of the face xσ ∈ σ\

⋃
e∈Eσ e such that xσ =

∑
s∈Vσ βσ,s xs, with

∑
s∈Vσ βσ,s = 1, and βσ,s ≥ 0

for all s ∈ Vσ; moreover the face σ is assumed to be defined by the union of the triangles Tσ,e defined
by the face centre xσ and each edge e ∈ Eσ.

The mesh is also supposed to be conforming w.r.t. the fracture network Γ in the sense that for
each i ∈ I there exists a subset FΓi of F such that Γi =

⋃
σ∈FΓi

σ. We will denote by FΓ the set of

fracture faces
⋃
i∈I FΓi . The following notations will be used for conveniency:

Ms = {K ∈M| s ∈ VK},

Mσ = {K ∈M| σ ∈ FK},

FΓ,s = {σ ∈ FΓ | s ∈ Vσ},

and
χK = VK ∪ (FK ∩ FΓ).

This geometrical discretization of Ω and Γ is denoted in the following by D.

The VAG discretization has been introduced in [12] for diffusive problems on heterogeneous
anisotropic media. Its extension to the hybrid dimensional Darcy model is based on the following
vector space of degrees of freedom:

XD = {vK , vs, vσ ∈ R, K ∈M, s ∈ V , σ ∈ FΓ},

and its subspace with homogeneous Dirichlet boundary conditions on ∂Ω:

X0
D = {v ∈ XD | vs = 0 for s ∈ Vext}.

where Vext = V ∩ ∂Ω denotes the set of boundary vertices, and Vint = V \ ∂Ω denotes the set of
interior vertices.

A finite element discretization of V is built using a tetrahedral sub-mesh ofM and a second order
interpolation at the face centres xσ, σ ∈ F \ FΓ defined by the operator Iσ : XD → R such that

Iσ(v) =
∑
s∈Vσ

βσ,svs.

The tetrahedral sub-mesh is defined by T = {TK,σ,e, e ∈ Eσ, σ ∈ FK , K ∈ M} where TK,σ,e is
the tetrahedron joining the cell centre xK to the triangle Tσ,e (see Figure 2 for examples of such
tetrahedra).
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Figure 2: Degrees of freedom of the VAG scheme: cell unknowns vK , vL, fracture face unknown vσ,
and node unknowns vs, vs1 , vs2 , vs3 , vs4 . The fracture faces of FΓ are in bold. The value of vσ′ is
obtained by interpolation of the node unknowns vs1 , vs2 , vs3 , vs4 of the face σ′ ∈ F \ FΓ while vσ is
kept as an unknown for σ ∈ FΓ.

For a given v ∈ XD, we define the function πT v ∈ V as the continuous piecewise affine function on
each tetrahedron of T such that πT v(xK) = vK , πT v(s) = vs, πT v(xσ) = vσ, and πT v(xσ′) = Iσ′(v)
for all K ∈M, s ∈ V , σ ∈ FΓ, and σ′ ∈ F \FΓ. The nodal basis of this finite element discretization
will be denoted by ηK , ηs, ησ, for K ∈M, s ∈ V , σ ∈ FΓ.

The VAG discretization of the hybrid dimensional Darcy flow model (2) is based on its weak
formulation (3). Given ūs, s ∈ Vext, it amounts to find uD ∈ XD with us = ūs for all s ∈ Vext and
such that for all vD ∈ X0

D one has∫
Ω

Λm(x)

µ
∇πT uD(x) · ∇πT vD(x)dx +

∫
Γ

df (x)
Λf (x)

µ
∇τγπT uD(x) · ∇τγπT vD(x)dτ(x) = 0. (5)

Following [8], this Galerkin Finite Element formulation (5) can be reformulated in terms of discrete
conservation laws using the following definition of the VAG fluxes. For all vD ∈ XD, the VAG matrix
fluxes connect the cell K ∈M to its vertices or fracture faces ν ∈ χK :

FK,ν(vD) = −
∫
K

Λm(x)

µ
∇πT vD(x) · ∇ην(x)dx =

∑
ν′∈χK

aν
′

K,ν(vK − vν′) (6)

with aν
′
K,ν =

∫
K

Λm(x)
µ
∇ην(x) · ∇ην′(x)dx. The VAG fracture fluxes connect the face σ ∈ FΓ to its

vertices s ∈ Vσ:

Fσ,s(vD) = −
∫
σ

df (x)
Λf (x)

µ
∇τγπT vD(x) · ∇τγηs(x)dτ(x) =

∑
s′∈Vσ

as
′

σ,s(vσ − vs′) (7)

with as
′
σ,s =

∫
σ
df (x)

Λf (x)

µ
∇τγηs(x) · ∇τγηs′(x)dτ(x).

Then, the Galerkin Finite Element formulation (5) is equivalent to find uD ∈ XD satisfying the
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Figure 3: Matrix fluxes (in blue) and fracture fluxes (in red) inside a cell K with a fracture face σ
(in bold). The matrix fluxes FK,ν connect the cell K to the degrees of freedom ν ∈ χK located at
the boundary of K. The fracture fluxes Fσ,s connect the face σ to the nodes s ∈ Vσ of σ.

following set of discrete conservation equations and Dirichlet boundary conditions:

∑
ν∈χK

FK,ν(uD) = 0, K ∈M∑
s∈Vσ

Fσ,s(uD) +
∑

K∈Mσ

−FK,σ(uD) = 0, σ ∈ FΓ∑
K∈Ms

−FK,s(uD) +
∑
σ∈FΓ,s

−Fσ,s(uD) = 0, s ∈ Vint,

us = ūs, s ∈ Vext.

3.2 First order upwind discretization of the transport model

3.2.1 Definition of control volumes

The VAG discretization of the hybrid dimensional transport model combines the VAG matrix and
fracture fluxes (6), (7) with the following definition of the control volumes based on partitions of the
cells and of the fracture faces. These partitions are respectively denoted, for all K ∈M, by

K = ωK ∪
( ⋃
s∈VK\(Vext∪VΓ)

ωK,s

)
and, for all σ ∈ FΓ, by

σ = ωσ ∪
( ⋃
s∈Vσ\Vext

ωσ,s

)
.

