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We study the capacity of the range of a transient simple random walk on Z d . Our main result is a central limit theorem for the capacity of the range for d ≥ 6. We present a few open questions in lower dimensions.

Introduction

This paper is devoted to the study of the capacity of the range of a transient random walk on Z d . Let {S k } k≥0 be a simple random walk in dimension d ≥ 3. For any integers m and n, we define the range R[m, n] to be the set of visited sites during the interval [m, n], i.e. R[m, n] = {S m , . . . , S n }.

We write simply R n = R[0, n]. We recall that the capacity of a finite set A ⊆ Z d is defined to be

Cap (A) = x∈A P x T + A = ∞ ,
where T + A = inf{t ≥ 1 : S t ∈ A} is the first return time to A. The capacity of the range of a walk has a long history. Jain and Orey [START_REF] Naresh | On the range of random walk[END_REF] proved, some fifty years ago, that Cap (R n ) satisfies a law of large numbers for all d ≥ 3, i.e. almost surely

lim n→∞ Cap (R n ) n = α d .
Moreover, they showed that α d > 0 if and only if d ≥ 5. In the eighties, Lawler established estimates on intersection probabilities for random walks, which are relevant tools for estimating the expected capacity of the range (see [START_REF] Gregory | Intersections of random walks. Probability and its Applications[END_REF]). Recently, the study of random interlacements by Sznitman [START_REF] Sznitman | Vacant set of random interlacements and percolation[END_REF], has given some momentum to the study of the capacity of the union of the ranges of a collection of independent walks. In order to obtain bounds on the capacity of such union of ranges, Ráth and Sapozhnikov in [START_REF] Ráth | Connectivity properties of random interlacement and intersection of random walks[END_REF] have obtained bounds on the capacity of the range of a simple transient walk. The capacity of the range is a natural object to probe the geometry of the walk under localisation constraints. For instance, the first two authors have used the capacity of the range in [START_REF] Asselah | Boundary of the Range II: lower Tails[END_REF] to characterise the walk conditioned on having a small range.

In the present paper, we establish a central limit theorem for Cap (R n ) when d ≥ 6.

Theorem 1.1. For all d ≥ 6, there is a positive constant σ d such that

Cap (R n ) -E[Cap (R n )] √ n =⇒ σ d N (0, 1), as n → ∞,
where =⇒ denotes convergence in distribution, and N (0, 1) denotes a standard normal random variable.

A key tool in the proof of Theorem 1.1 is the following inequality.

Proposition 1.2. Let A and B be finite subsets of Z d . Then,

Cap (A ∪ B) ≥ Cap (A) + Cap (B) -2 x∈A y∈B G(x, y), (1.1) 
where G is Green's kernel for a simple random walk in

Z d G(x, y) = E x ∞ t=0
1(X t = y) .

Note in comparison the well known upper bound (see for instance [7, Proposition 2.2.1])

Cap (A ∪ B) ≤ Cap (A) + Cap (B) -Cap (A ∩ B) (1.2) 
In dimension four, asymptotics of E[Cap (R n )] can be obtained from Lawler's estimates on nonintersection probabilities for three random walks, that we recall here for convenience.

Theorem 1.3. ([7, Corollary 4.2.5]) Let R 1 , R 2 and R 3 be the ranges of three independent random walks in Z 4 starting at 0. Then,

lim n→∞ log n × P R 1 [1, n] ∩ (R 2 [0, n] ∪ R 3 [0, n]) = ∅, 0 ∈ R 3 [1, n] = π 2 8 , (1.3) 
and

lim n→∞ log n × P R 1 [1, ∞) ∩ (R 2 [0, n] ∪ R 3 [0, n]) = ∅, 0 ∈ R 3 [1, n] = π 2 8 . (1.4) 
Actually (1.4) is not stated exactly in this form in [START_REF] Gregory | Intersections of random walks. Probability and its Applications[END_REF], but it can be proved using exactly the same proof as for equation (4.11) in [START_REF] Gregory | Intersections of random walks. Probability and its Applications[END_REF]. As mentioned, we deduce from this result, the following estimate for the mean of the capacity.

Corollary 1.4. Assume that d = 4. Then,

lim n→∞ log n n E[Cap (R n )] = π 2 8 . (1.5)
In dimension three, we use the following representation of capacity (see [START_REF] Naresh | Some properties of random walk paths[END_REF]Lemma 2.3])

Cap (A) = 1 inf ν x∈A y∈A G(x, y)ν(x)ν(y) , (1.6) 
where the infimum is taken over all probability measures ν supported on A. We obtain the following bounds:

Proposition 1.5. Assume that d = 3. There are positive constants c and C, such that

c √ n ≤ E[Cap (R n )] ≤ C √ n. (1.7)
The rest of the paper is organised as follows. In Section 2 we present the decomposition of the range, which is at the heart of our central limit theorem. The capacity of the range is cut into a self-similar part and an error term that we bound in Section 3. In Section 4 we check Lindeberg-Feller's conditions. We deal with dimension three and four in Section 5. Finally, we present some open questions in Section 6. For positive functions f, g we write

Notation

f (n) g(n) if there exists a constant c > 0 such that f (n) ≤ cg(n) for all n. We write f (n) g(n) if g(n) f (n). Finally, we write f (n) ≍ g(n) if both f (n) g(n) and f (n) g(n).

