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ON A LINEAR RUNS AND TUMBLES EQUATION

S. MISCHLER, Q. WENG

Abstract. We consider a linear runs and tumbles equation in dimension d ≥ 1 for which
we establish the existence of a unique positive and normalized steady state as well as its
asymptotic stability, improving similar results obtained by Calvez et al. [5] in dimension
d = 1. Our analysis is based on the Krein-Rutman theory revisited in [18] together with
some new moment estimates for proving confinement mechanism as well as dispersion,
multiplicator and averaging lemma arguments for proving some regularity property of
suitable iterated averaging quantities.

Version of February 10, 2016
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1. Introduction and main result

1.1. The “runs and tumbles” equation in chemotaxis. In the present paper we are
interested in a kinetic evolution PDE coming from the modeling of chemotactic movement
of cells in the presence of self-produced chemical substance. The so-called runs and tumbles
model of Othmer-Dunbar-Alt [1, 19, 20, 8]

(1.1) ∂tf = Lf = −v · ∇xf +

∫

V

{
K ′f ′ −Kf

}
dv′

describes the evolution of the distribution function of a microorganisms density f =
f(t, x, v) ≥ 0 which at time t ≥ 0 and at position x ∈ R

d move with the velocity v ∈ V.
At a microscopic description level, microorganisms move in straight line with their own
velocity v which changes accordingly toa jump process of parameter K = K(x, v, v′) ≥ 0.
Here and below, we used the shorthands f ′ = f(t, x, v′) and K ′ = K(x, v′, v). For the sake
of simplicity, we assume that V ⊂ R

d is the centered ball with unit volume (V := B(0, V0)
with V0 chosen such that |V| = 1). We complement the evolution PDE (1.1) with an initial
condition

(1.2) f(0, ·) = f0 on R
d × V.

2010 Mathematics Subject Classification. 35B40, 35Q92, 47D06, 92C17.
Key words and phrases. Kinetic equations, velocity-jump processes, chemotaxis, stationary state, as-

ymptotic stability, hypocoercivity.
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At least formally, for any multiplier ϕ = ϕ(x, v), we have

d

dt

∫
fϕ =

∫
f v · ∇xϕ+

∫
fK

∫

V

{
ϕ′ − ϕ

}
.

In particular, choosing ϕ ≡ 1 in the above identity, we see that the total mass is conserved
and we may assume that it is normalized to the unit, namely

(1.3) 〈〈f(t, ·)〉〉 = 〈〈f0〉〉 = 1, t ≥ 0,

where for functions g = g(x, v) and h = h(v), we define

〈h〉 =

∫

V
hdv, 〈〈g〉〉 =

∫

Rd

〈g(x, ·)〉 dx.

The precise form of the turning kernel K depends upon the space concentration S
of a chemical agent: microorganisms have the tendency to move to where the chemical
concentration is higher. More specifically, we assume that the turning kernel is given by

(1.4) K = K[S](v) := 1− χΦ(v · ∇xS(x)), χ ∈ (0, 1), Φ(y) = sign(y),

where the sign function is defined by Φ(y) = −1 if y < 0 and Φ(y) = 1 if y > 0. In other
words, the turning kernel K takes the two values 1±χ depending on the velocity direction
of the microorganism with respect to the gradient of the chemical concentration.

When the chemical agent is produced by the microorganisms themselves, it is usually
assumed to be given as the solution to the damped Poisson equation

(1.5) −∆S + S = ̺ :=

∫

V
f dv,

so that the evolution of the microorganisms density f is given by the coupled system of
equations (1.1)-(1.4)-(1.5). We refer the reader interested by the well-posedness issue for
related models to the review paper [4] and the references quoted therein. We also refer
to [13] for related modelling considerations. Concerning the qualitative behaviour of the
solutions it seems that the unique available information is the mass conservation (1.3).
One of the main difficulty comes from the fact that both equations (1.1) and (1.5) are
invariant by translations so that the expected confinement mechanism seems to be hard
to prove.

On the other way round, one can see that for a given solution (f, S) of (1.1)-(1.4)-
(1.5) and for any rotation R ∈ SO(d) the couple (fR, SR) is also a solution of the same
equations, where we have set fR(x, v) := f(Rx,Rv) and SR(x) := S(Rx). In particular,
an invariant by rotations initial datum f0 gives rise to an invariant by rotations solution
(f, S).

More specifically, we may observe that in the case when S is radially symmetric and
strictly decreasing in the position variable (which is the case if the density ̺ satisfies the
same properties thanks to the maximum principle), we have

−Φ(v · ∇xS) = −Φ(−v · x) = sign(x · v),

and thus the associated turning kernel writes

(1.6) K = K(x, v) := 1 + χζ, χ ∈ (0, 1), ζ = ζ(x, v) = sign(x · v).

Such a kernel has been introduced in [5] and the associated (now linear!) evolution equation
(1.1)-(1.6) has then been analyzed in dimension d = 1: the existence of a unique (positive
and normalized) steady state has been established and its asymptotic exponential stability
has been proved.
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1.2. The linear “runs and tumbles” equation. The main purpose of the present work
is to provide an alternative approach to study the linear “runs and tumbles” (linear RT)
equation (1.1)-(1.6) which makes possible to generalize the analysis of [5] to any dimension
d ≥ 1. In order to state our main result, we introduce some notations and the functional
framework we will work with.