Then, the control volumes are defined by ωK for all cells K ∈M, by ωσ for all fracture faces σ ∈ FΓ,
and by

ωs =
⋃

K∈Ms

ωK,s,

for all nodes s ∈ Vint \ VΓ, and by

ωs =
⋃

σ∈FΓ,s

ωσ,s,

9



for all nodes s ∈ VΓ \ Vext. Note that this definition avoid the mixing of the fracture and matrix
rocktypes at the control volumes s ∈ VΓ\Vext and σ ∈ FΓ. This is exhibited in Figure 4 in comparison
with an alternative choice mixing the matrix and fracture rocktypes which artificially enlarges the
fractures. We refer to [8] for numerical comparisons on a two phase flow model of these two types of
choices of the control volumes.

Figure 4: Example of choices of the control volumes at cells, fracture face, and nodes, in the case
of two cells K and L splitted by one fracture face σ (the width of the fracture has been enlarged in
this figure). The left figure exhibits the good choice with no mixing of fracture and matrix rocktypes
while the right figure exhibits the bad choice enlarging artificially the fracture.

The same idea is applied for all nodes located at different rocktype interfaces. In practice, for
such a node s ∈ Vint \ VΓ (resp. s ∈ VΓ \ Vext), the set ωK,s (resp. ωσ,s) should be non empty only for
the cell(s) K (resp. fracture face(s) σ) with the largest permeability among those around the node
s (see [13] for details).

In practice, the above partitions of the cells and fracture faces does not need to be built. It is
sufficient to define the matrix volume fractions

αK,s =

∫
ωK,s

dx∫
K
dx

, s ∈ VK \ (Vext ∪ VΓ), K ∈M,

constrained to satisfy αK,s ≥ 0, and
∑

s∈VK\(Vext∪VΓ) αK,s ≤ 1, as well as the fracture volume fractions

ασ,s =

∫
ωσ,s

df (x)dτ(x)∫
σ
df (x)dτ(x)

, s ∈ Vσ \ Vext, σ ∈ FΓ,

such that ασ,s ≥ 0, and
∑

s∈Vσ\Vext ασ,s ≤ 1. Then, the porous volumes of the control volumes are set
to

φK = (1−
∑

s∈VK\(VΓ∪Vext)

αK,s)

∫
K

φm(x)dx, K ∈M

φσ = (1−
∑

s∈Vσ\Vext

ασ,s)df,σ

∫
σ

φf (x)dτ(x), σ ∈ FΓ,

φs =
∑
σ∈FΓ,s

ασ,sdf,σ

∫
σ

φf (x)dτ(x), s ∈ VΓ \ Vext,

φs =
∑
K∈Ms

αK,s

∫
K

φm(x)dx, s ∈ V \ (Vext ∪ VΓ),

with df,σ =

∫
σ
df (x)dτ(x)∫
σ
dτ(x)

.
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3.2.2 Time integration

For N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tN = T of the
time interval [0, T ]. We denote the time steps by ∆tn = tn+1 − tn for all n = 0, · · · , N − 1.

Given c̄s, s ∈ Vext with arbitrary values on the set of ouput boundary nodes

V+
ext = {s ∈ Vext |FK,s(uD) ≥ 0∀K ∈Ms and Fσ,s(uD) ≥ 0∀σ ∈ FΓ,s},

and c0
D ∈ XD such that c0

s = c̄s for all s ∈ Vext, the transport discrete model amounts to find
cn+1
D ∈ XD for all n = 0, · · · , N − 1 satisfying the following discrete conservation laws and Dirichlet

input conditions

φK
cn+1
K − cnK

∆tn
+
∑
ν∈χK

HK,ν(c
n
D) = 0, K ∈M,

φσ
cn+1
σ − cnσ

∆tn
+
∑
s∈Vσ

Hσ,s(c
n
D)−

∑
K∈Mσ

HK,σ(cnD) = 0, σ ∈ FΓ,

φs
cn+1
s − cns

∆tn
−
∑
K∈Ms

HK,s(c
n
D)−

∑
σ∈FΓ,s

Hσ,s(c
n
D) = 0, s ∈ Vint,

cn+1
s = c̄s, s ∈ Vext,

with the following explicit upwind two point fluxes

HK,ν(c
n
D) = cnKFK,ν(uD)+ + cnνFK,ν(uD)−

Hσ,s(c
n
D) = cnσFσ,s(uD)+ + cnsFσ,s(uD)−.

(8)

The solution of this explicit upwind scheme classically satisfies the following maximum principle

m ≤ cn+1
µ ≤M for all µ ∈ V ∪ FΓ ∪M \ V+

ext,

with
M = max

µ∈V∪FΓ∪M\V+
ext

c0
µ and m = min

µ∈V∪FΓ∪M\V+
ext

c0
µ,

provided that the following Courant-Friedrichs-Lewy (CFL) condition

∆tn ≤ min(∆tM,∆tFΓ
,∆tV), (9)

is satisfied with 

∆tM = min
K∈M

φK∑
ν∈χK

FK,ν(uD)+
,

∆tFΓ
= min

σ∈FΓ

φσ∑
s∈Vσ Fσ,s(uD)+ +

∑
K∈Mσ

(−FK,σ(uD))+
,

∆tV = min
s∈Vint

φs∑
K∈Ms

(−FK,s(uD))+ +
∑

σ∈FΓ,s
(−Fσ,s(uD))+

.

4 Parallel implementation in ComPASS

The hybrid dimensional Darcy flow and transport discrete model is implemented in the framework
of code ComPASS (Computing Parallel Architecture to Speed up Simulations) [10], which focuses
on parallel high performance simulation (distributed memory, MPI) adapted to general unstructured
polyhedral meshes (see [14]).
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4.1 Mesh non overlapping and overlapping decompositions

Let us denote by Np the number of MPI processes. The set of cellsM is partitioned into Np subsets
Mp, p = 1, ..., Np using the library METIS [23]. The partitioning of the set of vertices V and of the
set of fracture faces FΓ is defined as follows. Let us denote by GI(K) the global index of the cell
K ∈ M and by K(s), s ∈ V (resp. K(σ), σ ∈ FΓ) the cell with the smallest global index among
those of Ms (resp. Mσ). Then we set

Vp = {s ∈ V |K(s) ∈Mp},

and
FpΓ = {σ ∈ FΓ |K(σ) ∈Mp}.

