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This work deals with an inverse boundary value problem arising from the equation of heat conduction. We reconstruct small perturbations of the (isotropic) heat conductivity distribution from partial (on accessible part of the boundary) dynamic boundary measurements and for finite interval in time. By constructing of appropriate test functions, using a control method, we provide a rigorous derivation of the inverse Fourier transform of the perturbations in the diffusion coefficient as the leading order of an appropriate averaging of the partial dynamic boundary measurements.

Introduction

This paper is devoted to the identification of small amplitude perturbations, in the smooth diffusion coefficient for the heat equation, using partial boundary measurements.

The inverse heat conduction problem arises in most thermal manufacturing processes of solids and has recently attracted much attention. In this inverse problem, for the heat equation, one is requested to reconstruct a heat conductivity distribution by measuring on an accessible part of the boundary. Indeed, we exhibit appropriate boundary measurements by using exact boundary control data to reconstruct c α (x) approximately, provided it deviates only slightly from known constant c 0 .

Notice that reconstruction methods that allow partial boundary data are very interesting because, in most experimental settings, one does not have access to measurements on the whole boundary.

The problems to be discussed in this article generalize the approaches elaborated by Somersalo, Isaacson and Cheney in [START_REF] Somersalo | A linearized inverse boundary value problem for Maxwell's equations[END_REF], Ammari in [START_REF] Ammari | Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements[END_REF], Darbas and Lorhengel in [START_REF] Darbas | Numerical reconstruction of small perturbations in the electromagnetic coefficients of a dielectric material[END_REF] from reconstructions of electromagnetic parameters to an inverse problem of reconstructing an unknown coefficient in a parabolic equation.

Following the approaches used in [START_REF] Ammari | Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements[END_REF][START_REF] Darbas | Numerical reconstruction of small perturbations in the electromagnetic coefficients of a dielectric material[END_REF], our reconstruction method based on the knowledge of the boundary measurements requires the resolution of an exact boundary controllability problem by using the Hilbert Uniqueness Method (HUM) [START_REF] Lions | Contrôlabilit exacte, Perturbations et Stabilisation de Systmes Distribu s[END_REF]. Unlike electromagnetic waves studied in the above references, the exact boundary control problem for the heat equation is illposed in general. Thanks to Carthel, Glowinski and Lions [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: A Numerical Approach[END_REF], this ill-posedness is surmounted by using specific regularization procedures.

To the best of our knowledge, the present paper is the first attempt to design an effective method to determine a coefficient valued-function which quantifies the perturbations of the thermal conductivity with respect to the homogeneous background medium, and satisfies some specific conditions.

For the stationary case, the inverse conductivity problem has been studied by several authors through different approaches. Nachman [START_REF] Nachman | A global uniqueness for a two dimensional inverse boundary problem[END_REF] proved an uniqueness result for the diffusion coefficient c ∈ C 2 ( Ω) and Astala, Päivärinta [START_REF] Astala | Calderon's inverse conductivity problem in the plane[END_REF] for c ∈ L ∞ (Ω) with measurements on the whole boundary in R 2 . To estimate the Robin coefficient in a stationary diffusion equation, Zou and Jin [START_REF] Jin | Numerical estimation of the Robin coefficient in a stationary diffusion equation[END_REF] developed a suitable finite-element method by considering boundary measurements of the solution and the heat flux. Using complex exponentially solutions, Calderon [START_REF] Calderon | On an inverse boundary value problem[END_REF], and Sylvester and Uhlmann [START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] showed uniqueness for the diffusion coefficient in R 3 . Yamamoto [START_REF] Yamamoto | Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method[END_REF] realized Lipschitz stability results for parabolic equations. But by closely related approaches, Benabdallah, Gaitan and Le Rousseau [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF] proved a Lipschitz stability result for the determination of a piecewise-constant diffusion coefficient.

The paper is organized as follows. In Section 2, we formulate our main problem and we introduce the perturbed problem of heat conduction. Moreover, we describe briefly our inverse problem treated in this connection. In Section 3, we prove rigourously some energy estimates, associated to the temperature distribution, which will be useful for our future results. Section 4 is devoted to the reconstruction method in order to recover the small perturbations in the heat conductivity distribution which are quantified by the function c(x). The reconstruction theorem, completely proved in this section, is deeply based on appropriate averaging using particular background solutions constructed by an exact control method related to parabolic equations. Finally, in Section 5, we conclude our work and we suggest that our methods can be useful, in a forthcoming investigation, to identify diffusion coefficient in an anisotropic and/or in a non-cartesian medium.

Presentation of the Inverse Problem

Let Ω ⊂ R d , d = 2, 3 be a bounded, smooth domain with boundary ∂Ω of class C 2 . By ν = ν(x) we denote the outward unit normal vector to Ω at a point x ∈ ∂Ω, and we set

∂ ν u = ∂u ∂ν = ∇u•ν and ∂ t = ∂ ∂t .
Let Ω ′ be a smooth subdomain of Ω and is isotropic, i.e. its thermal conductivity is the same in all directions. Let Γ ⊂⊂ ∂Ω denote a measurable smooth connected part of the boundary ∂Ω. Γ may be the accessible part of ∂Ω, on which we can make our measurements.