Decomposition for capacities

Proof of Proposition 1.2. Note first that by definition,

Cap (A ∪ B) = Cap (A) + Cap (B) - x∈A\B P x T + A = ∞, T + B < ∞ - x∈A∩B P x T + A = ∞, T + B < ∞ - x∈B\A P x T + A < ∞, T + B = ∞ - x∈A∩B P x T + A < ∞, T + B = ∞ - x∈A∩B P x T + A = ∞, T + B = ∞ ≥ Cap (A) + Cap (B) - x∈A\B P x T + B < ∞ - x∈B\A P x T + A < ∞ -|A ∩ B|.
For any finite set K and all x / ∈ K by considering the last visit to K we get

P x T + K < ∞ = y∈K G(x, y)P y T + K = ∞ .

This way we obtain

x∈A\B

P x T + B < ∞ ≤ x∈A\B y∈B G(x, y) and x∈B\A P x T + A < ∞ ≤ x∈B\A y∈A G(x, y).

Hence we get

Cap (A ∪ B) ≥ Cap (A) + Cap (B) -2 x∈A y∈B G(x, y) + x∈A∩B y∈A G(x, y) + x∈A∩B y∈B G(x, y) -|A ∩ B|.
Since G(x, x) ≥ 1 for all x we get x∈A∩B y∈A G(x, y) ≥ |A ∩ B| and this concludes the proof of the lower bound and also the proof of the lemma.

The decomposition of Cap (R n ) stated in the following corollary is crucial in the rest of the paper.

Corollary 2.1. For all L and n, with 2 L ≤ n, we have 

2 L i=1 Cap R (i) n/2 L -2 L ℓ=1 2 ℓ-1 i=1 E (i) ℓ ≤ Cap (R n ) ≤ 2 L i=1 Cap R (i) n/2 L , where (Cap R (i) n/2 L , i = 1, . . . , 2 
x∈R (i) n/2 L y∈ R (i) n/2 L
G(x, y), with R an independent copy of R.

Proof. Since we work on Z d , the capacity is translation invariant, i.e. Cap (A) = Cap (A + x) for all x, and hence it follows that

Cap (R n ) = Cap R n/2 -S n/2 ∪ R[n/2, n] -S n/2 .
The advantage of doing this is that now by the Markov property the random variables R

(1)

n/2 = Cap R n/2 -S n/2 and R (2) n/2 = Cap R[n/2
, n] -S n/2 are independent. Moreover, by reversibility, each of them has the same law as the range of a simple random walk started from 0 and run up to time n/2. Applying Proposition 1.2 we get

Cap (R n ) ≥ Cap R (1) n/2 + Cap R (2) n/2 -2 x∈R (1) n/2 y∈R (2) n/2 G(x, y). (2.1) 
Applying the same subdivision to each of the terms R (1) and R (2) and iterating L times, we obtain

Cap (R n ) ≥ 2 L i=1 Cap R (i) n/2 L -2 L ℓ=1 2 ℓ-1 i=1 E (i) ℓ .
Here

E (i) ℓ
has the same law as

x∈R n/2 l y∈R ′ n/2 l
G(x, y), with R ′ independent of R and the random variables (E

ℓ , i = 1, . . . , 2 l ) are independent. Moreover, the random variables (R

(i) n/2 L , i = 1, . . . , 2 L ) are independent. Using (1.
2) for the upper bound on Cap (R n ) we get overall

2 L i=1 Cap R (i) n/2 L -2 L ℓ=1 2 ℓ-1 i=1 E (i) ℓ ≤ Cap (R n ) ≤ 2 L i=1 Cap R (i) n/2 L
and this concludes the proof.

Variance of Cap (R n ) and error term

As outlined in the Introduction, we want to apply the Lindeberg-Feller theorem to obtain the central limit theorem. In order to do so, we need to control the error term appearing in the decomposition of Cap (R n ) in Corollary 2.1. Moreover, we need to show that the variance of Cap (R n ) /n converges to a strictly positive constant as n tends to infinity. This is the goal of this section.

On the error term

We write G n (x, y) for the Green kernel up to time n, i.e. ,

G n (x, y) = E x n-1 k=0 1(S k = y) .
We now recall a well-known bound (see for instance [START_REF] Lawler | Random walk: a modern introduction[END_REF]Theorem 4.3.1])

G(0, x) ≤ C 1 + x d-2 , (3.1) 
where C is a positive constant. We start with a preliminary result.

Lemma 3.1. For all a ∈ Z d we have

x∈Z d y∈Z d G n (0, x)G n (0, y)G(0, x -y -a) ≤ x∈Z d y∈Z d G n (0, x)G n (0, y)G(0, x -y).
Moreover,

x∈Z d y∈Z d G n (0, x)G n (0, y)G(0, x -y) f d (n), where f 5 (n) = √ n, f 6 (n) = log n, and f d (n) = 1 ∀d ≥ 7. (3.2) 
Proof. Let S a = x,y G n (0, x)p 2k (x, y + a)G n (0, y). Since

p 2k (x, y -a) = z p k (x, z)p k (z, y -a) = z p k (z, x)p k (z, y -a) letting F a (z) = y G n (0, y)p k (z, y + a) we have F a (z) = y G n (0, y)p k (z -a, y), and S a = z F 0 (z)F a (z). (3.3) 
By Cauchy-Schwartz, we obtain

S 2 a ≤ z F 2 0 (z) • z F 2 a (z).
Notice however that a change of variable and using

(3.3) yields z F 2 a (z) = w F 2 a (w -a) = w F 2 0 (w),
and hence we deduce

S 2 a ≤ S 2 0 ∀ a.
We now note that if X is a lazy simple random walk, then the sums in the statement of the lemma will only be affected by a multiplicative constant. So it suffices to prove the result for a lazy walk.