The overlapping decomposition of the set of cells

Mp
, p = 1, ..., Np,

is chosen in such a way that any compact finite volume scheme such as the VAG scheme can be
assembled locally on each process. Hence, as exhibited in Figure 5, Mp

is defined as the set of
cells sharing a node with Mp. The overlapping decompositions of the set of nodes and of the set of
fracture faces follow from this definition

Vp =
⋃

K∈Mp

VK , p = 1, · · · , Np,

and
FpΓ =

⋃
K∈Mp

FK ∩ FΓ, p = 1, · · · , Np.

Figure 5: Example of mesh decomposition.

We now turn to the parallel implementation of the discrete hybrid dimensional Darcy flow model
(2) and transport model (4).

4.2 Parallelization of the discrete hybrid dimensional Darcy flow

On each process p = 1, ..., Np, the local problem of the discrete hybrid dimensional Darcy flow (2) is
defined by the set of unknowns uµ, µ ∈ Vp ∪ FpΓ ∪M

p
and the set of equations

∑
ν∈χK

FK,ν(uD) = 0, K ∈Mp
,∑

s∈Vσ

Fσ,s(uD) +
∑

K∈Mσ

−FK,σ(uD) = 0, σ ∈ FpΓ,∑
K∈Ms

−FK,s(uD) +
∑
σ∈FΓ,s

−Fσ,s(uD) = 0, s ∈ Vint ∩ Vp,

us = ūs, s ∈ Vext ∩ Vp.

(10)
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Note that it includes the equations of all own nodes s ∈ Vp, all own fracture faces σ ∈ FpΓ and all
own and ghost cells K ∈ Mp

. The set of equations can be rewritten as the following rectangular
linear system Apvv Apvf Apvc

Apfv Apff Apfc
Apcv Apcf Apcc

Up

v

U
p

f

U
p

c

 =

bpvbpf
b
p

c


where U

p

v ∈ RV
p

, U
p

f ∈ RF
p
Γ and U

p

c ∈ RM
p

denote the vector of process p own and ghost unknowns
at nodes, fracture faces and cells respectively. The above matrices have the following sizes

Apvv ∈ RVp×V
p

, Apvf ∈ RVp×F
p
Γ , Apvc ∈ RVp×M

p

,

Apfv ∈ RF
p
Γ×V

p

, Apff ∈ RF
p
Γ×F

p
Γ , Apfc ∈ RF

p
Γ×M

p

,

Apcv ∈ RM
p×Vp , Apcf ∈ RM

p×FpΓ , Apcc ∈ RM
p×Mp

.

and bpv ∈ RVp , bpf ∈ RF
p
Γ , b

p

c ∈ RM
p

denote the corresponding right hand side vectors. The matrix
Apcc is a non singular diagonal matrix and the cell unknowns can be easily eliminated without fill-in
leading to the following Schur complement system((

Apvv Apvf
Apfv Apff

)
−
(
Apvc
Apfc

)
(Apcc)

−1
(
Apcv Apcf

))(Up

v

U
p

f

)
=

(
bpv
bpf

)
−
(
Apvc
Apfc

)
(Apcc)

−1b
p

c

(11)

and
U
p

c = (Apcc)
−1(bpc − ApcvU

p

v − A
p
cfU

p

f ). (12)

The linear system (11) is built locally on each process p, transfered to the parallel linear solver library
PETSc [5] or Trilinos [18] and solved using the GMRES or BiCGStab algorithm preconditioned by
different type of preconditioners as discussed in the numerical section. The solution of the linear

system provides on each process p the solution vector

(
Up
v

Up
f

)
of own node and fracture face unknowns.

Then, the ghost node unknowns uµ, µ ∈ (Vp\Vp) and the ghost fracture face unknowns uµ, µ ∈
(FpΓ\F

p
Γ) are derived by a synchronization step with MPI communications. This synchronization is

efficiently implemented using a PETSc matrix vector product(
U v

U f

)
= S

(
Uv
Uf

)

where

(
U v

U f

)
is the vector of own and ghost node and fracture face unknowns on all processes and(

Uv
Uf

)
is the vector of own node and fracture face unknowns on all processes. The matrix S is

assembled once and for all at the beginning of the simulation.
Finally, thanks to (12), the vector of own and ghost cell unknowns U

p

c is computed locally on
each process p.

4.3 Parallelization of the discrete hybrid dimensional transport model

The parallel implementation of the transport model (4) with an explicit upwind discretization of the
fluxes consists of the following four steps.
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1. Compute the Darcy matrix and fracture fluxes defined by (6) and (7).

2. Compute the maximum time step ∆t satisfying the CFL condition (9) and set ∆tn = ∆t for
all n = 0, · · · , N − 2, and ∆tN−1 = T − (N − 1)∆t with N = d T

∆t
e.

3. Compute cn+1
s , cn+1

σ and cn+1
K , s ∈ Vint ∩Vp, σ ∈ FpΓ, K ∈Mp

solution of the following explicit
equations 

φK
cn+1
K − cnK

∆t
+
∑
ν∈χK

HK,ν(c
n
D) = 0, K ∈Mp

,

φσ
cn+1
σ − cnσ

∆t
+
∑
s∈Vσ

Hσ,s(c
n
D)−

∑
K∈Mσ

HK,σ(cnD) = 0, σ ∈ FpΓ,

φs
cn+1
s − cns

∆t
−
∑
K∈Ms

HK,s(c
n
D)−

∑
σ∈FΓ,s

Hσ,s(c
n
D) = 0, s ∈ Vint ∩ Vp,

cs = c̄s, s ∈ Vext ∩ Vp.

(13)

4. Get the node and fracture face ghost unknowns cn+1
s , cn+1

σ , s ∈ Vint ∩ (Vp\Vp), σ ∈ FpΓ\F
p
Γ

using the PETSc matrix vector product with the matrix S as for the Darcy flow computation.

Thanks to our mesh decomposition, step 1 and step 3 are performed locally on each process. For
step 2, the maximum time step ∆tp is computed locally on each process p, then the time step ∆t is
obtained using the MPI reduce operation.