First, we denote by m some weight function which is either a polynomial or an expo-
nential

(1.7) m(x) = 〈x〉k, k > 0, or m(x) = exp(γ 〈x〉), γ ∈ (0, γ∗),

for some positive constant γ∗ which will be defined latter, and where 〈x〉2 = 1 + |x|2. To
a given weight m we define the associated rate function Θm and weight function ω by

Θm(t) := 〈t〉−ℓ, ℓ ∈ (0, k), ω = 1 if m = 〈x〉k;

Θm(t) = eat, a < 0, ω = m if m = eγ 〈x〉.

Finally for given weight function m = m(x) : R
d → R+ and exponent 1 ≤ p ≤ ∞,

we define the associated weighted Lebesgue space Lp(m) and weighted Sobolev space
W 1,p(m), through their norms

(1.8) ‖f‖Lp(m) := ‖mf‖Lp , ‖f‖W 1,p(m) := ‖mf‖W 1,p .

We use the shorthands Lpk = Lp(m), when m = 〈x〉k, and H1(m) = W 1,2(m). We write
a . b if there exists a positive constant C such that a ≤ C b.

Theorem 1.1. There exists γ∗ > 0 and there exists a unique positive, invariant by rota-
tions and normalized stationary state

0 < G ∈ L1(m0) ∩ L
∞, 〈〈G〉〉 = 1,

−v · ∇xG+

∫

V

{
K ′G′ −KG

}
dv′ = 0,

where m0 stands for the exponential weight function m0(x) := exp(γ∗〈x〉). Moreover, for
any weight function m satisfying (1.7) and for any 0 ≤ f0 ∈ L1(m), there exists a unique
solution f ∈ C([0,∞);L1(m)) to the equation (1.1)-(1.6) associated to the initial datum
f0 and

(1.9) ‖f(t)− 〈〈f0〉〉G‖L1(ω) ≤ Θm(t) ‖f0‖L1(m), ∀ t ≥ 0,

where ω and Θm are defined just above.

The present result generalizes to any dimension d ≥ 1 similar results ([5, Theorem 2.1]
and [5, Proposition 1]) obtained by Calvez et al. in dimension d = 1. As pointed out
in [5], the main novelty and mathematical interest of the model lie in the fact that the
confinement is achieved by a biased velocity jump process, where the bias replaces the
confining acceleration field which is the classical confinement mechanism for Boltzmann
and Fokker-Planck models, see for instance [23, 16, 7] and the references quoted therein.

Our strategy is different from the one used in [5] and it is adapted from the Krein-
Rutman theory developed in [18] for positive semigroups which do not fulfill the classical
compactness assumption on the associated resolvent but have a nice splitting structure.
The main difficulty is then to get suitable estimates on some related operators and semi-
groups.

The first step consists in proving a weighted L1 bound which brings out the confinement
mechanism. That is the main new bound which is in the spirit of weighted Lp estimates
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obtained for performing similar spectral analysis in [12, 18, 16] for Boltzmann, growth-
fragmentation and kinetic Fokker-Planck models.

Next, in order to apply the Krein-Rutman theory of [18], we adapt to our context a series
of regularity properties known for solutions to the free transport equation. We successively
use a dispersion argument as introduced by Bardos and Degond [2] for providing better
integrability in the position variable (transfer of integrability from the velocity variable
to the position variable), next a multiplicator method in the spirit of Lions-Perthame
multiplicator (see [21, 14, 22]) for improving again the integrability estimate in the position
variable near the origin and finally a space variable averaging lemma in the spirit of the
variant [6, 3] of the classical time and space averaging lemma of Golse et al [11, 10]. It is
worth emphasizing that the needed regularity estimate is not obtained using an abstract
hypocoercivity operator as in [7, 5] nor using an iterated averaging lemma as in [12] (which
allows to transfer regularity from the velocity variable to the position variable thanks to
a suitable commutator and the associated “gliding norms”) but using the more classical
(and more robust) averaging lemma.

Finally, it is worth pointing out that it is not clear how to use the above analysis in order
to make any progress in the understanding of the nonlinear equation (1.1)-(1.4)-(1.5). In
particular, we have not been able to prove that the chemical agent density S is decaying
with respect to the radial variable |x| and thus that G is also a stationary state of the
nonlinear equation (1.1)-(1.4)-(1.5), as one can expect by making an analogy with the case
when the velocity set V is replaced by V̄ := Sd−1. Indeed, in that case, we may observe
that for Ḡ(x, v) = g(|x|) = C e−χ |x|, we have

v · ∇xḠ = v ·
x

|x|
g′(|x|) = −χ sign(x · v) g(|x|) =

∫

V̄

{
K ′Ḡ−KḠ

}
dv′,

so that we have exhibited an explicit (unique, positive and unit mass) stationary state
Ḡ. The associated macroscopic density ¯̺ is then decaying and thus also the associated
chemical agent density S̄ (thanks to the maximum principle applied to the elliptic equation
(1.5)). It turns out then that Ḡ is also a stationary state of the nonlinear equation (1.1)-
(1.4)-(1.5).

