Claire Hanen 
email: claire.hanen@lip6.fr
  
Alix Munier-Kordon 
  
Equivalence of two classical list scheduling algorithms for dependent tasks with release dates and due dates on parallel processors

Keywords: scheduling, release dates, due dates, list scheduling 1 Introduction

HAL is a

i.e, the modified due dates produced by one of the algorithm are consistent with respect to the other algorithm. The consequence is that all the results obtained in the literature for one of these algorithm are also valid for the other one for this basic problem.

Problem definition and notations

The scheduling problem tackled by this talk is the optimization problem P |prec, p i = 1, r i , d i | L max and its corresponding decision problem P |prec, p i = 1, r i , d i | . The set of tasks is noted T and n = |T |. With each task i are given a release time r i , a due date d i , and its unit processing time p i = 1.

The cyclic precedence graph is noted G = (T , E). We denote i → j if there is a path from i to j in G. j ∈ Indep(i) if neither i → j nor j → i. A schedule defines for each task i a completion time C i . We assume without loss of generality that release times are consistent with precedence constraints, i.e, if i → j then r i < r j .

The question addressed by the decision problem is: "is there a schedule on m parallel processors satisfying the precedence constraints such that ∀i ∈ T , r i < C i ≤ d i ? ". The optimization problem can be stated as follows : "construct a schedule on m parallel processors satisfying the precedence constraints such that ∀i ∈ T , r i < C i and minimizing the maximum lateness

L max = max i∈T C i -d i ".
3 The GJ and the LPP consistency GJ and LPP algorithms modify due dates until a fixed point

D = (D 1 , • • • , D n ) ≤ (d 1 , . . . d n ) is reached,
expressing in both cases necessary conditions for the existence of a feasible schedule. This fixed point rely on two notions of consistency of due dates described in the following.

GJ consistency

Let consider, for each task i ∈ T and each tuple (s, d) such that r i ≤ s ≤ D i ≤ d, the set S(i, s, d) = {j ∈ T , j = i, D j ≤ d, and (r j ≥ s or i → j)}.

Obviously, all tasks from S(i, s, d) should end before d. Now, let suppose that task i ends exactly at its due date D i . If D i = s, all tasks from S(i, s, d) have to be performed in the time interval [s, d). Otherwise, D i > s and S(i, s, d) ∪ {i} have to be performed in the time interval [s, d).

The notion of GJ consistency derives from this intuition. The due dates

D 1 , • • • , D n are GJ-consistent if ∀i ∈ T , r i < D i and either |S(i, s, d)| < m(d -s) or |S(i, s, d)| = m(d -s) and s = D i .

LPP consistency

Let i ∈ T and T i = Indep(i) ∪ {j ∈ T , i → j}. Let also release and due dates vectors r and d and a value t ∈ {r i + 1, • • • , d i }. Then, Existence i (t, r, d) defined as follows is a necessary condition for the existence of a feasible schedule such that i ends at time t.

Existence i (t, r, d): is there a schedule on m processors of T i ∪ {i} considered as independent tasks meeting release dates r and due dates d defined as follows:

1. d i = t and ∀j ∈ T i , d j = d j 2. r i = t -1; ∀j ∈ Indep(i), r j = r j 3. ∀j ∈ T with i → j, r j = max(r j , t + 1).
Let us denote by BS i (r, d) the maximal integer t ≤ d i for which the answer for Existence

i (t, r, d) is yes. The due dates D = (D 1 , • • • , D n ) are LPP-consistent if for any task i ∈ T , BS i (r, D) = D i .
Notice that list scheduling can be used to decide wether Existence i (t, r, d) is satisfiable.

Lemma 1 The problem Existence i (t, rd) can be decided by fixing the starting time of i to be t -1 and then scheduling the tasks of T i as if they were independent with their modified due-dates and release times using a list scheduling algorithm based on the priorities of the due-dates in increasing order.

Equivalence of due dates consistency and consequences

Our main theorem establishing the equivalence between GJ and LPP consistencies is first presented. Its consequences are then detailed from both an algorithmic and a theoretical point of view.

Equivalence between GJ and LPP consistencies

The next theorem establishes the equivalence between the two due dates consistencies and constitutes the central result of our talk. The main idea of its proof is to show that any vector D verifying one property also fulfills the other.

Theorem 1 Let consider an instance of the problem P |prec, p i = 1, r i , d i | and let a vector

D i ≤ d i , ∀i ∈ T . D is GJ-consistent if and only if D is LPP-consistent.
To prove this theorem, we proceed step by step, by first showing that any LPP-consistent due dates are GJ-consistent.