5 Numerical experiments

All the numerical tests have been implemented on the Cicada cluster of the University Nice Sophia
Antipolis consisting of 72 nodes (16 cores/node, Intel Sandy Bridge E5-2670, 64GB/node). We always
fix 1 core per process and 16 processes per node. The communications are handled by OpenMPI
1.8.2 (GCC 4.9) and PETSc 3.5.3.

The first two test cases are designed in order to validate the Darcy fluxes and the convergence
of the transport model discretization on two analytical solutions including one fracture for the first
test case and four intersecting fractures for the second test case. In the remaining test cases, the
parallel scalability of our Darcy flow and transport solvers is assessed with different types of fracture
networks and meshes and different matrix fracture permeability ratios. In particular, the last test
case applies our algorithm to a complex fracture network with hundreds of fractures.

5.1 Numerical convergence for an analytical solution with one fracture

Let us set Ω = (0, 1)2, and denote by (x, y) the Cartesian coordinates of x. We then define x1 = (0, 1
4
),

θ ∈ (0, arctan(3
4
)), x2 = (1, 1

4
+ tan(θ)). Let Ω1 = {(x, y) ∈ Ω | y > 1

4
+ x tan(θ)}, and Ω2 = Ω \ Ω1.

We consider a single fracture defined by Γ = (x1,x2) = ∂Ω1 ∩ ∂Ω2 with tangential permeability
Λf > 0, and width df > 0. The matrix permeability is isotropic and set to Λm = 1, the matrix and
fracture porosities are set to φm = φf = 1, and the fluid viscosity is set to µ = 1. The pressure
solution is fixed to u(x, y) = 1 − x. In this case, the transport model (4) reduces to the following
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system of equations which specifies our choice of the boundary and initial conditions:

∂tcm,α(x, y, t) + ∂xcm,α(x, y, t) = 0 on Ωα × (0, T ), α = 1, 2,
cm,α(x, y, 0) = 0 on Ωα, α = 1, 2,
cm,1(0, y, t) = 1 on (1

4
, 1)× (0, T ),

cm,2(0, y, t) = 1 on (0, 1
4
)× (0, T ),

cm,2(x, 1
4

+ x tan(θ), t) = cf (x, t) on (0, 1)× (0, T ),
Lcf (x, t) = βcm,1(x, 1

4
+ x tan(θ), t) on (0, 1)× (0, T ),

cf (0, t) = 1 on (0, T ),
cf (x, 0) = 0 on (0, 1),

(14)

where L = ∂t + k∂x + β with β = sin(θ)
df

and k = Λf cos2(θ). It is assumed that k > 1. This system

can be integrated along the characteristics of the matrix and fracture velocity fields leading to the
following analytical solution:

cm,1(x, y, t) =

{
0 if t < x,
1 if t > x,

cf (x, t) =


0 if t < x

k
,

e−
β
k−1

(x−t) if x
k
< t < x,

1 if t > x,

cm,2(x, y, t) =


if y ∈ (0, 1

4
)

{
0 if t < x,
1 if t > x,

if y ∈ (1
4
, 1

4
+ tan(θ))

{
0 if t < x− 4y−1

4 tan(θ)
,

cf (
4y−1

4 tan(θ)
, t+ 4y−1

4 tan(θ)
− x) if t > x− 4y−1

4 tan(θ)
.

In the following numerical experiments the parameters are set to tan(θ) = 1
2
, Λf = 20 and df = 0.01.

The mesh is a topologically Cartesian nx × nx grid. Figure 6 shows an example of the mesh with
nx = 20 as well as the analytical solution in the matrix obtained at time tf = 0.5 chosen as the
final time of the simulation. The time step is defined by the maximum time step allowed by the
CFL condition (9). Figure 8 exhibits the convergence of the relative L1 errors between the analytical
solution and the numerical solution at time tf both in the matrix domain and in the fracture as a
function of the grid size nx = 100, 200, 400, 800, 1600. Figure 7 shows the analytical solution and the
numerical solutions obtained at time tf along the fracture. In both cases, we can observe the expected
convergence of the numerical solution to the analytical solution with a higher order of convergence
in the fracture due to the fact that at time tf the analytical solution in the fracture is continuous as
exhibited in Figure 7.

5.2 Numerical convergence for an analytical solution with four inter-
secting fractures

Let Ω = (0, 1)2, x1 = (0, 1
4
), θ1 ∈ (0, arctan(3

4
)), x2 = (1, 1

4
+tan(θ1)), x3 = (3

4
, 0), x4 = (3

4
−tan(θ2), 1),

and the intersection of x1x2 and x3x4 equal to

x0 = (x0, y0) =
1

4(1 + tan(θ1) tan(θ2))
(3− tan(θ2), 1 + 3 tan(θ1)).

It is assumed that θ1, θ2 ∈ (0, arctan(3
4
)).

We consider the four fractures Γ1 = (x1,x0), Γ2 = (x0,x2), Γ3 = (x3,x0), Γ4 = (x0,x4), with
tangential permeabilities Λf,1 = Λf,2 > 0, and Λf,3 = Λf,4 > 0, and with widths df,1 = df,2 > 0, and
df,3 = df,4 > 0. It is assumed that Λm = 1.
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Figure 6: Left: example of mesh with nx = 20 where the red line is the fracture. Right: analytical
solution of (14) at time tf = 0.5.
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Figure 7: Analytical solution and numerical solutions along the fracture at time tf with nx =
100, 200, 400, 800, 1600.
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Figure 8: Relative L1 errors in the matrix domain and in the fracture at time tf between the analytical
solution and the numerical solutions as a function of the grid size nx = 100, 200, 400, 800, 1600.

The fractures partition the domain Ω in the following four subdomains

Ω1 = {x = (x, y) ∈ Ω | y > 1

4
+ x tan(θ1), x <

3

4
− y tan(θ2)},

Ω2 = {x = (x, y) ∈ Ω | y > 1

4
+ x tan(θ1), x >

3

4
− y tan(θ2)},

Ω3 = {x = (x, y) ∈ Ω | y < 1

4
+ x tan(θ1), x <

3

4
− y tan(θ2)},

Ω4 = {x = (x, y) ∈ Ω | y < 1

4
+ x tan(θ1), x >

3

4
− y tan(θ2)}.