We suppose that Ω is occupied by a material of a positive thermic conductivity

c α (x) = c 0 + αc(x), x ∈ Ω. ( 1 
)
The positivity of the body's thermal coefficient is required on both physical and mathematical grounds. We assume that

c(x) ∈ C 1 (Ω) ∩ C 2 (Ω), c ≡ 0 in Ω \ Ω ′ .
We also assume that α > 0, the order of magnitude of the small perturbations, is sufficiently small that

|c α (x)| ≥ κ > 0, x ∈ Ω, for 0 < α < α 0 (2) 
where κ and α 0 are positive constants.

Let u(x, t) be the solution of the initial boundary value problem for the heat equation in the absence of perturbations (α = 0):

           ∂ t u -c 0 ∆u = 0, (x, t) ∈ Ω × [0, T ] u(x, 0) = φ(x), x ∈ Ω u(x, t)| ∂Ω×[0,T ] = f (x, t), (3) 
where the regular data φ and f are known.

Physically, we consider a heat-conducting body modeled by the set Ω and the strictly positive heat conductivity distribution c 0 inside the body. Here T > 0 is a given final time. The function φ is the initial temperature distribution in Ω over which we do not have control.

Let u α (x, t) denote the solution of the initial boundary value problem for the heat equation in the presence of the linear perturbations (1):

           ∂ t u α -(∇ • c α ∇)u α = 0, (x, t) ∈ Ω × [0, T ] u α (x, 0) = φ(x), x ∈ Ω u α (x, t)| ∂Ω×[0,T ] = f (x, t). ( 4 
)
We perform boundary measurements by applying the temperature f (x, t) at the boundary ∂Ω during the time 0 < t < T and measuring the resulting heat flux ∂u α ∂ν | ∂Ω through the boundary;

where u α is the solution of (4).

Throughout this paper, we shall use quite standard L 2 -based Sobolev spaces to measure regularity. The notation H s is used to denote those functions who along with all their derivatives of order less than and equal to s are in L 2 . H 1 0 denotes the closure of C ∞ 0 in the norm of H 1 . Sobolev spaces with negative indices are in general defined by duality, using L 2 -inner product. It is classical to prove that the perturbed problem for the heat equation (4) has a unique weak solution u α ∈ H 2,1 (Ω × [0, T ]) (see for example, [START_REF] Hsiao | Boundary integral solution of the twodimmensional heat equation[END_REF][START_REF] Lions | Problemes aux Limites Non Homogenes[END_REF]), where the anisotropic Sobolev space H 2,1 (Ω × [0, T ]) is defined by

H 2,1 (Ω × [0, T ]) := L 2 ( [0, T ]; H 2 (Ω) ) ∩ H 1 ( [0, T ]; L 2 (Ω) ) .
More details and comments about general anisotropic Sobolev space H r,s (Ω × [0, T ]) (for r ≥ 0, and s ≥ 0) can be found in the well-known works of Lions and Magenes in [START_REF] Lions | Problemes aux Limites Non Homogenes[END_REF].

In this article, we propose to solve the following inverse problem:

Inverse Problem. Given a time T > 0, boundary data f and initial data φ, reconstruct the function c(x) for x ∈ Ω ′ , defined by ( 1)-( 2), from only knowledge of boundary measurements of ∂ ν u α on Γ × (0, T ), i.e., on the (accessible) part Γ of the boundary ∂Ω and on the finite interval in time (0, T ) and where u α is the solution to problem [START_REF] Ammari | Direct algorithms for thermal imaging of small inclusions[END_REF].

For this purpose, we develop an asymptotic method based on appropriate averaging using particular background solutions as weights. These particular solutions are constructed by a control method as it has been done in the original work [START_REF] Yamamoto | Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method[END_REF] concerning the inverse source hyperbolic problem, and also we can refer to [START_REF] Ammari | Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements[END_REF][START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF] for the case of electromagnetic problem. By means of specific test functions our main result can be read as an approximation to the Fourier transformation which may be suggested as an idea for a numerical reconstruction algorithm.

The above inverse boundary value problem is related to nondestructive testing where one looks for anomalous materials inside a known material. A similar approach may be applied to the "perturbed" full (time-dependent) Stokes equations with nonconstant parameters. This may be discussed in a forthcoming work.

The underlined inverse problem differs considerably from that considered by Ammari et al. in [START_REF] Ammari | Direct algorithms for thermal imaging of small inclusions[END_REF] where the authors determined an internal thermal conductivity of a given object. Moreover, our inverse problem differs from that evoked by Zou and Engl in the well-known work [START_REF] Engl | A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction[END_REF] where the authors presented a new approach, by using Tikhonov regularization, in order to identify the conductivity distribution in a heat conduction system.

There are lots of works on inverse problem of heat conductivity, see [START_REF] Bellassoued | Stability of the determination of the surface impedance of an obstacle from the scattering amplitude[END_REF][START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF][START_REF] Bryan | Stability and reconstruction for an inverse problem for the heat equation[END_REF][START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities: multi-dimensional case[END_REF][START_REF] Ikehata | Extracting discontinuity in a heat conductiong body. One-space dimensional case[END_REF][START_REF] Ikehata | On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval[END_REF][START_REF] Jia | A Boundary Integral Method for Solving Inverse Heat Conduction Problem[END_REF] and the references therein.