It is a standard fact (see for instance [START_REF] Levin | Markov chains and mixing times[END_REF]Proposition 10.18]) that the transition matrix of a lazy chain can be written as the square of another transition matrix. This now concludes the proof of the first inequality.

To simplify notation we write G n (x) = G n (0, x) and G(x) = G(0, x). To prove the second inequality we split the second sum appearing in the statement of the lemma into three parts as follows

x y G n (x)G n (y)G(x -y) ≤ x ≤ √ n y ≤ √ n G n (x)G n (y)G(x -y) +2 x ≥ √ n √ n 2 ≤ y ≤ √ n G n (x)G n (y)G(x -y) + 2 x ≥ √ n y ≤ √ n 2 G n (x)G n (y)G(x -y) =: I 1 + I 2 + I 3 , (3.4)
where I k is the k-th sum appearing on the right hand side of the inequality above. The first sum I 1 is upper bounded by

2 log 2 (n) 2 k=0 √ n 2 k+1 ≤ x ≤ √ n 2 k       y ≤ √ n 2 k+2 G n (x)G n (y)G(x -y) + √ n 2 k r=0 y: y-x =r x ≥ y ≥ √ n 2 k+2 G n (x)G n (y)G(x -y)       . For any fixed k ≤ log 2 (n)/2, using (3.1) we get √ n 2 k+1 ≤ x ≤ √ n 2 k y ≤ √ n 2 k+2 G n (x)G n (y)G(x -y) √ n 2 k d √ n 2 k 4-2d y ≤ √ n 2 k+2 G n (y) √ n 2 k 4-d • √ n 2 k+2 r=1 r d-1 r d-2 ≍ √ n 2 k 6-d . (3.5)
Similarly using (3.1) again for any fixed k ≤ log 2 (n)/2 we can bound

√ n 2 k+1 ≤ x ≤ √ n 2 k √ n 2 k r=0 y: y-x =r x ≥ y ≥ √ n 2 k+2 G n (x)G n (y)G(x -y) √ n 2 k 4-d √ n 2 k r=1 r d-1 r d-2 ≍ √ n 2 k 6-d . (3.6) 
Therefore using (3.5) and (3.6) and summing over all k yields

I 1 f d (n).
We now turn to bound I 2 . From (3.1) we have

I 2 x ≥2 √ n √ n 2 ≤ y ≤ √ n G n (x)G n (y)G(x -y) + √ n≤ x ≤2 √ n √ n 2 ≤ y ≤ √ n G n (x)G n (y)G(x -y) n 2 • 1 ( √ n) d-2 + ( √ n) 4-d √ n r=1 r d-1 r d-2 ≍ f d (n),
where for the first sum we used that x G n (x) = n. Finally, I 3 is treated similarly as above to yield

I 3 n 2 • 1 ( √ n) d-2 ≍ f d (n).
Putting all these bounds together concludes the proof. Lemma 3.2. For all n, let R n and R n be the ranges up to time n of two independent simple random walks in Z d started from 0. For all k, n ∈ N we have

E      x∈Rn y∈ Rn G(x, y)   k    ≤ C(k)(f d (n)) k ,
where f d (n) is the function defined in the statement of Lemma 3.1 and C(k) is a constant that depends only on k.

Proof. Let L ℓ (x) denote the local time at x up to time ℓ for the random walk S, i.e.

L ℓ (x) = ℓ-1 i=0 1(S i = x).
Let S be an independent walk and L denote its local times. Then, we get

x∈Rn y∈ Rn G(x, y) ≤ x∈Z d y∈Z d L n (x) L n (y)G(x, y).
So, for k = 1 by independence, we get using Lemma 3.1

E   x∈Rn y∈ Rn G(x, y)   ≤ x∈Z d y∈Z d G n (0, x)G n (0, y)G(0, x -y) f d (n),
As in Lemma 3.1 to simplify notation we write G n (x) = G n (0, x).

For the k-th moment we have

E      x∈Rn y∈ Rn G(x, y)   k    ≤ x 1 ,...,x k y 1 ,...,y k E k i=1 L n (x i ) E k i=1 L n (y i ) k i=1 G(x i -y i ). (3.7)
For any k-tuples x 1 , . . . , x k and y 1 , . . . , y k , we have

E k i=1 L n (x i ) ≤ σ: permutation of {1,...,k} G n (x σ(1) ) k i=2 G n (x σ(i) -x σ(i-1)
) and

E k i=1 L n (y i ) ≤ π: permutation of {1,...,k} G n (y π(1) ) k i=2 G n (y π(i) -y π(i-1) ).
Without loss of generality, we consider the term corresponding to the identity permutation for x and a permutation π for y. Then, the right hand side of (3.7) is a sum of terms of the form

G n (x 1 )G n (x 2 -x 1 ) . . . G n (x k -x k-1 )G n (y π(1) )G n (y π(2) -y π(1) ) . . . G n (y π(k) -y π(k-1) ) k i=1 G(x i -y i ).
Suppose now that the term y k appears in two terms in the above product, i.e.