Let us set β1 = sin(θ1)
df,1

, k1 = Λf,1 cos2(θ1), β2 = cos(θ2)
df,3

, k2 = Λf,3 cos(θ2) sin(θ2), r =
Λf,3df,3 sin(θ2)

Λf,1df,1 cos(θ1)
. It is

assumed that k1 > 1 and k2 tan(θ2) > 1. The matrix and fracture porosities are set to φm = φf = 1
and the fluid viscosity is set to µ = 1.

The pressure solution is set to u(x, y) = 1− x. In that case, the transport model (4) reduces to
the following system of equations which specifies our choice of the boundary and initial conditions:
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find cm,α(x, y, t), α = 1, · · · , 4, cf,1(x, t), cf,2(x, t), cf,3(y, t), cf,4(y, t), and c0(t) such that

∂tcm,α(x, y, t) + ∂xcm,α(x, y, t) = 0 on Ωα × (0, T ), α = 1, · · · , 4,
cm,α(x, y, 0) = 0 on Ωα, α = 1, · · · , 4,
cm,1(0, y, t) = 0 on (1

4
, 1)× (0, T ),

cm,3(0, y, t) = 0 on (0, 1
4
)× (0, T ),

cm,2(3
4
− y tan(θ2), y, t) = cf,4(y, t) on (y0, 1)× (0, T ),

cm,4(3
4
− y tan(θ2), y, t) = cf,3(y, t) on (0, y0)× (0, T ),

cm,3(x, 1
4

+ x tan(θ1), t) = cf,1(x, t) on (0, x0)× (0, T ),
cm,4(x, 1

4
+ x tan(θ1), t) = cf,2(x, t) on (x0, 1)× (0, T ),

L1cf,1(x, t)− β1cm,1(x, 1
4

+ x tan(θ1), t) = 0 on (0, x0)× (0, T ),
L1cf,2(x, t)− β1cm,2(x, 1

4
+ x tan(θ1), t) = 0 on (x0, 1)× (0, T ),

L2cf,3(y, t)− β2cm,3(3
4
− y tan(θ2), y, t) = 0 on (0, y0)× (0, T ),

L2cf,4(y, t)− β2cm,1(3
4
− y tan(θ2), y, t) = 0 on (y0, 1)× (0, T ),

cf,2(x0, t) = cf,3(y0, t) = c0(t) on (0, T ),
(r + 1)c0(t)− cf,1(x0, t)− rcf,4(y0, t) = 0 on (0, T ),

cf,1(0, t) = cf,4(1, t) = 1 on (0, T ),
cf,1(x, 0) = 0 on (0, x0),
cf,2(x, 0) = 0 on (x0, 1),
cf,3(y, 0) = 0 on (0, y0),
cf,4(y, 0) = 0 on (y0, 1),

(15)

where L1 = ∂t + k1∂x + β1 and L2 = ∂t − k2∂y + β2.
This system can also be integrated analytically along the characteristics of the matrix and fracture

velocity fields, but it leads to complex computations. It is much easier to obtain the stationary
solution of this system which is defined in the fractures by

cf,1(x) = e
−β1
k1
x
,

cf,4(y) = e
−β2
k2

(1−y)
,

c0 =
e
−β1
k1
x0 + re

−β2
k2

(1−y0)

r + 1
,

cf,2(x) = e
−β1
k1
x
(
c0e

β1
k1
x0 +

β1

k1r1

(
e

(r1x− 3β2
4k2

) − e(r1x0− 3β2
4k2

)
))
,

cf,3(y) =

 e
β2
k2
y
(
c0e
−β2
k2
y0 + β2

k2r2

(
e

(− r2
4
− β1

4k1 tan(θ1)
) − e(−r2y0− β1

4k1 tan(θ1)
)
))
, if y < 1

4
,

e
β2
k2
y
(
c0e
−β2
k2
y0 + β2

k2r2

(
e

(−r2y− β1
4k1 tan(θ1)

) − e(−r2y0− β1
4k1 tan(θ1)

)
))

if y > 1
4
,

with r1 = β1

k1
+ β2

k2
tan(θ1) and r2 = β2

k2
+ β1

k1 tan(θ1)
, and in the matrix by

cm,1(x, y) = 0,

cm,2(x, y) = cf,4(y),

cm,3(x, y) =

{
0 if y < 1

4
,

cf,1

(
y− 1

4

tan(θ1)

)
if y > 1

4
,

cm,4(x, y) =

{
cf,3(y) if y < y0,

cf,2

(
y− 1

4

tan(θ1)

)
if y > y0.
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In the following numerical experiments the parameters are set to tan(θ1) = 5
8
, tan(θ2) = 1

4
,

Λf,1 = 200, Λf,3 = 400, and df,1 = df,3 = 0.01. The mesh is, as for the previous test case, a
topologically Cartesian nx × nx grid exhibited in Figure 9 for nx = 20. Figure 9 also shows the
stationary analytical solution in the matrix. The time step is again defined by the maximum time
step allowed by the CFL condition (9) and the simulation time is chosen large enough to obtain the
numerical stationary solution.

Figure 10 exhibits the convergence of the relative L1 errors between the stationary analytical and
the numerical solutions both in the matrix domain and in the fracture as a function of the grid size
nx = 100, 200, 400, 800. We can again observe the expected convergence of the numerical solution
to the analytical solution with a higher order of convergence in the fracture network due to the fact
that the solution is continuous on each individual fracture as exhibited in Figure 10. This property is
always true when looking at the solution at the matrix time scale and could be exploited in a future
work by using an implicit time integration in the fracture coupled to an explicit time integration in
the matrix domain with a higher order discretization in space in the spirit of what has been done in
[20].