Generally, the determination of conductivity profiles from knowledge of boundary measurements has received a great deal of attention (see for example, the important works elaborated by Ammari et al. [START_REF] Ammari | Mathematical and Statistical Methods for Multistatic Imaging[END_REF][START_REF] Ammari | Direct algorithms for thermal imaging of small inclusions[END_REF][START_REF] Ammari | Polarization and Moment Tensors: with Applications to Inverse Problems and Effective Medium Theory[END_REF][START_REF] Ammari | Reconstruction of Small Inhomogeneities from Boundary Measurements[END_REF], and those of Vogelius et al. in [START_REF] Friedman | Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF][START_REF] Vogelius | Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities[END_REF]). The reconstruction of "perturbed" thermal conductivity within dynamics is much less investigated. For discussions on other interesting inverse hyperbolic problems, the reader is referred for example to Isakov [START_REF] Isakov | Inverse Source Problems[END_REF], Puel and Yamamoto [START_REF] Puel | Applications de la contrôlabilité exacte à quelques prob lemes inverses hyperboliques[END_REF], Bruckner and Yamamoto [START_REF] Bruckner | Determination of point wave sources by pointwise observations: stability and reconstruction[END_REF].

An Energy Estimate

In this section we may estimate the difference, between the solution u α of the perturbed heat equation and the exact background solution u, with respect to the order of magnitude of the small perturbations α. To do it, we can define the function

v α ∈ C 1 ( [0, T ]; L 2 (Ω) ) ∩ L 2 ( 0, T ; H 1 0 (Ω)
) to be the solution of:

           ∇ • c α ∇v α = u α -u; in Ω × [0, T ], v α = 0; in ∂Ω × [0, T ], v α (x, 0) = 0; x ∈ Ω.
(

) 5 
The existence and uniqueness of v α is most established by variational means.

The following energy estimate of u α -u holds.

Proposition 3.1 Suppose that we have all hypothesis (1)- [START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF]. Assume that c 0 is a constant function in Ω ′ . Let d = 2 and α 0 be the constant given by [START_REF] Ammari | An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume[END_REF]. Then, there exist C > 0 such that, for 0 < α < α 0 the following energy estimate holds:

∥∇(u α -u)∥ L ∞ (0,T ;L 2 (Ω)) + ∥u α -u∥ L ∞ (0,T ;L 2 (Ω)) ≤ Cα.
The constants C dependent on the domain Ω, κ, α 0 , T , the data φ and f , but are otherwise independent of α.

Proof. Let v : (x, t) ∈ Ω × [0, T ] → v(x, t) ∈ R, be any function such that v ∈ H 1 0 (Ω) and simplified v ≡ v(•, t) : Ω → R.
The main achievement of the proof is the following equality

∫ Ω ∂ t (u α -u)v + ∫ Ω c α ∇(u α -u).∇v = ∫ Ω (c 0 -c α )∇u.∇v. ( 6 
)
To do this, one can remark that u α (•, t) -u(•, t) ∈ H 1 0 (Ω), and by applying Green's formula, we obtain

∫ Ω ∂ t (u α -u)v = ∫ Ω (∇ • (c α ∇u α ) -c 0 ∆u)v = - ∫ Ω c α ∇u α .∇v + ∫ ∂Ω c α ∂ ν u α v + ∫ Ω c 0 ∇u.∇v - ∫ ∂Ω c 0 ∂ ν uv. 6 Note that v ∈ H 1 0 (Ω), then we get ∫ Ω ∂ t (u α -u)v = - ∫ Ω c α ∇u α .∇v + ∫ Ω c 0 ∇u.∇v. Hence, ∫ Ω ∂ t (u α -u)v = - ∫ Ω c α ∇(u α -u).∇v + ∫ Ω (c 0 -c α )∇u.∇v, (7) 
which is the desired relation [START_REF] Ammari | Reconstruction of Small Inhomogeneities from Boundary Measurements[END_REF].

On the other hand, let v α be the solution of [START_REF] Ammari | Polarization and Moment Tensors: with Applications to Inverse Problems and Effective Medium Theory[END_REF]. Then, we can write

∫ Ω c α ∇(u α -u).∇v α = - ∫ Ω (∇ • c α ∇v α )(u α -u) = - ∫ Ω |u α -u| 2 ≤ 0.
Next,

∫ Ω ∂ t (u α -u)v α = ∫ Ω ∂ t (∇ • c α ∇v α )v α = - ∫ Ω c α ∂ t ∇v α .∇v α = - 1 2 ∂ t ∫ Ω c α |∇v α | 2 .
Adding both sides, we obtain from ( 6) with v replaced by v α :

∂ t ∫ Ω c α |∇v α | 2 + 2 ∫ Ω |u α -u| 2 = -2 ∫ Ω (c 0 -c α )∇u.∇v α .
This implies, by considering (1), that

∂ t ∫ Ω c α |∇v α | 2 ≤ 2| ∫ Ω (c 0 -c α )∇u.∇v α | ≤ Cα∥c∥ L ∞ (Ω ′ ) .∥∇u(., t)∥ L 2 (Ω) ∥∇v α (., t)∥ L 2 (Ω) . ( 8 
)
On the other hand, using (1)-( 2), one can find constants M 0 > 0, and