Let us end the introduction by describing the plan of the paper. In Section 2, we
mainly present the weighted L1 estimate which highlights the confinement mechanism of
the model. In Section 3, we introduce a first splitting of the generator in order to prove the
existence (and next the uniqueness) of a positive stationary state. Finally, in Section 4, we
introduce a second splitting of the generator which enjoys better smoothness properties
and for which we can use the Krein-Rutman theory revisited in [18] and conclude to the
asymptotic stability of the stationary state.

Acknowledgments. We thank V. Clavez for fruitful discussions which have been a source
of the present work. The research leading to this paper was (partially) funded by the
French ”ANR blanche” project Kibord: ANR-13-BS01-0004.

2. Well-posedness and exponential weighted L1 estimate

We first state a well-posedness result concerning the linear RT equation (1.1)-(1.6),
whose very classical proof is skipped, and we recall some notations and definition.

Lemma 2.1. For any f0 ∈ Lp(m), 1 ≤ p ≤ ∞, there exists a unique weak (distributional)
solution f ∈ C([0, T );L1

loc) ∩ L∞(0, T ;Lp(m)), ∀T ∈ (0,∞), to the linear RT equation
(1.1)-(1.6) which furthermore satisfies:
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(1) f(t, ·) ≥ 0 for any t ≥ 0 if f0 ≥ 0 (preservation of positivity);
(2) 〈〈f(t, ·)〉〉 = 〈〈f0〉〉 for any t ≥ 0 if Lp(m) ⊂ L1 (mass conservation);
(3) f ∈ C(R+;L

p(m)) and we may associate to L a continuous semigroup SL in Lp(m)
by setting SL(t)f0 := f(t, ·) for any t ≥ 0 and f0 ∈ Lp(m). Here the continuity has
to be understood in the strong (norm) topology sense when p ∈ [1,∞) and in the weak
σ(L∞, L1)∗ topology sense when p = ∞.

In the sequel, we will thus associate to the generator L (and next to the related genera-
tors B0, B1, B, ...) a semigroup SL and to any initial datum f0 ∈ Lp(m) we will denote by
f(t) = fL(t) = SL(t)f0 the solution associated to the related abstract evolution equation,
which is then also a distributional, weak and renormalized solution to the corresponding
PDE equation. More precisely, the above function f satisfies the linear RT equation (1.1)
in the following renormalized sense

d

dt

∫

Rd×V
β(f)ϕ =

∫

Rd×V
β(f) v · ∇xϕ+

∫

Rd×V
f K

∫

V
[ϕ′ β(f ′)− ϕβ′(f)]

for any (renormalizing) Lipschitz function β : R → R and for any (test) function ϕ ∈
C1
c (R

d×V). It is worth mentioning that we deduce the preservation of positivity property
by just choosing β(s) = s−, ϕ = 1, in the above identity and next using the Gronwall
lemma. When Lp(m) ⊂ L1, the uniqueness result follows from choosing β(s) = |s| and ϕ =
1 in the above identity. The existence part can be achieved by combining the characteristics
method for the free transport equation and a perturbation by bounded operators argument.
In the sequel, we will denote B(X,Y ) the space of bounded linear operators from a Banach
space X into a Banach space Y , and we write B(X) = B(X,X). Another way to prove
existence and uniqueness consists in using the Hille-Yosida theorem for maximal dissipative
unbounded operators. We recall for futur references that we say that an unbounded
operator L with dense domain D(L) ⊂ X is a-dissipative, a ∈ R, if

∀ f ∈ D(L), ∃ f∗ ∈ Jf 〈f∗,Lf〉X′,X ≤ a ‖f‖2X ,

where Jf denotes the (nonempty) dual set

Jf := {g ∈ X ′; 〈g, f〉X′,X = ‖g‖2X′ = ‖f‖2X}.

We now establish a uniform in time exponential weighted L1 estimate, which is one of
the cornerstone arguments of the proof of our main theorem.

Lemma 2.2. There exists a constant γ∗ > 0 and for any γ ∈ (0, γ∗) there exist a weight

function m̃ such that m̃(x) ∼ eγ〈x〉 as x → ∞ and a constant C ∈ (0,∞) such that the
solution f to the linear RT equation with initial datum f0 ∈ L1(m) satisfies

(2.1)

∫
|f(t)| m̃ ≤ max

(
C

∫
|f0|,

∫
|f0| m̃

)
, ∀ t ≥ 0.

In particular, the semigroup SL is bounded in L1(m).

Proof of Lemma 2.2. We define the dual operator L∗ by
∫

(L∗ϕ) f =

∫
(Lf)ϕ, ∀ϕ ∈W 1,∞(Rd × V), f ∈ Cc(R

d × V),

so that

(L∗ϕ)(x, v) := v · ∇xϕ+K

∫

V

{
ϕ′ − ϕ

}
dv′.
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For a given γ > 0, we compute

L∗ eγ〈x〉 = γ(v ·
x

〈x〉
)eγ〈x〉,

and next

L∗
[
(v ·

x

〈x〉
)eγ〈x〉

]
= v · ∇x[(v ·

x

〈x〉
)eγ〈x〉]−K (v ·

x

〈x〉
)eγ〈x〉

=
( |v|2
〈x〉

−
(v · x)2

〈x〉3
+ γ

(v · x)2

〈x〉2
− (v ·

x

〈x〉
)− χ

|v · x|

〈x〉

)
eγ〈x〉.