Figure 9: Left: example of mesh with nx = 20 where the red lines account for the four fractures.
Right: stationary analytical solution of (15).
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Figure 10: Right: stationary analytical solution in the four fractures as a function of the x coordinate.
Left: relative L1 errors in the matrix domain and in the fracture network between the stationary
analytical and numerical solutions as a function of the grid size nx = 100, 200, 400, 800.
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5.3 Fracture network with hexahedral meshes

The objective of this subsection and of the next subsection is to investigate the parallel scalability
of the algorithms described in Section 4. In this subsection we consider a topologically Cartesian
mesh of size nx × nx × nx of the cubic domain (0, 1)3 exhibited in Figure 11 for nx = 32. The mesh
is exponentially refined at the interface between the matrix and the fracture network exhibited in
Figure 12. The permeabilities are isotropic and set to Λf = 20 in the fracture network and to Λm = 1
in the matrix. The porosities are set to φm = φf = 1 and the fluid viscosity is set to µ = 1. The
initial concentration is set to 0 both in the matrix domain and in the fracture network and a value
of 1 of the concentration is injected on the bottom boundaries of the matrix and of the fracture
network. The pressure is fixed to u = 1 and γu = 1 on the bottom boundary and to u = 0 and
γu = 0 on the top boundary. The remaining lateral boundaries are considered impervious. Figure 12
exhibits the tracer concentrations obtained with the mesh nx = 128 at times t = 0, t = 0.2, t = 0.4
and at the final simulation time tf = 0.5.

Figure 11: Hexahedral mesh in the matrix domain (left) and in the fracture network (right) with
nx = 32.

Table 1 presents the numbers of linear solver iterations for the stationary pressure solution for
a number of MPI processes ranging from Np = 2 to Np = 512 and with the mesh size nx = 128
corresponding to roughly 2.1 × 106 cells, 2.1 × 106 nodes and 5.2 × 104 fractures faces. Both the
GMRES and BiCGStab linear solvers from the PETSc library are tested combined with either the
Boomer AMG preconditioner from the Hypre library [21], the Aggregation AMG preconditioner from
the Trilinos library [18] or the block Jacobi ILU(0) preconditioner from the Euclid library. No restart
is used for the GMRES linear solver. Table 2 shows the corresponding computation times both for
the setup phase of the preconditioner and for the solve phase of the linear solver.

According to these tables, the GMRES and the BiCGStab linear solvers combined with the
Boomer AMG preconditioner are good choices for a number of processes Np 6 128, while the
BiCGStab linear solver combined with the block Jacobi ILU(0) preconditioner is more efficient for
this test case for Np = 256 and Np = 512. This was expected since the Boomer AMG preconditioner
requires a sufficiently large number of unknowns per core to maintain a good parallel scalability due
to the high level of communications in particular in the setup phase of the preconditioner. For this
linear system, the number of unknowns per MPI process is roughly 4100 for Np = 512 which is too
small for this type of preconditioner while the block Jacobi preconditioner still maintains a good
parallel scalability for such number of unknowns per MPI process. On the other hand, as shown
in Table 3, Boomer AMG exhibits an optimal scalability while ILU(0) is not scalable in terms of
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(a) t = 0.0 (b) t = 0.2

(c) t = 0.4 (d) t = 0.5

Figure 12: Concentration in the matrix domain and in the fracture network obtained at different
times with the mesh nx = 128. A threshold concentration of 0.2 is used in the matrix domain.
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iteration count with respect to the ratio
Λf
Λm

between the fracture and matrix permeabilities. The
same remark also holds in terms of scalability with respect to the mesh size which means that the
ILU(0) preconditioner is only advantageous for small size and mildly heterogeneous problems.

Tables 1 and 2 also clearly show that the BiCGStab linear solver outperforms the GMRES
linear solver for a high number of iteration count due to an increasing cost of the orthogonalization
procedure with the Krylov subspace dimension in the GMRES algorithm. The Aggregation AMG
preconditioner yields a larger number of iterations compared with the Boomer AMG preconditioner
but has a much lower setup time resulting for this test case in a total lower CPU time. However,
this implementation of the Aggregation AMG preconditioner seems to lack robustness with respect
to the matrix fracture permeability ratio as exhibited in Table 3.

Table 1: Number of linear solver iterations vs. the number of MPI processes obtained with different
linear solvers and preconditioners for the mesh size nx = 128.

Np 2 4 8 16 32 64 128 256 512

GMRES + Boomer AMG 15 15 15 15 15 16 15 15 15

GMRES + Aggregation AMG 59 78 65 39 65 54 73 53 62

GMRES + ILU(0) 751 707 655 644 648 634 633 624 613

BiCGStab + Boomer AMG 9 9 9 9 9 10 9 9 10

BiCGStab + ILU(0) 508 476 484 503 473 513 491 487 484

Table 2: Linear solver setup phase and solve phase computation times vs. the number of MPI
processes obtained with different linear solvers and preconditioners for the mesh size nx = 128.

Np 2 4 8 16 32 64 128 256 512

GMRES
Boomer AMG

Setup 34.1 20.1 16.3 11.7 11.3 11.9 12.1 19.2 29.3
Solve 26.3 15.6 14.8 7.2 5.2 3.8 2.5 5.2 9.6

GMRES
Aggregation AMG

Setup 4.7 1.9 1.6 1.5 2.3 2.9 4.4 6.6 11.3
Solve 45.1 20.9 17.0 9.7 5.2 2.5 2.3 1.5 3.2

GMRES
ILU(0)

Setup 16.9 21.3 16.3 23.2 14.6 11.0 9.7 6.0 4.8
Solve 672.3 590.9 281.6 163.9 71.4 30.7 16.7 8.3 4.0

BiCGStab
Boomer AMG

Setup 38.0 23.3 15.0 10.3 9.1 9.4 12.8 14.8 23.8
Solve 37.1 21.3 11.5 7.4 4.1 2.9 2.5 4.4 10.0

BiCGStab
ILU(0)

Setup 18.9 19.9 16.5 22.1 14.3 12.4 9.4 5.8 3.9
Solve 179.4 111.7 86.0 59.9 27.9 15.4 8.0 4.2 2.2

Next, Figure 13 plots the total (Darcy flow and transport models) computation time and the
computation time for the transport model only as a function of the number of processes. In these
runs the GMRES linear solver is used combined with the Boomer AMG preconditioner for Np 6 128
and with the ILU(0) preconditioner for Np = 256, 512. For the range 2 − 512 of the number of
processes, it appears that the computation time of the Darcy flow linear system solution remains
small compared with the transport model computation time. This can be checked by comparison of
the computation times in Table 2 and in Figure 13. This explains the good scalability obtained for
both the total and transport computation times thanks to the explicit nature of the time integration
scheme.

5.4 Fracture network with tetrahedral meshes

This test case considers tetrahedral meshes of the cubic domain (0, 1)3 conforming to the fracture
network. An example of tetrahedral mesh showing both the matrix domain and the fracture network
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Table 3: Number of linear solver iterations vs. the matrix fracture permeability ratio
Λf
Λm

for nx = 128
and Np = 2, 128.