M 1 > 0 such that sup x∈Ω |c(x)| = M 0 , and κ ≤ sup x∈Ω |c α (x)| ≤ M 1 := c 0 + α 0 M 0 , for 0 < α < α 0 . ( 9 
)
Then, (8) becomes

∂ t ∫ Ω c α |∇v α | 2 ≤ Cα∥∇v α (., t)∥ L 2 (Ω) .
According to Gronwall lemma, we get

∥∇v α (., t)∥ L 2 (Ω) ≤ Cα. ( 10 
)
On the other hand, replacing v by u α -u in equality ( 6) and taking into account ( 5) and ( 9)-( 10), we immediately obtain

1 2 ∂ t ∫ Ω |u α -u| 2 + ∫ Ω c α |∇(u α -u)| 2 = ∫ Ω (c 0 -c α )∇u.∇(u α -u) = -α ∫ Ω c∇u.∇(u α -u) = α ∫ Ω [c∆u + ∇(c) • ∇u](∇. c α ∇v α ) ≤ Cα∥∇v α (., t)∥ L 2 (Ω) ≤ Cα 2 .
It is easily seen that,

∂ t ∫ Ω |u α -u| 2 ≤ Cα 2 , ∫ Ω |∇(u α -u)| 2 ≤ Cα 2
and consequently,

∥u α -u∥ L ∞ (0,T ;L 2 (Ω)) ≤ C 1 α, ∥∇(u α -u)∥ L ∞ (0,T ;L 2 (Ω)) ≤ C 2 α.
Thus, we obtain:

∥u α -u∥ L ∞ (0,T ;L 2 (Ω)) + ∥∇(u α -u)∥ L ∞ (0,T ;L 2 (Ω)) ≤ Cα,
where C is independent of α.

The Reconstruction Method

To recover the small perturbations in the heat conductivity, which are quantified by the function c, let us introduce the following cutoff function β(x) ∈ C ∞ 0 (Ω) such that β ≡ 1 in a subdomain Ω ′ of Ω that contains the perturbations. For an arbitrary η ∈ R 2 , we assume that we are in possession of the boundary measurements:

∂ ν u and ∂ ν u α on Γ × (0, T ) (11) 
for the data

φ(x) = φ η (x) = J 0 ( z a|η| |x|) zJ 1 (z) , and f (x, t) = f η (x, t) = J 0 ( z a|η| |x|) zJ 1 (z) e -( z a|η| ) 2 c0t .
Here z is the positive zero of the Bessel function of the first kind J 0 (x) ( [START_REF] Bowman | Introduction to Bessel Functions[END_REF], pp. 37-39), J 1 (x) The reconstruction method, based on the knowledge of the boundary measurements [START_REF] Bruckner | Determination of point wave sources by pointwise observations: stability and reconstruction[END_REF], requires the resolution of an exact boundary control problem for the heat equation.

Unlike the analogue problem for the wave equation in [START_REF] Lions | Contrôlabilit exacte, Perturbations et Stabilisation de Systmes Distribu s[END_REF][START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: A Numerical Approach[END_REF][START_REF] Glowinski | Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach[END_REF] or for the Maxwell problem [START_REF] Ammari | Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements[END_REF][START_REF] Darbas | Numerical reconstruction of small perturbations in the electromagnetic coefficients of a dielectric material[END_REF], this problem is ill-posed in general. To overcome the ill-posedness, Carthal, Glowinski and

Lions used in their original work [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: A Numerical Approach[END_REF] two regularization procedures for which the corresponding control problems are well posed.

We suppose here that the boundary control is of the Dirichlet type but the Neumann's case, may be handled by a similar manner.

Indeed, for η ∈ R 2 , the controllability problem consists in finding a scalar function g η such that ϕ η (T ) = 0 in Ω, where ϕ η is the unique weak solution of the problem

(∂ t -c 0 ∆)ϕ η = 0 in Ω × (0, T ), ϕ η | t=0 = β(x)e iη•x ∈ H 1 0 (Ω), ( 12 
)
ϕ η | Γ×(0,T ) = g η , ( 13 
)
ϕ η | ∂Ω\Γ×(0,T ) = 0.
In the spirit of the Hilbert Uniqueness Method, Glowinski et al. [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: A Numerical Approach[END_REF][START_REF] Glowinski | Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach[END_REF] proved the existence of the control g η ∈ L 2 (0, T ; H -1/2 (Γ)) in such a way that ϕ η ∈ L 2 (0, T ; L 2 (Ω)) and ∂ϕ η ∂t ∈ L 2 (0, T ; H -2 (Ω)) (see e.g., [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: A Numerical Approach[END_REF] page 124).

The final condition ϕ η (T ) = 0 is simply deduced by making change of variable y(T -t) for the final state y(T ).

Main Results

In this paragraph, we will determine the procedure to identify the heat conductivity in Ω.