G n (y k -y π(i) )G n (y k -y π(j) ).
By the triangle inequality we have that one of the following two inequalities has to be true

y k -y π(i) ≥ 1 2 y π(i) -y π(j) or y k -y π(j) ≥ 1 2 y π(i) -y π(j) .
Since Green's kernel is radially decreasing and satisfies G(x) ≍ |x| 2-d for x > 1 we get

G n (y k -y π(i) )G n (y k -y π(j) ) G n (y π(j) -y π(i) ) G n (y k -y π(j) ) + G n (y k -y π(i) ) .
Plugging this upper bound into the product and summing only over x k and y k , while fixing the other terms, we obtain

x k ,y k G n (x k -x k-1 )G n (y k -y π(i) )G(x k -y k ) = x k ,y k G n (x k -x k-1 )G n (y k -y π(i) )G((x k -x k-1 ) -(y k -y π(i) )) = x,y G n (x)G n (y)G((x -y) -(x k-1 -y π(i) )) f d (n),
where the last inequality follows from Lemma 3.1. Continuing by induction completes the proof.

On the variance of Cap (R n )

Lemma 3.3. For d ≥ 6 there exists a strictly positive constant γ d so that

lim n→∞ Var (Cap (R n )) n = γ d > 0.
We split the proof of the lemma above in two parts. First we establish the existence of the limit and then we show it is strictly positive. For the existence, we need to use Hammersley's lemma [START_REF] Hammersley | Generalization of the fundamental theorem on sub-additive functions[END_REF], which we recall here. For a random variable X we will write X = X -E[X].

Lemma 3.5. For d ≥ 6, the limit as n tends to infinity of Var (Cap (R n )) /n exists.

Proof. We follow closely the proof of Lemma 6.2 of Le Gall [START_REF] Gall | Propriétés d'intersection des marches aléatoires. I. Convergence vers le temps local d'intersection[END_REF]. To simplify notation we write X n = Cap (R n ), and we set for all k ≥ 1

a k = sup E X 2 n : 2 k ≤ n < 2 k+1 .
For k ≥ 2, take n such that 2 k ≤ n < 2 k+1 and write ℓ = [n/2] and m = nℓ. Then, from Corollary 2.1 for L = 1 we get

X (1) ℓ + X (2) m -2E ℓ ≤ X n ≤ X (1) ℓ + X (2) m ,
where X (1) and X (2) are independent and E ℓ has the same law as x∈R ℓ y∈ Rm G(x, y) with R an independent copy of R.

Taking expectations and subtracting we obtain

|X n -(X (1) 
ℓ + X

(2)

m )| ≤ 2 max (E ℓ , E[E ℓ ]) .
Since X (1) and X (2) are independent, we get

X (1) ℓ + X (2) m 2 = X (1) ℓ 2 2 + X (2) m 2 2 1/2 
.

By the triangle inequality we now obtain

X n 2 ≤ X (1) 
ℓ + X

(2)

m 2 + 2 max(E ℓ , E[E ℓ ]) 2 ≤ X (1) ℓ 2 2 + X (2) m 2 2 1/2 + 2 ( E ℓ 2 + E[E ℓ ]) ≤ X (1) ℓ 2 2 + X (2) m 2 2 1/2 + c 1 f d (n) ≤ X (1) ℓ 2 2 + X (2) m 2 2 1/2 + c 1 log n,
where c 1 is a positive constant. The penultimate inequality follows from Lemma 3.2, and for the last inequality we used that f d (n) ≤ log n for all d ≥ 6. From the definition of a k , we deduce that

a k ≤ 2 1/2 a k-1 + c 2 k, for another positive constant c 2 . Setting b k = a k k -1 gives for all k that b k ≤ 2 1/2 b k-1 + c 2 ,
and hence b k 2 k/2 , which implies that a k k • 2 k/2 for all k. This gives that for all n

Var X n n(log n) 2 . (3.8)
Proposition 1.2 and (1.2) give that for all n, m

X (1) n + X (2) m -2E(n, m) ≤ X n+m ≤ X (1) n + X (2) m ,
where again X (1) and X (2) are independent and

E(n, m) = x∈Rn y∈ Rm G(x, y) ≤ x∈R n+m y∈ R n+m G(x, y) (3.9)
with R and R independent. As above we get

X n+m -X (1) n + X (2) m ≤ 2 max(E(n, m), E[E(n, m)])
and by the triangle inequality again

X n+m 2 -X (1) n + X (2) m 2 ≤ 4 E(n, m) 2 .
Taking the square of the above inequality and using that X

n and X

m are independent we obtain

X n+m 2 2 ≤ X n 2 2 + X m 2 2 + 8 X n 2 2 + X m 2 2 E(n, m) 2 + 16 E(n, m) 2 2 X n 2 2 + X m 2 2 ≤ X n+m 2 2 + 8 X n+m 2 E(n, m) 2 + 16 E(n, m) 2 2 .
We set

γ n = X n 2 2 , d n = c 1 √ n(log n) 2 and d ′ n = c 2 √ n(log n) 2
where c 1 and c 2 are two positive constants. Using the bound from (3.8) together with (3.9) and Lemma 3.2 in the inequalities above yields

γ n + γ m -d ′ n+m ≤ γ n+m ≤ γ n + γ m + d n+m .
We can now apply Hammersley's result, Lemma 3.4, to deduce that the limit γ n /n exists, i.e.

lim n→∞ Var X n n = γ d ≥ 0
and this finishes the proof on the existence of the limit.