Np = 2 Np = 128
Λf/Λm 20 100 1000 20 100 1000

GMRES + Boomer AMG 15 15 16 15 15 15
GMRES + Aggregation AMG 59 - - 73 - -

GMRES + ILU(0) 751 - - 633 - -

-: The solver doesn’t converge in 1200 iterations.
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Figure 13: Total computation time (left) and computation time for the transport model (right) vs.
the number of MPI processes for the mesh size nx = 128.

is exhibited in Figure 14. All the physical parameters, initial and boundary conditions are the same
as for the previous test case. The mesh used in this subsection contains about 6.2×106 cells, 9.7×105

nodes and 7.1 × 104 fracture faces. Figure 15 exhibits the tracer concentrations obtained with this
tetrahedral mesh at times t = 0, t = 0.2, t = 0.4 and at the final simulation time tf = 0.5.

Figure 14: Example of tetrahedral mesh of the matrix domain (left) conforming to the fracture
network (right).

As for the previous test case, Tables 4, 5 and 6 investigate the performance of the Darcy flow
system linear solution for both the GMRES and BiCGStab linear solvers and for the same three
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(a) t = 0.0 (b) t = 0.2

(c) t = 0.4 (d) t = 0.5

Figure 15: Concentration in the matrix domain and in the fracture network obtained at different
times for the tetrahedral mesh. A threshold of 0.2 is used in the matrix domain.
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preconditioners as in the previous test case. The conclusions are basically the same as for the hexa-
hedral mesh test case. The Boomer AMG preconditioner exhibits an optimal robustness with respect
to the matrix fracture permeability ratio

Λf
Λm

. On the other hand it requires a rather high number of
unknowns per MPI process to maintain a good parallel scalability due to the high level of communi-
cations in particular in the setup phase. The ILU(0) preconditioner can be an interesting alternative
but only for small size and midly heterogeneous problems. The aggregation AMG preconditioner
from the Trilinos library used in our test cases seems to lack robustness and we did not manage to
make it work better through tuning its parameters.

Table 4: Number of linear solver iterations vs. the number of MPI processes obtained with different
linear solvers and preconditioners for the tetrahedral mesh.

Np 2 4 8 16 32 64 128 256 512

GMRES + Boomer AMG 11 12 12 12 12 12 12 12 12

GMRES + Aggregation AMG 38 78 40 39 52 - 35 - 52

GMRES + ILU(0) 1003 725 717 682 667 656 644 629 612

BiCGStab + Boomer AMG 8 7 8 8 8 8 8 8 8

BiCGStab + ILU(0) 565 513 527 544 535 483 489 483 473

-: The relative residual norm stagnates after a few iterations.
-: Some future investigations are necessary.

Table 5: Linear solver setup phase and solve phase computation times vs. the number of MPI
processes obtained with different linear solvers and preconditioners for the tetrahedral mesh.

Np 2 4 8 16 32 64 128 256 512

GMRES
Boomer AMG

Setup time 12.4 7.8 4.9 5.0 4.3 6.2 7.2 13.5 22.4
Solve time 8.0 5.5 2.9 1.7 1.1 0.9 1.4 3.1 6.9

GMRES
Aggregation AMG

Setup time 3.7 1.9 1.2 1.8 2.1 1.6 2.9 3.3 4.7
Solve time 19.7 20.9 5.1 2.7 2.0 - 1.5 - 3.0

GMRES
ILU(0)

Setup time 5.7 7.4 7.2 5.6 4.7 5.2 3.4 2.8 1.8
Solve time 560.6 254.4 150.0 66.5 30.1 15.2 7.7 4.1 2.8

BiCGStab
Boomer AMG

Setup time 21.5 14.5 9.9 6.5 5.3 5.9 8.2 12.4 19.7
Solve time 24.0 10.2 6.1 3.5 1.8 1.5 2.1 4.3 9.5

BiCGStab
ILU(0)

Setup time 5.8 6.4 6.4 5.4 4.7 5.0 3.4 2.6 1.8
Solve time 110.4 63.0 39.0 19.2 11.6 5.4 2.8 1.4 1.2

-: The residual norm stagnates after a few iterations.

Table 6: Number of linear solver iterations vs. the matrix fracture permeability ratio
Λf
Λm

for the
tetrahedral mesh and Np = 2, 128.

Np = 2 Np = 128
Λf/Λm 20 100 1000 20 100 1000

GMRES + Boomer AMG 11 13 12 12 13 12
GMRES + Aggregation AMG 38 - - 35 - -

GMRES + ILU(0) 1002 - - 644 - -

-: The solver doesn’t converge in 1200 iterations.

Figure 16 plots the total (Darcy flow and transport models) computation time and the compu-
tation time of the transport model only as a function of the number of processes. In these runs the
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GMRES linear solver is used combined with the Boomer AMG preconditioner for Np 6 128 and
with the ILU(0) preconditioner for Np = 256, 512. Compared with the previous subsection, an even
better parallel scalability of the transport model computation time is observed in the right Figure
16. This can be explained by the ratio of roughly 6 between the number of cells and the number
of nodes typical of a tetrahedral mesh. For a topologically Cartesian mesh, this ratio is roughly 1.
Since the cell concentrations are computed locally in each process, this explains the better scalability
observed for this tetrahedral mesh compared with the previous hexahedral mesh. On the left Figure
16, it is observed that the linear system solution computation time is no longer small compared with
the transport computation time for Np = 256 and 512. Hence, it significantly reduces the parallel
efficiency of the simulation for a large number of processes, say Np = 256, 512 in this test case.
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Figure 16: Total computation time (left) and computation time for transport model (right) vs.
number of MPI processes with tetrahedral mesh.