Let η ∈ R 2 and considering the function v η ∈ H 2,1 (Ω × [0, T ]) satisfying the following state equation:

∂ t v η + c 0 ∆v η = 0, (x, t) ∈ Ω × [0, T ] v η (x, 0) = i∇ • ( ηc(x)e iη.x ) ∈ L 2 (Ω), x ∈ Ω (14) v η | ∂Ω×[0,T ] = 0, and ∂ t v η (x, 0) = 0, x ∈ ∂Ω.
The existence and uniqueness of the solution v η can be established by transposition, see ( [START_REF] Hsiao | Boundary integral solution of the twodimmensional heat equation[END_REF],

pp. 106-107) or [START_REF] Evans | Partial Differential Equations[END_REF][START_REF] Lions | Problemes aux Limites Non Homogenes[END_REF].

To determine our procedure, we need the following proposition: Proposition 4.1 Let Γ ⊂⊂ ∂Ω be an accessible part. Suppose that we have all hypothesis (1)-( 2), and assume that c 0 is a constant function in Ω ′ . For any η ∈ R 2 , we have the following result:

∫ T 0 ∫ Γ ∂ ν v η g η ds(x)dt = |η| 2 c 0 ∫ Ω ′ c(x)e 2iη.x dx,
where g η is given by ( 13) and v η is the solution of [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: A Numerical Approach[END_REF].

Proof. Since ∂ t v η + c 0 ∆v η ≡ 0 in Ω × (0, T ), then

∫ T 0 ∫ Ω ∂ t v η ϕ η + c 0 ∫ T 0 ∫ Ω ∆v η ϕ η = 0.
Using Green's formula, we obtain:

∫ Ω ∆v η ϕ η = - ∫ Ω ∇v η ∇ϕ η + ∫ Γ g η ∂ η v η .
Therefore,

∫ T 0 ∫ Ω ∂ t v η ϕ η -c 0 ∫ T 0 ∫ Ω ∇v η ∇ϕ η = -c 0 ∫ T 0 ∫ Γ g η ∂ η v η .
Integrating by parts, we obtain

- ∫ Ω v η (x, 0)ϕ η (x, 0)dx - ∫ T 0 ∫ Ω v η ∂ t ϕ η -c 0 ∫ T 0 ∫ Ω ∇v η • ∇ϕ η (15) = -c 0 ∫ T 0 ∫ Γ g η ∂ ν v η .
On the other hand,

- ∫ T 0 ∫ Ω v η ∂ t ϕ η = - ∫ T 0 ∫ Ω v η c 0 ∆ϕ η = -c 0 ∫ T 0 ∫ ∂Ω v η ∂ ν ϕ η + c 0 ∫ T 0 ∫ Ω ∇v η • ∇ϕ η = c 0 ∫ T 0 ∫ Ω ∇v η • ∇ϕ η .
Then, relation [START_REF] Darbas | Numerical reconstruction of small perturbations in the electromagnetic coefficients of a dielectric material[END_REF] becomes

- ∫ Ω v η (x, 0)ϕ η (x, 0)dx = -c 0 ∫ T 0 ∫ Γ ∂ η v η g η ,
Then, taking ( 14) and ( 12) into account we immediately obtain

∫ Ω i∇ • (ηc(x)e iη.x )β(x)e iη.x dx = c 0 ∫ T 0 ∫ Γ ∂ η v η g η ds(x)dt.
Thus, by integrating by parts

|η| 2 ∫ Ω ′ c(x)e 2iη.x dx = c 0 ∫ T 0 ∫ Γ ∂ η v η g η ds(x)dt
which completes the proof.

From the previous definitions, we can define the following, ũα (x, t) = u(x, t) + α

∫ t 0 e -i √ c0|η|s v η (x, t -s) ds, x ∈ Ω, t ∈ (0, T ). ( 16 
)
The following estimation holds.

Theorem 4.1 Assume that c α is defined by [START_REF] Ammari | Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements[END_REF]. Let u and v η be the solutions of ( 3) and ( 14)

respectively. Then the function ũα given by ( 16) is well defined, and there exist some constants α 1 > 0 and C > 0 such that for 0 < α < α 1 we have:

||∂ n u α -∂ n ũα )|| L 2 (0,T ;L 2 (Γ)) ≤ Cα 2 . ( 17 
)
Here u α is the solution of ( 4), C dependent on Ω, Γ and T but independent of α.

To prove Theorem 4.1, we should use the following lemma.

Lemma 4.1 Assume that we have all hypothesis of Theorem 4.1. Let the function ũα given by ( 16). Then, the following nonhomogeneous heat equations are well defined:

1) For (x, t) ∈ Ω × (0, T ), ũα satisfies:

(∂ t -c 0 ∆)ũ α = iα∇ • (ηc(x)e iη•x ), ũα (x, 0) = e iη•x and ũα | ∂Ω×(0,T ) = e iη•x-i|η|t .
2) For (x, t) ∈ Ω × (0, T ), u α -ũα satisfies:

( ∂ t -∇ • c α ∇ ) (u α -ũα ) = α 2 ∇ • ( c(x)∇( ∫ t 0 e -i|η|s v η (x, t -s) ds) ) , ( 18 
)
(u α -ũα )(x, 0) = 0, and (u α -ũα )| ∂Ω×(0,T ) = 0.