Non-degeneracy: γ d > 0

To complete the proof of Lemma 3.3 we need to show that the limit γ is strictly positive. We will achieve this by using the same trick of not allowing double-backtracks at even times (defined below) as in [1, Section 4].

As in [START_REF] Asselah | Boundary of the Range I: Typical Behaviour[END_REF] we consider a walk with no double backtracks at even times. A walk makes a double backtrack at time n if S n-1 = S n-3 and S n = S n-2 . Let S be a walk with no double backtracks at even times constructed as follows: we set S 0 = 0 and let S 1 be a random neighbour of 0 and S 2 a random neighbour of S 1 . Suppose we have constructed S for all times k ≤ 2n, then we let ( S 2n+1 , S 2n+2 ) be uniform in the set {(x, y) :

xy = S 2nx = 1 and (x, y) = ( S 2n-1 , S 2n )}.

Having constructed S we can construct a simple random walk in Z d by adding a geometric number of double backtracks to S at even times. More formally, let (ξ i ) i=2,4,... be i.i.d. geometric random variables with mean p/(1p) and

P(ξ = k) = (1 -p)p k ∀ k ≥ 0,
where p = 1/(2d) 2 . Setting

N k = k i=2 i even ξ i ,
we construct S from S as follows. First we set S i = S i for all i ≤ 2 and for all k ≥ 1 we set

I k = [2k + 2N 2(k-1) + 1, 2k + 2N 2k ]. If I k = ∅, then if i ∈ I k is odd, we set S i = S 2k-1
, while if i is even, we set S i = S 2k . Afterwards, for the next two time steps, we follow the path of S, i.e., S 2k+2N 2k +1 = S 2k+1 and S 2k+2N 2k +2 = S 2k+2 .

From this construction, it is immediate that S is a simple random walk on Z d . Let R be the range of S. From the construction of S from S we immediately get that

R n = R n+2Nn = R n+2N n-1 , (3.10) 
where the second equality follows, since adding the double backtracks does not change the range.

Lemma 3.6. Let S be a random walk on Z d starting from 0 with no double backtracks at even times. If R stands for its range, then for any positive constants c and c ′ we have

P   x∈ R 2n y∈ R[2n,(2+c ′ )n] G(x, y) ≥ c √ n   → 0 as n → ∞.
Proof. Let M be the number of double backtracks added during the interval [2n, [START_REF] Asselah | Boundary of the Range II: lower Tails[END_REF] 

+ c ′ )n], i.e., M = (2+c ′ )n i=2n i even ξ i . (3.11)
Then, we have that

R[2n, (2 + c ′ )n] ⊆ R[2n + 2N 2(n-1) , (2 + c ′ )n + 2N 2(n-1) + 2M ].
Note that the inclusion above could be strict, since S does not allow double backtracks, while S does so. We now can write

P   x∈ R 2n y∈ R[2n,(2+c ′ )n] G(x, y) ≥ c √ n   ≤ P   x∈R[0,2n+2N 2(n-1) ] y∈R[2n+2N 2(n-1) ,(2+c ′ )n+2N 2(n-1) +2M ] G(x, y) ≥ c √ n   ≤ P   x∈R[0,2n+2N 2(n-1) ] y∈R[2n+2N 2(n-1) ,(2+2C+c ′ )n+2N 2(n-1) ] G(x, y) ≥ c √ n   + P(M ≥ Cn) .
By (3.11) and Chebyshev's inequality we obtain that for some positive C, P(M ≥ Cn) vanishes as n tends to infinity. Since G(xa, ya) = G(x, y) for all x, y, a, it follows that

P   x∈R[0,2n+2N 2(n-1) ] y∈R[2n+N 2(n-1) ,(2+2C+c ′ )n+2N 2(n-1) ] G(x, y) ≥ c √ n   = P   x∈R 1 y∈R 2 G(x, y) ≥ c √ n   ,
where

R 1 = R[0, 2n + 2N 2(n-1) ] -S 2n+2N 2(n-1) and R 2 = R[2n + 2N 2(n-1) , (2 + 2C + c ′ )n + 2N 2(n-1) ] -S 2n+2N 2(n-1)
. The importance of considering R 1 up to time 2n + 2N 2(n-1) and not up to time 2n + 2N 2n is in order to make R 1 and R 2 independent. Indeed, this follows since after time 2n + 2N 2(n-1) the walk S behaves as a simple random walk in Z d independent of the past. Hence we can replace R 2 by R ′ (2+2C+c ′ )n , where R ′ is the range of a simple random walk independent of R 1 . Therefore we obtain

P    x∈R 1 y∈R ′ (2+2C+c ′ )n G(x, y) ≥ c √ n    ≤ P    x∈R (2C ′ +2)n y∈R ′ (2+2C+c ′ )n G(x, y) ≥ c √ n    +P N 2(n-1) ≥ C ′ n .
As before, by Chebyshev's inequality for C ′ large enough P N 2(n-1) ≥ C ′ n → 0 as n → ∞ and by Markov's inequality and Lemma 3.1

P    x∈R (2C ′ +2)n y∈R ′ (2+2C+c ′ )n G(x, y) ≥ c √ n    ≤ E x∈R C ′ n y∈R ′ (2+2C+c ′ )n G(x, y) c √ n log n √ n ,
and this concludes the proof.