5.5 Application to a complex fracture network

In this subsection, our algorithm is applied to a complex fracture network kindly provided by M.
Karimi-Fard and A. Lapène from Stanford University and TOTAL. Figure 17 exhibits the mesh of
the domain Ω = (0, 5888.75) × (0, 3157.5) × (0, 250) (m) which contains about 1.2 × 107 prismatic
cells, 6.5 × 106 nodes and 5.13 × 105 fracture faces. This 3D mesh is defined by the tensor product
of a triangular 2D mesh with a uniform vertical 1D mesh with 24 intervals. The fracture network
exhibited in Figure 18 contains 581 connected components. It is a set of 21376× 24 faces of the 3D
mesh defined by the tensor product of a subset of 21376 edges of the triangular 2D mesh with the
1D vertical mesh. The 2D triangular mesh contains 517540 cells and is refined in the neighbourhood
of the fracture network down to an average size of 3.5 m. Figure 18 also shows the location of the
injection well and of the two production wells. Each well is vertical of radius rw = 0.1 m and its
centre in the horizontal plane is located at the middle of a fracture edge in the 2D triangular mesh.
In the vertical direction, only the 12 fracture faces at the center of the 1D mesh are perforated. The
permeabilities are isotropic and set to Λf = 10−11 (m2) in the fracture network and to Λm = 10−15

(m2) in the matrix domain. The porosities are set to φm = φf = 0.1, the fracture width to df = 1 m
and the fluid viscosity to µ = 10−3 Pa.s−1.

The initial concentration is set to 0 both in the matrix domain and in the fracture network. A
total volume of 5.0 × 106 m3 is injected in one year at the injector well with a tracer concentration
of 1. The pressures of each perforated fracture face σ of the producer wells are fixed to pw = 0 and
the flow rates are given by the Peaceman model

qσ = WIσ(pσ − pw),
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where pσ is the pressure in the fracture face and WIσ the well index of the fracture face. This well
index is computed following Peaceman methodology [27], [28], [9] by expanding the fracture face as
a box of size dx× df × dz. The analytical pressure solution obtained for a vertical well with the well
pressure pw, the well radius rw and the well flow rate qw per unit length is imposed at the 8 corners
of the box. Then, the flow rate qwdz is imposed at the box center and the pressure pc at the box
center can be computed analytically using the VAG scheme. We deduce the well index

WI =
qwdz

pc − pw

leading in this simple case to the analytical formula

WI =
2πdzΛf

log( r0
rw

)

with

r0 = D exp(−2πdz

C
),

and

C =
4

3
(
dxdz

df
+
dxdf
dz

+
dzdf
dx

), D = 0.5
√
dx2 + d2

f .

The production lasts 8 years.

Figure 17: Prismatic mesh of the domain Ω defined by the tensor product of a vertical 1D uniform
mesh with a 2D triangular mesh.

Figure 19 plots the mean concentration in each well as a function of time as well as the total
volume of tracer as a function of time in the matrix, in the fracture network and their sum. Figure
20 exhibit the pressure solution in the matrix domain and Figures 21 and 22 shows the tracer
concentration after one year of injection and at final time both in the matrix domain and in the
fracture network. Figure 23 shows the total computation times with different number of MPI
processes Np = 16, 32, 64, 128, 256, 512. It is observed that the total computation time exhibits a
rather good scalability. In addition, the linear solver (GMRES+Boomer AMG) for the pressure
converges in no more than 25 iterations whatever the number of MPI processes. Also the comparison
of the total and transport computation times in Figure 23 shows that the time for the pressure
solution remains small compared with the transport computation time up to Np = 512.
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Figure 18: Fracture network showing the location of the single injection well and of the two production
wells.
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Figure 19: Mean tracer concentration in both production wells as a function of time (left) and tracer
volume as a function of time in the matrix, in the fracture network and in both domains (right).

Figure 20: Pressure on the matrix domain.
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Figure 21: Tracer concentration after one year of injection in the matrix domain (left) and in the
fracture network (right).

Figure 22: Tracer concentration at final time in the matrix domain (left) and in the fracture network
(right).
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Figure 23: Total computation time in hours (left) and computation time for transport model (right)
vs. number of MPI processes with prismatic mesh.
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6 Conclusion

This paper introduced a parallel VAG scheme for the simulation of an hybrid dimensional Darcy
flow and transport model in discrete fracture network taking into account the mass exchanges with
the matrix. The convergence of the scheme was validated on two original analytical solutions for the
flow and transport model including fracture intersections. The parallel efficiency of the algorithm
was studied for different complexities of fracture networks, and a large range of matrix fracture
permeability ratios and different type of meshes. The numerical results exhibit a very good parallel
strong scalability as expected from the explicit nature of the time integration of the transport model
with a better result on tetrahedral meshes thanks to the communication free computation of the cell
unknowns. The Darcy flow solution is remarkably robust using the Boomer AMG preconditioner
on all types of fracture networks, meshes and for all permeability ratios that has been tested. On
the other hand, it requires as usual a rather high number of unknowns per process to maintain a
good parallel scalability. Future work includes the extension of the parallel algorithm to hybrid
dimensional multiphase flow models and the use of a more accurate second order MUSCL scheme
for the transport model.
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[24] Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in
porous media. SIAM J. Sci. Comput. 26,5, 1667-1691 (2005).

31



[25] Matthai, S.K., Mezentsev, MA, Belayneh, MA. Finite element-node-centred finite-volume two-
phase-flow experiments with fractured rock represented by hybrid-element. SPE Reserv. Eval.
Eng. 12, 740- 756 (2007).

[26] Monteagudu, J., Firoozabadi, A.: Control-volume model for simulation of water injection in frac-
tured media: incorporating matrix heterogeneity and reservoir wettability effects. SPE Journal
12, 355-366 (2007).

[27] D.W. Peaceman, Interpretation of Well-Block Pressures in Numerical Reservoir Simulation,
SPEJ, pp 183-94, 1978.

[28] D.W. Peaceman, Interpretation of Well-Block Pressures in Numerical Reservoir Simulation with
Nonsquare Grid Blocks and Anisotropic Permeability, SPEJ, pp 531-43, 1983

[29] Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume
method for multiphase flow in fractured porous media. Adv. Water Resources 29, 7, 1020-1036
(2006).

[30] Sandve, T.H., Berre, I., Nordbotten, J.M.: An efficient Multi-Point Flux Approximation Method
for discrete Fracture-Matrix Simulations. J. Comp. Phys. 231, 3784-3800 (2012).

[31] Si, H.: http://tetgen.org

[32] Tunc, X., Faille, I., Gallouët, T., Cacas, M.C., Havé, P.: A model for conductive faults with
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