Proof. Let v η be the solution of [START_REF] Carthel | On exact and approximate boundary controllabilities for the heat equation: A Numerical Approach[END_REF]. By using a variable change, we get

∂ t ∫ t 0 e -i √ c0|η|s v η (x, t -s)ds = -i √ c 0 |η|e -i √ c0|η|t ∫ t 0 e i √ c0|η|s ′ v η (x, s ′ )ds ′ + v η (x, t),
where (x, t) ∈ Ω × (0, T ). Therefore,

(∂ t -c 0 ∆)( ∫ t 0 e -i √ c0|η|s v η (x, t -s)ds = -i √ c 0 |η|e -i √ c0|η|t ∫ t 0 e i √ c0|η|s v η (x, s)ds + v η (x, t) (19) +c 0 e -i √ c0|η|t ∫ t 0 e i √ c0|η|s ∆v η (x, s)ds.
Now, integrating by parts:

∫ t 0 e i √ c0|η|s v η (x, s)ds = e i √ c0|η|t i √ c 0 |η| v η (x, t) - 1 i √ c 0 |η| v η (x, 0) - 1 i √ c 0 |η| ∫ t 0 e i √ c0|η|s ∂ t v η (x, s)ds.
Inserting this last relation into [START_REF] Gaitan | Inverse problems for time-dependent singular heat conductivities: multi-dimensional case[END_REF] and recall that v η is the solution of ( 14). Then, we immediately obtain

(∂ t -c 0 ∆)( ∫ t 0 e -i √ c0|η|s v η (x, t -s)ds = e -i √ c0|η|t ∫ t 0 e i √ c0|η|s (∂ t + c 0 ∆)v η (x, s)ds +e -i √ c0|η|t v η (x, 0) = e -i √ c0|η|t v η (x, 0).
Hence, to achieve the proof of 1), one may use [START_REF] Engl | A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction[END_REF] and recall that u solves (3).

To prove 2), it suffices to handle the first equation in [START_REF] Friedman | Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF], because the other relations can be deduced easily. Recall that u α solves the problem (4). Then, we get

( ∂ t -∇•c α ∇ ) (u α -ũ α ) = - ( ∂ t -∇•c α ∇ ) ũα = - ( ∂ t -∇•(c 0 +αc)∇ ) ũα = - ( ∂ t -α∇•(c)∇ ) ũα -iα∇•(ηc(x)e iη•x )
by using 1). Using ( 16) and ( 3), we can write

( ∂ t -∇ • c α ∇ ) (u α -ũα ) = - ( ∂ t -α∇ • (c)∇ ) u -α∂ t ( ∫ t 0 e -i √ c0|η|s v η (x, t -s) ds ) +α 2 (∇ • (c)∇) ( ∫ t 0 e -i √ c0|η|s v η (x, t -s) ds ) -iα∇ • (ηc(x)e iη•x ), x ∈ Ω, t ∈ (0, T ).
Thus, by using the relation ( 16) we get

( ∂ t -∇ • c α ∇ ) (u α -ũα ) = α 2 (∇ • c∇) ( ∫ t 0 e -i √ c0|η|s v η (x, t -s) ds ) , x ∈ Ω, t ∈ (0, T ).
Now, we are ready to prove Theorem 4.1 by means of previous results.

Proof of Theorem 4.1:

Let h ∈ C ∞ 0 (]0, T [) be an arbitrary function. For any v ∈ L 1 (0, T ; L 2 (Ω)) we define

v(x) = ∫ T 0 v(x, t)h(t) dt.
Hence, v ∈ L 2 (Ω) and from [START_REF] Friedman | Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF] it follows that

(∇•c α ∇)(û α -ûα ) = (∇• c α ∇) ∫ T 0 (u α -ũ α )h(t)dt = ∫ T 0 ( ∂ t (u α -ũ α )-α∇•(c(x)∇(ũ α -u)) ) h(t)dt.
Therefore,

(∇•c α ∇)(û α -ûα ) = -α∇•(c(x)∇(û α -û))- ∫ T 0 (u α -ũα )h ′ (t) dt in Ω, and (û α -ûα )| ∂Ω = 0. (20) 
Now, we try to estimate both quantities ||u α -ũα || L ∞ (0,T ;L 2 (Ω)) and ||∇(û α -û)|| L 2 (Ω) . To arrive at this result, let y α ∈ H 1 (Ω) be the solution of

∇ • c α ∇y α = ∂ t (u α -u) in Ω and y α = 0 on ∂Ω. ( 21 
)
As done in the proof of Proposition 3.1, Green's formula yields:

∫ Ω ∂ t (u α -u)y α + ∫ Ω c α ∇(u α -u) • ∇y α = -α ∫ Ω c∇u • ∇y α . While ∫ Ω c α ∇(u α -u)•∇y α = - ∫ Ω (u α -u)∇•(c α ∇y α ) = - ∫ Ω (u α -u)∂ t (u α -u) = - 1 2 ∂ t ∫ Ω (u α -u) 2 ,
as well as

∫ Ω ∂ t (u α -u)y α = ∫ Ω ∇ • (c α ∇y α )y α = - ∫ Ω c α |∇y α | 2 ,
we obtain 2

∫ Ω c α |∇y α | 2 + ∂ t ∫ Ω (u α -u) 2 = 2α ∫ Ω c∇u • ∇y α ≤ Cα||∇y α || L ∞ (0,T ;L 2 (Ω)) .
From the Gronwall Lemma it follows that

||u α -u|| L ∞ (0,T ;L 2 (Ω)) ≤ Cα. ( 22 
)
As a result, the function ûα -û satisfies