Claim 3.7. Let R be the range of S. Then, almost surely

Cap R[2k, 2k + n] n → α d • p 1 -p as n → ∞.
Proof. As mentioned already in the Introduction, Jain and Orey [START_REF] Naresh | On the range of random walk[END_REF] proved that

lim n→∞ Cap (R n ) n = α d = inf m E[Cap (R m )] m .
(3.12)

with the limit α d being strictly positive for d ≥ 5.

Clearly the range of S in [2k, 2k + n] satisfies

R[2k + 2N 2k-1 , 2k + 2N 2k-1 + 2N ′ n ] \ {S 2k+2N 2k-1 +1 , S 2k+2N 2k-1 +2 } ⊆ R[2k, 2k + n] R[2k, 2k + n] ⊆ R[2k + 2N 2k-1 , 2k + 2N 2k-1 + 2N ′ n ],
where N ′ n is the number of double backtracks added between times 2k and 2k + n. We now note that after time 2k + 2N 2k-1 the walk S behaves as a simple random walk in Z d . Hence using (3.12) and the fact that N ′ n /n → p/(2(1p)) as n → ∞ almost surely it follows that almost surely

lim n→∞ Cap (R[2k + 2N 2k-1 , 2k + 2N 2k-1 + 2N ′ n ]) n = α d • p 1 -p .
and this concludes the proof.

Proof of Lemma 3.3. Let S be a random walk with no double backtracks at even times and S a simple random walk constructed from S as described at the beginning of Section 3.3. We thus have

R n = R n+2Nn for all n. Let k n = [(1 -p)n], i n = [(1 -p)(n + A √ n)] and ℓ n = [(1 -p)(n -A √ n)]
for a constant A to be determined later. Then, by Claim 3.7 for all n sufficiently large so that k n and ℓ n are even numbers we have

P Cap R[k n , i n ] ≥ 3 4 • A • α d • p 1 -p • √ n ≥ 7 8 and (3.13) 
P   x∈ R[0,kn] y∈ R[kn,in] G(x, y) ≤ 1 8 • A • α d • p 1 -p • √ n   ≥ 7 8 (3.14) 
and

P Cap R[ℓ n , k n ] ≥ 3 4 • A • α d • p 1 -p • √ n ≥ 7 8 and (3.15) 
P   x∈ R[0,ℓn] y∈ R[ℓn,kn] G(x, y) ≤ 1 8 • A • α d • p 1 -p • √ n   ≥ 7 8 (3.16) 
We now define the events

B n = 2N ℓn -2E[N ℓn ] √ n ∈ [A + 1, A + 2] and D n = 2N in -2E[N in ] √ n ∈ [1 -A, 2 -A] .
Then, for all n sufficiently large we have for a constant c A > 0 that depends on A

P(B n ) ≥ c A and P(D n ) ≥ c A . (3.17) 
Since we have already showed the existence of the limit Var (Cap (R n )) /n as n tends to infinity, it suffices to prove that the limit is strictly positive along a subsequence. So we are only going to take n such that k n is even. Take n sufficiently large so that (3.13) holds and k n is even. We then consider two cases:

(i) P Cap R[0, k n ] ≥ E[Cap (R n )] ≥ 1 2 or (ii) P Cap R[0, k n ] ≤ E[Cap (R n )] ≥ 1 2 .
We start with case (i). Using Proposition 1.

2 we have Cap R[0, i n ] ≥ Cap R[0, k n ] + Cap R[k n , i n ] -2 x∈ R[0,kn] y∈ R[kn,in] G(x, y).
From this, we deduce that

P Cap R[0, i n ] ≥ E[Cap (R n )] + 1 2 • A • α d • p 1 -p √ n ≥ P Cap R[0, k n ] ≥ E[Cap (R[0, n)] , Cap R[k n , i n ] ≥ 3 4 • A • α d • p 1 -p • √ n -P   x∈ R[0,kn] y∈ R[kn,in] G(x, y) > 1 8 • A • α d • p 1 -p • √ n   . (3.18) 
The assumption of case (i) and (3.13) give that

P Cap R[0, k n ] ≥ E[Cap (R[0, n)] , Cap R[k n , i n ] ≥ 3 4 • A • α d • p 1 -p • √ n ≥ 3 8 .
Plugging this lower bound together with (3.14) into (3.18) yields

P Cap R[0, i n ] ≥ E[Cap (R n )] + 1 2 • A • α d • p 1 -p • √ n ≥ 1 4 .
Since N is independent of S, using (3.17) it follows that

P Cap R[0, i n ] ≥ E[Cap (R n )] + 1 2 • A • α d • p 1 -p • √ n, D n ≥ c A 4 .
It is not hard to see that on the event D n we have

i n + 2N in ∈ [n, n + 3 √ n]. Therefore, since R[0, k] = R[0, k + 2N k ] we deduce P ∃ m ≤ 3 √ n : Cap (R[0, n + m]) ≥ E[Cap (R n )] + 1 2 • A • α d • p 1 -p • √ n ≥ c A 4 .
Since Cap (R[0, ℓ]) is increasing in ℓ, we obtain

P Cap R[0, n + 3 √ n] ≥ E[Cap (R n )] + 1 2 • A • α d • p 1 -p • √ n ≥ c A 4 .
Using now the deterministic bound Cap (R[0, n + 3

√ n]) ≤ Cap (R[0, n]) + 3 √ n gives P Cap (R[0, n]) ≥ E[Cap (R n )] + 1 2 • A • α d • p 1 -p -3 • √ n ≥ c A 4 ,
and hence choosing A sufficiently large so that

1 2 • A • α d • p 1 -p -3 > 0
and using Chebyshev's inequality shows in case (i) for a strictly positive constant c we have

Var (Cap (R n )) ≥ c • n.
We now treat case (ii). We are only going to consider n so that ℓ n is even. Using Proposition 1.2 again we have

Cap R[0, ℓ n ] ≤ Cap R[0, k n ] -Cap R[ℓ n , k n ] + 2 x∈ R[0,ℓn] y∈ R[ℓn,kn]
G(x, y).