Defining

(2.2) V1 :=

∫

V
|v′1| dv

′,

we finally have

L∗
[ |v · x|

〈x〉
eγ〈x〉

]
= v · ∇x[

|v · x|

〈x〉
eγ〈x〉] + (1 + χζ)(V1

|x|

〈x〉
−

|v · x|

〈x〉
)eγ〈x〉

= ζ
( |v|2
〈x〉

−
|v · x|2

〈x〉3
+ γ

|v · x|2

〈x〉2

)
eγ〈x〉

+
(
(1 + χζ)V1

|x|

〈x〉
− (1 + χζ)

|v · x|

〈x〉

)
eγ〈x〉.

Consider β, γ ∈ (0, 1) small enough such that the weight function

(2.3) m̃ :=
(
1 + γ(v ·

x

〈x〉
)− β

|v · x|

〈x〉

)
eγ〈x〉

satisfies

(2.4) eγ〈x〉(1− δ) ≤ m̃ ≤ (1 + δ) eγ〈x〉,

for some δ ∈ (0, 1), which is possible because V is a bounded set. Gathering the previous
identities, we find

(L∗m̃) e−γ〈x〉 = γ
( |v|2
〈x〉

−
(v · x)2

〈x〉3
+ γ

(v · x)2

〈x〉2
− χ

|v · x|

〈x〉

)

−β ζ
( |v|2
〈x〉

−
|v · x|2

〈x〉3
+ γ

|v · x|2

〈x〉2

)
− β

(
(1 + χζ)V1

|x|

〈x〉
− (1 + χζ)

|v · x|

〈x〉

)

≤ γV 2
0

( 1

〈x〉
+ γ

)
+ βV 2

0

( 2

〈x〉
+ γ

)
+ β(1 + χ)

|v · x|

〈x〉

−γχ
|v · x|

〈x〉
− β(1− χ)V1

|x|

〈x〉

≤ [V 2
0 (γ + 2β) + β(1− χ)V1]

1

〈x〉
+ [γ2V 2

0 + βγV 2
0 − β(1 − χ)V1],

and thus

(2.5) (L∗m̃) e−γ〈x〉 ≤
C

〈x〉
− 2α,

by choosing β(1 + χ) = γχ and γ > 0 small enough so that 2α := β(1 − χ)V1 − γ2V 2
0 −

βγV 2
0 > 0. Observing that

( C

〈x〉
− 2α

)
eγ〈x〉 ≤ Ceγ〈R〉 1B(0,R) − α(1 + δ) eγ〈x〉 ≤ A− αm̃,
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for some constant A > 0, we have proved

L∗m̃ ≤ A− α m̃, α < 0.

We consider now f the solution to the linear RT equation (1.1) associated to f0 ∈ L1(m).
Denoting g := |f |, we deduce from the above inequality that

d

dt

∫
g m̃ =

∫
(Lf) (signf) m̃ ≤

∫
(Lg) m̃ ≤ A

∫
g − α

∫
gm̃.

As a consequence, (2.1) holds with C := A/α. �

3. The stationary state problem

We introduce two generators B0 and B1 in the next paragraphs and we study the
regularity properties of the associated semigroups. We then use these estimates in order
to prove the existence of a stationary state.

3.1. The operator B0 and the associated semigroup SB0
. We define B0 by

B0f := −v · ∇xf −Kf.

Lemma 3.1. There exist γ∗ > 0 and a∗ < 0, such that for any 1 ≤ p ≤ ∞, m = eγ〈x〉,
γ ∈ [0, γ∗), there holds

‖SB0
(t)‖Lp(m)→Lp(m) . eat, ∀ a > a∗.

Proof of Lemma 3.1. We consider a solution f = SB0
(t)f0 to the evolution equation

associated to B0 and we compute

d

dt

∫
|f |pmp =

∫
|f |p p [v · ∇xm−Km]mp−1

≤ p [V0 γ + χ− 1]

∫
|f |pmp,

from which we easily conclude thanks to the Gronwall lemma. �

For any ϕ ∈ L∞
xv, we define A = Aϕ : LqxL1

v → Lqx by

Af = Aϕf(x) :=

∫

V
ϕ(x, v′) f(x, v′) dv′.

Given some Banach spacesXi and two functions u ∈ L1(R+;B(X2,X3)), v ∈ L1(R+;B(X1,X2)),
we define the convolution function u ∗ v ∈ L1(R+;B(X1,X3)) by

(u ∗ v)(t) :=

∫ t

0
u(t− s) v(s) ds.

We also define u∗n by u∗1 = u and u∗n = u∗(n−1) ∗ u for n ≥ 2.