∇ • ( c α ∇(û α -û) ) = O(α)
in Ω, and ûα -û = 0 on ∂Ω, and so, by considering (9) we obtain, for 0 < α < α 0 , that

||∇(û α -û)|| L 2 (Ω) = O(α). ( 23 
)
However ∇(u α -u) ∈ L ∞ (0, T ; L 2 (Ω)) which gives by using the above estimate that

||∇(u α -u)|| L 2 (Ω) = O(α) a.e. t ∈ (0, T ). ( 24 
)
As defined in [START_REF] Hsiao | Boundary integral solution of the twodimmensional heat equation[END_REF], let us introduce the following function ỹα ∈ H 1 (Ω) to verify:

∇ • (c 0 ∇ỹ α ) = ∂ t (ũ α -u α )
in Ω and ỹα = 0 on ∂Ω.

By means of ( 18), we compute that

∫ Ω c α |∇ỹ α | 2 + ∂ t ∫ Ω (ũ α -u α ) 2 = -2α ∫ Ω c∇(u -u α ) • ∇ỹ α
which, by using [START_REF] Isakov | Inverse Source Problems[END_REF], yields

||ũ α -u α || L ∞ (0,T ;L 2 (Ω)) ≤ Cα 2 . ( 25 
)
Combining estimates ( 23) and ( 25) and using standard elliptic regularity [START_REF] Evans | Partial Differential Equations[END_REF] for the boundary value problem [START_REF] Glowinski | Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach[END_REF] we obtain

||∂ ν (û α -ûα )|| L 2 (Γ) = O(α 2 ),
and so, as for estimate [START_REF] Ikehata | On the reconstruction of inclusions in a heat conductive body from dynamical boundary data over a finite time interval[END_REF], this permits us to assert that

||∂ ν u α -∂ ν ũα || L 2 (0,T ;L 2 (Γ)) = O(α 2 ).
The theorem is proven

To identify the small perturbation of the heat conductivity c α let us view the averaging of the boundary measurements of resulting heat flux ∂ ν u α | Γ×(0,T ) , using the solution θ η to the Volterra equation of second kind, as a function of η:

           θ η ∈ H 1 (0, T ; T L 2 (Γ)), ∂ t θ η (x, t) + ∫ T t e -i √ c0|η|(s-t) (θ η (x, s) -i √ c 0 |η|∂ t θ η (x, s)) ds = g η (x, t); x ∈ Γ, t ∈ (0, T ), θ η (x, 0) = 0, for x ∈ Γ. ( 26 
)
The existence and uniqueness of θ η in H 1 (0, T ; T L 2 (Γ)) for any η ∈ R 2 can be established using the resolvent kernel [START_REF] Yamamoto | Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method[END_REF]. Now, by taking t = T in last relation [START_REF] Jin | Numerical estimation of the Robin coefficient in a stationary diffusion equation[END_REF], one can remark the following: Remark 4. [START_REF] Ammari | Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements[END_REF] We have ∂ t θ η (x, T ) = g η (x, T ) for all x ∈ Γ. While g η ∈ H 1 0 (0, T ; L 2 (Γ)), we get

∂ t θ η (x, T ) = 0; x ∈ Γ.
The following main theorem permits us to reconstruct the function

c(x) ∈ {c ∈ C 1 (Ω), c ≡ 0 on Ω \ Ω ′ , |c(x)| ≤ λ, x ∈ Ω ′ }, from the boundary measurements of ∂ ν u α | Γ×(0,T ) := ∂u α ∂ν | Γ×(0,T ) .
Now, we can prove the following main result in this paper.

Theorem 4.2 Suppose that we have all hypothesis (1)-( 2), and let θ η be the solution to [START_REF] Jin | Numerical estimation of the Robin coefficient in a stationary diffusion equation[END_REF].

Let u, u α be the unique solutions of the heat equations ( 3) and ( 4) respectively. If the heat conductivity c 0 is constant in Ω ′ , then for any η ∈ R 2 we have:

∫ T 0 ∫ Γ [θ η (∂ ν u α -∂ ν u) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u)] = α |η| 2 c 0 ∫ Ω ′ c(x)e 2iη•x dx + O(α 2 ). ( 27 
)
The term O(α 2 ) is independent of the function c, but depends only on the bound λ.