Then, similarly as before using (3.15), (3.16) and (3.17) we obtain

P Cap R[0, ℓ n ] ≤ E[Cap (R n )] - 1 2 • A • α d • p 1 -p • √ n, B n ≥ c A 4 .
Since on B n we have ℓ n + 2N ℓn ∈ [n, n + 3

√ n], it follows that

P ∃ m ≤ 3 √ n : Cap (R[0, n + m]) ≤ E[Cap (R n )] - 1 2 • A • α d • p 1 -p • √ n ≥ c A 4 .
Using the monotonicity property of Cap (R l ) in ℓ we finally conclude that

P Cap (R[0, n]) ≤ E[Cap (R n )] - 1 2 • A • α d • p 1 -p • √ n ≥ c A 4 ,
and hence Chebyshev's inequality again finishes the proof in case (ii).

Central limit theorem

We start this section by recalling the Lindeberg-Feller theorem. Then, we give the proof of Theorem 1.1.

Theorem 4.1 (Lindeberg-Feller). For each n let (X n,i : 1 ≤ i ≤ n) be a collection of independent random variables with zero mean. Suppose that the following two conditions are satisfied

(i) n i=1 E X 2 n,i → σ 2 > 0 as n → ∞ and (ii) n i=1 E (X n,i ) 2 1(|X n,i | > ε) → 0 as n → ∞ for all ε > 0.
Then, S n = X n,1 + . . . + X n,n =⇒ σN (0, 1) as n → ∞.

For a proof we refer the reader to [START_REF] Durrett | Probability: theory and examples[END_REF]Theorem 3.4.5].

Before proving Theorem 1.1, we upper bound the fourth moment of Cap (R n ). Recall that for a random variable X we write X = X -E[X]. Lemma 4.2. For all d ≥ 6 and for all n we have

E (Cap (R n )) 4 n 2 .
Proof. This proof is similar to the proof of Lemma 3.5. We only emphasize the points where they differ. Again we write X n = Cap (R n ) and we set for all k ≥ 1

a k = sup E X 4 n 1/4 : 2 k ≤ n < 2 k+1 .
For k ≥ 2 take n such that 2 k ≤ n < 2 k+1 and write n 1 = [n/2] and n 2 = nℓ. Then, Corollary 2.1 and the triangle inequality give

X n 4 ≤ X n 1 + X n 2 4 + 4 E(n 1 , n 2 ) 4 ≤ E X 4 n 1 + E X 4 n 2 + 6E X 2 n 1 E X 2 n 2 1/4 + c 1 log n,
where the last inequality follows from Lemma 3.2 and the fact that X n 1 and X n 2 are independent. Using Lemma 3.3 we get that

E X 2 n 1 E X 2 n 2 ≍ n 2 .
Also using the obvious inequality for a, b > 0 that (a + b) 1/4 ≤ a 1/4 + b 1/4 we obtain

X n 4 ≤ E X 4 n 1 + E X 4 n 2 1/4 + c 2 √ n.
We deduce that

a k ≤ 2 1/4 a k-1 + c 3 2 k/2 . Setting b k = 2 -k/2 a k we get b k ≤ 1 2 1/4 b k-1 + c 3 ,
This implies that (b k , k ∈ N) is a bounded sequence, and hence a k ≤ C2 k/2 for a positive constant C, or in other words,

E X 4 n 1/4
√ n and this concludes the proof.

Proof of Theorem 1.1. From Corollary 2.1 we have

2 L i=1 Cap R (i) n/2 L -2 L ℓ=1 2 ℓ-1 i=1 E (i) ℓ ≤ Cap (R n ) ≤ 2 L i=1 Cap R (i) n/2 L , (4.1) 
where (Cap

R (i) n/2 L ) are independent for different i's and R (i) n/2 L has the same law as R [n/2 L ] or R [n/2 L
+1] and for each ℓ the random variables (E (i) ℓ ) are independent and have the same law as

x∈R (i) n/2 L y∈ R (i) n/2 L
G(x, y), with R and independent copy of R.

To simplify notation we set X i,L = Cap R (i) n/2 L and X n = Cap (R n ) and for convenience we rewrite (4.1) as

2 L i=1 X i,L -2 L ℓ=1 2 ℓ-1 i=1 E (i) ℓ ≤ X n ≤ 2 L i=1 X i,L . (4.2) 
We now let

E(n) = 2 L i=1 X i,L -X n .
Using inequality (4.2) we get

E[|E(n)|] ≤ 4E   L ℓ=1 2 ℓ-1 i=1 E (i) ℓ   L ℓ=1 2 ℓ log n 2 L log n,
where the penultimate inequality follows from Lemma 3.2 for k = 1 and the fact that f d (n) ≤ log n for all d ≥ 6.