Lemma 3.2. There exists a∗ < 0 such that for any ϕ ∈ L∞
xv and m = eγ〈x〉, γ ∈ [0, γ∗),

there holds

(3.1) ‖AϕSB0
(t)‖L1

xL
∞
v (m)→L∞

x L∞
v

. t−d eat, ∀ t > 0, ∀ a > a∗.

As a consequence, there exists n ∈ N
∗ (n = d+ 2 is suitable) such that

(3.2) ‖(AϕSB0
)(∗n)(t)‖L1

xv(m)→L∞
xv

. eat, ∀ t ≥ 0, ∀ a > a∗.
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Proof of Lemma 3.2. We split the proof into two steps.

Step 1. We adapt the classical dispersion result of Bardos and Degond [2]. We denote
f(t) := SB0

(t)f0 the solution to the damped transport equation

∂tf + v · ∇xf +Kf = 0, f(0) = f0.

The characteristics method gives the representation formula

(SB0
(t)f0)(x, v) = f0(x− vt, v) e−

∫ t
0
K(x−vs,v)ds.

We then have

ρ(t, x) := (ASB0
(t)f0)(x) =

∫

V
ϕ(x, v∗)f0(x− v∗t, v∗) e

−
∫ t
0
K(x−v∗s,v∗)ds dv∗.

Using that K(x, v) ≥ (1− χ), we deduce

|ρ(t, x)| ≤ e−(1−χ)t

∫

V
|ϕ(x, v∗)|

[
sup
w∈V

|f0|(x− v∗t, w)
]
dv∗

≤ e−(1−χ)t‖ϕ(x, ·)‖L∞
v

∫

V

[
sup
w∈V

|f0|(y,w)
] dy
td
,

and we conclude with

‖ASB0
(t)f0‖L∞

xv
.
e−(1−χ)t

td
‖f0‖L1

xL
∞
v
,

which in particular implies (3.1).

Step 2. From Lemma 3.1, for r = 1 and r = ∞, we clearly have

‖ASB0
(t)‖Lr

xL
∞
v (m1/r)→Lr

xL
∞
v (m1/r) . ea t.

Gathering that estimate with (3.1), we may repeat the proof of [17, Proposition 2.2] (see
also [16, Lemma 2.4] or [15]) and we get

(3.3) ‖(ASB0
)(∗d+1)(t)‖L1

xL
∞
v (m)→L∞

x L∞
v

. ea t.

Observing that

(3.4) ‖(ASB0
)(t)‖L1

xL
1
v(m)→L1

xL
∞
v (m) . ea t,

thanks to Lemma 3.1 and A : L1
xv → L1

xL
∞
v , we conclude to (3.2) by taking n = d+2. �

3.2. The operator B1 and the associated semigroup SB1
. We define B1 by

(3.5) B1f := −v · ∇xf −Kf + (1− φR)

∫

V
K ′f ′ dv′,

where we have defined the truncation functions φR(x) := φ(x/R) for a given φ ∈ D(Rd)
which is radially symmetric and satisfies 1B(0,1) ≤ φ ≤ 1B(0,2).

Lemma 3.3. There exist γ∗ > 0, a∗ < 0 and C ≥ 1 such that for R large enough and
m = eγ〈x〉, γ ∈ (0, γ∗), the semigroup SB1

satisfies the following growth estimate

‖SB1
(t)‖L1(m)→L1(m) ≤ C ea

∗t, ∀ t ≥ 0.

Proof of Lemma 3.3. We observe that the dual operator B∗
1 writes

B∗
1ϕ = L∗ϕ− φRKϕ.
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Defining the modified weight function m̃ as in (2.3) and using the inequalities (2.4) and
(2.5), we get

B∗
1m̃ ≤

( C

〈x〉
− 2α

)
e−γ〈x〉 − φRK m̃

≤
( C

〈x〉
− 2α

)
e−γ〈x〉 − 1BR(0) (1− χ) (1− δ) e−γ〈x〉

≤ −α m̃,

for γ > 0 small enough and R > 1 large enough, because C = O(γ) and δ = O(γ). We
then have proved that B1 is dissipative in L1(m̃) and we immediately conclude. �

Lemma 3.4. For the same constants γ∗ > 0 and a∗ < 0 as defined in Lemma 3.3, for any
1 ≤ p ≤ ∞ and m = eγ〈x〉, γ ∈ (0, γ∗), the semigroup SB1

satisfies the growth estimate

(3.6) ‖SB1
(t)‖L1(m)∩Lp(m1/p)→L1(m)∩Lp(m1/p) ≤ C eat, ∀ t ≥ 0, ∀ a > a∗.