Proof. Let the function u α (x, t) defined by [START_REF] Engl | A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction[END_REF]. Then, by inserting u α into the left hand side of ( 27), we immediately get:

∫ T 0 ∫ Γ [θ η (∂ ν u α -∂ ν u) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u)] = ∫ T 0 ∫ Γ [θ η (∂ ν u α -∂ ν u α ) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u α )] + ∫ T 0 ∫ Γ [θ η ∫ t 0 e i √ c0|η|s ∂ ν v η (x, t -s)ds + ∂ t θ η ∂ t ∫ t 0 e -i √ c0|η|s ∂ ν v η (x, t -s)ds].
On the other hand, we have

∂ t θ(x, t) + ∫ T t e -i √ c0|η|(s-t) (θ η (x, s) -i √ c 0 |η|∂ t θ η (x, s))ds = g η (x, t).
By using a variable change and Remark 4.1, we get

∂ t ∫ t 0 e -i √ c0|η|s ∂ ν v η (x, t -s)ds = ∂ ν v η (x, t) -i √ c 0 |η|e -i √ c0|η|t ∫ t 0 e i √ c0|η|s ∂ ν v η (x, z)dz.
Hence,

∫ T 0 ∫ Γ [θ η ∫ t 0 e i √ c0|η|s ∂ ν v η (x, t -s)ds + ∂ t θ η ∂ t ∫ t 0 e -i √ c0|η|s ∂ ν v η (x, t -s)ds] = ∫ T 0 ∫ Γ [θ η ∫ t 0 e i √ c0|η|s ∂ ν v η (x, t -s)ds + ∂ t θ η (-i √ c 0 |η|e -i √ c0|η|t ∫ t 0 e i √ c0|η|s ∂ ν v η (x, z)dz +∂ ν v η (x, t))] = ∫ T 0 ∫ Γ ∂ ν v η (x, t)[∂ t θ η + ∫ T t (θ η (z) -i √ c 0 |η|∂ t θ η (z))e i √ c0|η|(t-z) dz]dt = ∫ T 0 ∫ Γ g η (x, t)∂ ν v η (x, t)dt.
Consequently,

∫ T 0 ∫ Γ [θ η (∂ ν u α -∂ ν u) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u)] = ∫ T 0 ∫ Γ [θ η (∂ ν u α -∂ ν u α ) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u α )] + ∫ T 0 ∫ Γ g η (x, t)∂ ν v η (x, t)dt.
Now using Proposition 4.1, we get:

∫ T 0 ∫ Γ [θ η (∂ ν u α -∂ ν u) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u)] = ∫ T 0 ∫ Γ [θ η (∂ ν u α -∂ ν u α ) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u α )] + |η| 2 c 0 ∫ Ω ′ c(x)e 2iη.
x dx.

To finish, one may use Theorem 4.1 to find that

∫ T 0 ∫ Γ [θ η (∂ ν u α -∂ ν u α ) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u α )] = O(α 2 ),
which achieves the proof.

We are now in position to describe our identification procedure which is based on Theorem 4.2. Let us neglect the asymptotically small remainder in the asymptotic formula [START_REF] Lions | Contrôlabilit exacte, Perturbations et Stabilisation de Systmes Distribu s[END_REF]. Then, it follows

c(x) ≈ 2 α ∫ R d e -2iη•x |η| 2 ∫ T 0 ∫ Γ ( θ η (∂ ν u α -∂ ν u) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u) ) ds(y)dt, x ∈ Ω.
The method of reconstruction we propose here consists in sampling values of

1 |η| 2 ∫ T 0 ∫ Γ ( θ η (∂ ν u α -∂ ν u) + ∂ t θ η ∂ t (∂ ν u α -∂ ν u)
) ds(y)dt at some discrete set of points η and then calculating the corresponding inverse Fourier transform. In the following, we will obtain the more convenient approximation. ) ds(y)dt, x ∈ Ω, [START_REF] Lions | Problemes aux Limites Non Homogenes[END_REF] in terms only of the boundary control g η which was defined by [START_REF] Calderon | On an inverse boundary value problem[END_REF].

The desired approximation, given in Corollary 4.1, may be established by integration by parts over (0, T ) for the term

∫ T 0 ∫ Γ ∂ t θ η ∂ t (∂ ν u α -∂ ν u) ds(x)dt,
and by using Remark 4.1.

Conclusion

We are convinced that the use of approximate formulae such as [START_REF] Lions | Contrôlabilit exacte, Perturbations et Stabilisation de Systmes Distribu s[END_REF] represents a promising approach to the dynamical identification and reconstruction of small linear perturbations in the heat conductivity for the thermal diffusion. We believe that our method yields a significant approximation to the dynamical identification of small anisotropic cavity D, that is embedded in a (homogenous) heat conductive body Ω ⊂ R 2 from the measurements of ∂ ν u on Γ × (0, T ).

The heat conductivity tensor c(x) ∈ R 2×2 is assumed to be symmetric and uniformly positive definite for x ∈ D. The cavity D may be chosen in such a way that the heat conductivity is very low compared with that of the surrounded region Ω\ D. So, the problem is a mathematical formulation of a typical inverse problem in thermal imaging. Our method may be based on appropriate asymptotic expansions combined with an exact control problem to overcome a suitable Fourier transform of the Dirac function representing a point mass to locate the cavity D. This issue will be considered in a forthcoming work.

  is a Bessel function, and a := 1/2 max{dist(x, y) : x, y ∈ Ω}. This particular choice of data φ and f allows us to give explicitly the background solution u of the heat equation (3) in the absence of any perturbations. To solve the underlined inverse problem, it suffices to record the boundary measurements of ∂ ν u α , because the measure of ∂ ν u deducts according to classic results.

Corollary 4 . 1

 41 Let η ∈ R 2 . Suppose that we have all hypothesis of Theorem 4.2. Then we have the following approximation ∂ t (e -i|η|t g η (y, t))(∂ ν u α -∂ ν u)(y, t)