Choosing L so that 2 L = n Then, taking expectation with respect to S 1 , S 2 and S 3 , we get

E[Cap (R n )] = n k=0 P 0 ∈ R 1 [1, k], R 3 [1, ∞) ∩ (R 1 [0, k] ∪ R 2 [0, n -k]) = ∅ . (5.2)
Now, ε ∈ (0, 1/2) being fixed, we define ε n := εn/ log n, and divide the above sum into two subsets: when k is smaller than ε n or larger than nε n , and when k is in between. The terms in the first subset can be bounded just by one, and we obtain this way the following upper bound.

E[Cap (R n )] ≤ 2ε n + nP 0 ∈ R 1 [1, ε n ], R 3 [1, ε n ] ∩ (R 1 [0, ε n ] ∪ R 2 [0, ε n ]) = ∅ .
Since this holds for any ε > 0, and log ε n ∼ log n, we conclude using (1.3), that lim sup

n→∞ log n n × E[Cap (R n )] ≤ π 2 8 . (5.3) 
For the lower bound, we first observe that (5.2) gives

E[Cap (R n )] ≥ n P 0 ∈ R 1 [1, n], R 3 [1, ∞] ∩ (R 1 [0, n] ∪ R 2 [0, n]) = ∅ ,
and we conclude the proof using (1.3).

Proof of Proposition 1.5. We recall L n (x) is the local time at x, i.e.,

L n (x) = n-1 i=0 1(S i = x).
The lower bound is obtained using the representation (1.6), as we choose ν(x) = L n (x)/n. This gives Cap (R n ) ≥ n 

Open Questions

We focus on open questions concerning the typical behaviour of the capacity of the range. This leads us to add two dimensions when comparing the volume of the range with respect to capacity of the range. It is striking that the volume of the range in d = 1 is typically of order √ n as the capacity of the range in d = 3. The fact that the volume of the range in d = 2 is typically of order n/ log n like the capacity of the range in d = 4 is as striking. Thus, based on these analogies, we conjecture that the variance in dimension five behaves as follows.

Var (Cap (R n )) ≍ n log n.

(6.3)

Note that an upper bound with a similar nature as (1.1) is lacking, and that (1.2) is of a different order of magnitude. Indeed, (6.4)

E[Cap (R[0, n] ∩ R[n, 2n])] ≤ E[|R[0, n] ∩ R[n, 2n]|] f d+2 (n).
We do not expect (6.4) to hold in dimension three, but rather that the limit would be random.

:

  When 0 ≤ a ≤ b are real numbers, we write R[a, b] to denote R[[a], [b]], where [x] stands for the integer part of x. We also write R a for R[0, [a]], and S n/2 for S [n/2] .

Lemma 3 . 4 (

 34 Hammersley). Let (a n ), (b n ), (c n ) be three sequences of real numbers satisfying for all n, m a n + a mc n+m ≤ a n+m ≤ a n + a m + b n+m .If the sequences (b n ), (c n ) are positive and non-decreasing and additionally satisfy∞ n=1 b n + c n n(n + 1) < ∞,then the limit as n → ∞ of a n /n exists.

1 +

 1 d G(x, y)L n (x)L n (y) ,(5.4) and using Jensen's inequality, we deduceE[Cap (R n )] ≥ n 1 n x,y∈Z d G(x, y)E[L n (x)L n (y)] d G(x, y)E[L n (x)L n (y)] = 0≤k≤n 0≤k ′ ≤n E[G(S k , S k ′ )] .(5.6)We now obtain, using the local CLT,0≤k≤n 0≤k ′ ≤n E[G(S k , S k ′ )] = 0≤k≤n 0≤k ′ ≤n E G(0, S |k ′ -k| ) 0≤k≤n 0≤k ′ ≤n E 1 |S |k ′ -k| | n √n and this gives the desired lower bound. For the upper bound one can use that in dimension 3, Cap (A) rad(A), where rad(A) = sup x∈A x (see [7, Proposition 2.2.1(a) and (2.16)]). Therefore Doob's inequality gives E[Cap (R n )] E sup k≤n S k √ n and this completes the proof.

Our main inequality ( 1 . 1 )

 11 is reminiscent of the equality for the range|R[0, 2n]| = |R[0, n]| + |R[n, 2n]| -|R[0, n] ∩ R[n, 2n]|. (6.1) However, the intersection term |R[0, n] ∩ R[n, 2n]| has a different asymptotics for d ≥ 3 E[|R[0, n] ∩ R[n, 2n]|] ≍ f d+2 (n). (6.2)

  Another question would be to show a concentration result in dimension 4, i.e.,Cap (R n ) E[Cap (R n )]
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We now focus on proving that

We do so by invoking Lindeberg-Feller's Theorem 4.1. From Lemma 3.3 we immediately get that as n tends to infinity.

which means that the first condition of Lindeberg-Feller is satisfied. It remains to check the second one, i.e., lim

By Cauchy-Schwartz, we have

By Chebyshev's inequality and using that Var X i,L ∼ γ d • n/2 L from Lemma 3.3 we get

Using Lemma 4.2 we now get

since L = log n/4. Therefore, the second condition of Lindeberg-Feller Theorem 4.1 is satisfied and this finishes the proof.

Rough estimates in d = 4 and d = 3

Proof of Corollary 1.4. In order to use Lawler's Theorem 1.3, we introduce a random walk S starting at the origin and independent from S, with distribution denoted P. Then, as noticed already by Jain and Orey [5, Section 2], the capacity of the range reads (with the convention

where

Thus, for k fixed we can consider three independent walks. The first is S

, and the third S 3 ≡ S. With these symbols, equality (5.1) reads