Proof of Lemma 3.4. We set X := L1(m) ∩ L∞ and we write

B1 = B0 +Ac
0,

with Ac
0 = Aψ, ψ := (1− φR)K(x, v), and then the iterated Duhamel formula

SB1
=

{
SB0

+ ...+ SB0
∗ (Ac

0SB0
)(∗n)

}
+ SB0

∗ (Ac
0SB0

)(∗n) ∗ Ac
0SB1

=: U1 + U2,

with n = d+ 2. From Lemma 3.1, (3.2) in Lemma 3.2 and Lemma 3.3, we easily deduce
that

‖U2‖L1(m)→L∞ ≤ ‖SB0
‖L∞→L∞ ∗ ‖(Ac

0SB0
)(∗n)‖L1→L∞ ∗ ‖Ac

0SB1
‖L1→L1 . eat,

for any a > a∗. We have similarly the same decay estimate on the remainder term U1 in
B(X) by just using Lemma 3.1. We deduce that (3.6) holds for p = ∞. We conclude that
(3.6) holds for any 1 ≤ p ≤ ∞ by interpolating that first estimate in L∞ together with
the estimate established in Lemma 3.3. �

Lemma 3.5. For the same constants γ∗ > 0 and a∗ < 0 as defined in Lemma 3.3, for
any ϕ ∈ L∞

xv and m = eγ〈x〉, γ ∈ [0, γ∗), there holds

(3.7) ‖AϕSB1
(t)‖L1

xL
∞
v (m)→L∞

xv
. t−deat, ∀ t ≥ 0, ∀ a > a∗.

As a consequence, for n ∈ N
∗ large enough (n = d+ 2 is suitable), there holds

(3.8) ‖(AϕSB1
)(∗n)(t)‖L1(m)→L∞ . eat, ∀ t ≥ 0, ∀ a > a∗.

Proof of Lemma 3.5. With the notation of the proof of Lemma 3.4, we write

AϕSB1
= AϕSB0

+AϕSB0
∗ Ac

0SB1
,

and we immediately conclude that (3.7) holds putting together (3.1) and the fact that
Ac

0SB1
has the appropriate decay rate in B(L1(m);L1

xL
∞
v (m)) thanks to Lemma 3.3.

Introducing the notations X1 := L1
xL

∞
v (m) and X∞ := L1

xL
∞
v (m) ∩ L∞

xv, we then easily
see from (3.6) and (3.7) that

‖AϕSB1
‖Xp→Xq . Θp,q(t) e

at, ∀ a > a∗,

for (p, q) = (1, 1), (1,∞), (∞,∞), with Θ1,1 = Θ∞,∞ = 1 and Θ1,∞ = t−d. Repeating
again the proof of [17, Proposition 2.2], we deduce

‖(AϕSB1
)(∗n−1)(t)‖X1→X∞

. ea t,

and we then conclude by using that AϕSB1
has the appropriate decay rate in B(L1(m);L1

xL
∞
v (m))

thanks to Lemma 3.3. �



10 S. MISCHLER, Q. WENG

3.3. Existence of a steady state. We establish the existence of a steady state thanks
to a fixed point argument. We fix an exponential weight m := eγ〈x〉, γ ∈ (0, γ∗). We define
the Banach space X := L1(m) ∩ L∞ as well as

∀ f ∈ X, |||f ||| := sup
t≥0

‖SL(t)f‖X .

Lemma 3.6. The quantity ||| · ||| defines a norm on X which is equivalent to its usual
norm ‖ · ‖X . For C ≥ 1 large enough, the set

C :=
{
f ∈ L1(m) ∩ L∞; f ≥ 0, 〈〈f〉〉 = 1, fR = f, ∀R ∈ SO(d), |||f ||| ≤ C

}

is a weakly ∗ compact and convex set of X which is furthermore left invariant by the action
of the flow associated to the the linear RT equation (1.1)-(1.6). As a consequence, there
exists at least one invariant element G ∈ C, which is nothing but a stationary state for the
linear RT equation which fulfills all the properties listed in the statement of Theorem 1.1.

Proof of Lemma 3.6. We split the proof into two steps.

Step 1. We split the operator L as

L = A1 + B1, A1 := Aψ, ψ := φRK(x, v),

and with the same integer n as in Lemma 3.5 we write the iterated Duhamel formula

SL =
{
SB1

+ ...+ SB1
∗ (A1SB1

)(n∗)
}
+ SB1

∗ (A1SB1
)(n∗) ∗ A1SL =: V1 + V2.

For the first term and thanks to Lemma 3.4, for some constant K1 ≥ 1, we have

‖V1(t)f0‖X ≤
n∑

ℓ=0

‖SB1
∗ (A1SB1

)(ℓ∗)f0‖X ≤ K1 ‖f0‖X .

For the second term, for some constant K2 ≥ 1, we have

‖V2(t)‖L1(m)→X ≤ ‖SB1
‖X→X ∗ ‖(A1SB1

)(n∗)‖L1(m)→X ∗ ‖A1SL‖L1(m)→L1(m) ≤ K2,

using both (3.6) and (3.8). All together, we have proved

‖SL(t)f0‖X . ‖f0‖X , ∀ t ≥ 0.

As a consequence, the norm ||| · ||| is equivalent to the standard one on X.

Step 2. We now define C := |||g0||| for a given g0 ∈ X which is also a probability measure.
With this choice, we see that the set C is not empty. Moreover, thanks to Lemma 2.1, the
flow is continuous for the L1 norm and preserves positivity and total mass. By construc-
tion, we see that for any f0 ∈ C and t ≥ 0, we have

|||SL(t)f0||| = sup
s≥t

‖SL(s)f0‖Lp(m) ≤ sup
s≥0

‖SL(s)f0‖Lp(m) = |||f0||| ≤ C.

All together, the set C is clearly invariant by the flow SL.