Lemma 2 Let D be a vector of LPP-consistent due-dates. Then D is GJ-consistent.

Proof. Let us assume that D is not GJ-consistent. Then, there exists a task i, and two integers s, d with r i ≤ s ≤ D i ≤ d, such that the set S(i, s, d) is two large. Assume first that s < D i . then |S(i, s, d)| ≥ m(D i -s). Now, let us notice that S(i, s, d) ⊂ T i . Moreover, if we consider the modified due dates and release times for checking Existence i (D i , r, D) (whose answer is yes), all successors j of i have a modified release time r j = D i > s. Hence, in the schedule build to check Existence i (D i , r, D), all tasks from S(i, s, d) are scheduled in the interval [s, d]. Moreover, i ∈ S(i, s, d) is also scheduled during [s, d]. As there are at least m(d -s) + 1 such tasks, we get a contradiction.

Lemma 3 Let D be a vector of GJ-consistent due-dates. Then D is LPP-consistent.

Proof.

Both GJ and LPP consistencies are sufficient to obtain optimization and approximation results. Thus, a simple outcome of Theorem 1 is that any result obtained for one of these priority list is still valid for the other one. They are listed in the following.

Complexity of GJ and LPP list scheduling algorithms for solving a decision problem or minimizing the maximum lateness

From a complexity point of view, LPP algorithm is slightly better than GJ one. Indeed, it computes consistent modified due dates in a time complexity O(n 2 lognα(n) + ne) where e is the number of edges of G and α(n) functional inverse of the Ackermann function. GJ algorithm computes consistent modified due dates in O(n 3 logn).

Concerning the optimization problem, several authors (Leung et. al. 2001, Hanen and[START_REF] Hanen | The worst-case analysis of the Garey-Johnson Algorithm[END_REF]) observed that a polynomial-time algorithm minimizing the maximum lateness can be obtained using a due date modification and a list scheduling algorithm as follows:

step 1: Compute by binary search the minimum ∆ such that a set of consistent due dates D can be computed from due dates d + ∆;

step 2: Perform a list schedule of the graph G according to the priorities given by the due dates D.

According to Theorem 1, GJ or LPP consistencies may be considered without influence on the quality of the solution obtained. Now, LPP should be preferred for implementations issues as noted before.

Theoretical consequences of Theorem 1

GJ consistency was exploited by several authors to obtain approximation algorithms for minimizing the maximum lateness, using the scheme described previously. Theorem 2 was proved by [START_REF] Hanen | The worst-case analysis of the Garey-Johnson Algorithm[END_REF] and is true for the two optimization algorithms by Theorem 1.

Theorem 2 An upper-bound of the maximum lateness L max of the solution obtained using a LPP or GJ consistency-based algorithm for the problem P |prec,

p i = 1, r i , d i | L max is L max ≤ (2 - 2 u(m) )L max (σ ) + (1 - 2 u(m) ) max i∈N d i -(1 - 2 u(m) )
where L max (σ ) is an optimum schedule and

u(m) = m if m is even, m + 1 if m is odd.
Notice that as L max (σ ) may be null; the performance guarantee of an algorithm always involves an additive term depending on the maximum due date.

On the other hand, LPP algorithm was considered to get polynomial-time algorithms minimizing the maximum lateness or the makespan. Theorem 3 is a consequence of [START_REF] Leung | Scheduling time-constrained instructions on pipelined processors[END_REF] who proved that the LPP list scheduling algorithm can be used to solve optimally various sub cases of P |prec, p i = 1, r i , d i | L max and of Theorem 1.

Theorem 3 Scheduling problems P |p i = 1, interval -order, r i |L max , P |p i = 1, intervalorder, r i |C max , P 1|p i = 1, prec, r i |L max , P |p i = 1, intree|L max and P |p i = 1, outtree, r i |C max are solved polynomially using a GJ or a LPP consistency-based list scheduling algorithm.

Conclusion and further approach

We show that the structural equivalence between the two consistencies leads to a unification of the results proved for each of them. First consequences are a more efficient approximation algorithm with the same worst case performance guarantee to minimize the maximum lateness on parallel processors and some new optimality results for the GJ list scheduling algorithm.

This equivalence should be further investigated for variants of the initial problem: precedence delays, communication delays, typed tasks systems, and preemptive tasks. If, as we conjecture, the equivalence can be proved also in such contexts, other optimality and approximation results will be derived for both algorithms.

We also hope that a careful investigation of the two algorithms may lead to a more efficient algorithm taking the best of both.

One can also think that the due date modification algorithm could be used reversely to modify release times on the reverse graph, and iterate until a fixed point is reached. The question is then to evaluate if a better worst case performance ratio may be achieved.