Because C is also compact for the weak topology of L1∩L∞, thanks to a standard variant
of the Brouwer-Schauder-Tychonoff fixed point theorem (see for instance [9, Theorem 1.2]),
we obtain the existence of an invariant element G for the linear RT flow which furthermore
belongs to C, in other words

∃G ∈ C such that SL(t)G = G, ∀ t ≥ 0.

As a consequence, we have G ∈ D(L)\{0} and LG = 0, so that G is a stationary state for
the linear RT equation. �
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3.4. Uniqueness of the stationary state. In this section we prove a strong maximal
principle on the operator −L. The uniqueness of the normalized and positive steady state
then follows using classical arguments. We skip the proof and refer for instance to [18,
Step 4, proof of Theorem 5.3] for details.

Lemma 3.7. The operator −L satisfies the following version of the strong maximum
principle: for any given 0 ≤ g ∈ L2(m) and µ ∈ R, there holds

g ∈ D(L) \ {0} and (−L+ µ)g ≥ 0 imply g > 0

Proof of Lemma 3.7. We consider g as in the above statement and we prove that it is a
positive function in several steps.

Step 1. Defining M := 1 + χ+ µ ∈ R and m := 1− χ > 0, we see that

v · ∇xg +M g ≥ v · ∇xg +K g

≥

∫

V
K ′ g′ dv′ ≥ m̺, ̺ :=

∫

V
g′ dv′.

Integrating the above inequality along the free transport characteristics, we get

(3.9) g(x, v) ≥ m

∫ t

0
̺(x− v s) e−M s ds + g(x− v t, v) e−M t, ∀ t ≥ 0.

Step 2. In particular, because the second term at the RHS is nonnegative, we may keep
only the contribution of the first term and we get

̺(x) ≥ m

∫ 1

1/2

∫

V
̺(x− v s) e−M dsdv

≥ κ

∫

V/2
̺(x+w)dw, κ > 0.

Since g ≥ 0 and g 6≡ 0, we also have ̺ ≥ 0 and ̺ 6≡ 0, and there exists x0 ∈ R
d and

r > 0, small enough, such that 〈̺1B(x0,r)〉 = α > 0 and B(0, 2r) ⊂ V, or in other words
B(x0, r) ⊂ x+ V/2 for any x ∈ B(x0, r). As a consequence, we have

(3.10) ̺ ≥ α0 1B(x0,r), α0 := κα.

Step 3. Observing that for any x ∈ R
d, there exists a small ball B ⊂ V and some times

τ1 > τ0 > 0 such that x− sv ∈ B(x0, r/2) for any v ∈ B and s ∈ (τ0, τ1), we may argue as
above and we get

̺(x) ≥ m

∫ τ1

τ0

∫

B
̺(x− v s) e−Ms dsdv

≥ αx := m|B|(τ1 − τ0) e
−Mτ1 α0 > 0.

Finally, using (3.9) again, we deduce

g(x, v) ≥ m

∫ 1

0
̺(x− v s) e−M s ds > 0,

which concludes the proof. �
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4. Asymptotic stability of the stationary state

4.1. A new splitting. In all this section, excepted in paragraph 4.5, we fix an exponential
weight function m = eγ〈x〉, with γ ∈ (0, γ∗) and γ∗ > 0 defined in Lemma 3.3, and we

define the Banach space X := L1(m) ∩ L2(m1/2). We also introduce the splitting

(4.1) L = A+ B, Af :=

∫

V
K ′
R,δi

f ′ dv′,

where

KR,δi = φδ2,R(x)ψδ1(v)Kδ3(x, v), Kδ3(x, v) = 1 + χζδ3(x · v),

for some real numbers R > 1, δ1, δ2, δ3 ∈ (0, 1) to be fixed, and where we have defined
the truncation functions φλ(z) := φ(z/λ), φ ∈ D(Rd) radially symmetric, 1B(0,1) ≤ φ ≤
1B(0,2), and then φδ,R(x) := φR(x)− φδ(x), ψδ(v) := 1− φδ(V0 − |v|)− φδ(v), as well as a
regularized sign function ζδ ∈ C∞(R) which is odd, increasing and satisfies ζδ(s) = 1 for
any s ≥ δ.

We establish that SB and ASB enjoy suitable decay estimate (Section 4.2) and regularity
estimate (Section 4.3) from which we deduce the asymptotic stability in X thanks to a
semigroup version of the Krein-Rutman theorem (Section 4.4) and next the asymptotic
stability in any exponential and polynomial weighted L1 space by using an extension
argument (Section 4.5).

4.2. Decay estimates for the semigroup SB.

Proposition 4.1. For the same constant a∗ < 0 as defined in Lemma 3.3, there holds

(4.2) ‖SB(t)‖X→X . eat, ∀ t ≥ 0, ∀ a > a∗.

Proof of Proposition 4.1. We split the proof into five steps.

Step 1. Norms and splitting. Inspired by [12, Proposition 5.15] and the moment trick
introduced in [14], we define the three norms ‖ · ‖X , ||| · ||| and N(·) in the following way

‖f‖2X := ‖f‖2L1(m) + ‖f‖2
L2(m1/2)

,

|||f |||2 := η2‖f‖
2
X +

∫ ∞

0
‖SB1

(τ)f‖2X dτ,

N(f)2 := η1 ‖f‖
2

L2(m̃
1/2
0

)
+ |||f |||2,

for some constants η1, η2 ∈ (0, 1) to be fixed and where m̃0 is the weight function

m̃0 :=
(
1−

x

|x|1/2
·
v

|v|

)
φ1/2(x),

so that 0 ≤ m̃0 ≤ 2φ1. Thanks to the decay estimate of Lemma 3.4, one easily sees that
these three norms are equivalent.

We fix f0 ∈ X and we define f(t) = fB(t) = SB(t)f0 the associated trajectory along the
action of the semigroup SB. In order to prove (4.2), we compute

(4.3) T :=
1

2

d

dt
N(fB(t))

2 = η1T1 + η2T2 + T3,

where Ti are the contributions of the terms involved in the definition of the norm N that
we compute separately. For latter references, we introduce the splitting of B as

B := B1 +Ac
1 +Ac

2 +Ac
3,
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where B1 is defined in section 3.2 with R ≥ 1 large enough so that Lemma 3.3 and
Lemma 3.4 hold true, and we have set

Ac
1f = φR(x)

∫

V
K ′f ′ψcδ1(v

′) dv′

Ac
2f = φδ2(x)

∫

V
K ′f ′ψδ1(v

′) dv′

Ac
3f = φδ2,R(x)

∫

V
Kc
δ3(x · v′)f ′ψδ1(v

′) dv′,

with ψcδ1 := 1− ψδ1 , φ
c
R := 1− φR, K

c
δ = χζcδ , ζ

c
δ = ζ − ζδ. We shall also denote

Ac
123 := Ac

1 +Ac
1 +Ac

2 and Ac
0123 := Ac

0 +Ac
1 +Ac

1 +Ac
2,

where we recall that Ac
0 has been defined during the proof of Lemma 3.4.

Step 2. Contribution of the term T1. We prove that

(4.4) T1 :=
1

2

d

dt
‖fB(t)‖

2

L2(m̃
1/2
0

)
≤ −

1

4
‖fB(t)‖

2

L2(m̃
1/2
1

)
+ C1 ‖fB(t)‖

2
X ,

for some positive constant C1 and where m̃1 is the weight function defined by

m̃1(x, v) :=
|v|

|x|α
φ1/2(x).

In order to prove (4.4), we first observe that

T1 = (B fB(t), fB(t))L2(m̃
1/2
0

)
,

and next we compute the RHS by splitting it in several pieces. For any f ∈ X, we have

(Bf, f)
L2(m̃

1/2
0

)
= (−v · ∇xf, f)L2(m̃

1/2
0

)
+ (Ac

0123f −Kf, f)
L2(m̃

1/2
0

)

=: T1,1 + T1,2.

We compute the first key term. Performing one integration by parts, we find

T1,1 =

∫ (
−v · ∇xf) f

(
1−

x

|x|1/2
·
v

|v|

)
φ1/2(x) dxdv

=
1

2

∫
f2

{[1
2

( x

|x|
·
v

|v|

)2
− 1

] |v|

|x|1/2
φ1/2 +

(
1−

x

|x|1/2
·
v

|v|

)(
v · ∇xφ1/2

)]
dxdv

= −
1

4

∫
f2

|v|

|x|1/2
φ1/2 dxdv + T̃1,1

with T̃1,1 . ‖f‖2L2 . For the remainder term, we also easily have |T1,2| . ‖f‖2L2 from what
(4.4) immediately follows.

Step 3. Contribution of the term T2. We prove that

(4.5) T2 :=
1

2

d

dt
‖fB‖

2
X ≤ C2 ‖fB‖

2
X ,

for some positive constant C2. We have

T2 =
1

2

d

dt
‖fB‖

2
L2(m) +

1

2

d

dt
‖fB‖

2
L1(m)

= (B fB, fB)L2(m) + 〈B fB, signfB〉L1(m),L∞‖fB‖L1(m)

=: T2,1 + T2,2,
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with

T2,1 := (B0 fB, fB)L2(m) + 〈B0 fB, signfB〉L1(m),L∞‖fB‖L1(m) ≤ 0,

because B0 is dissipative in both L1(m) and L2(m1/2) from Lemma 3.1, and with

T2,2 := (Ac
0123 fB, fB)L2(m) + 〈Ac

123 fB, signfB〉L1(m),L∞‖fB‖
2
L1(m)

≤ ‖Ac
0123 fB‖L2(m) ‖fB‖L2(m) + ‖Ac

123 fB‖L1(m)‖fB‖
2
L1(m)

. ‖fB‖
2
X ,

because |Aif | ≤ A|f | for any i ∈ {1, 2, 3} and A ∈ B(Lp(m), Lp(m)) for any p ∈ {1, 2}.

Step 4. Contribution of the term T3. We prove that for any η1 ∈ (0, 1), we can find
δ1, δ2, δ3 ∈ (0, 1) and R ≥ 1 such that the associated operator B satisfies

(4.6) T3 :=
1

2

d

dt

∫ ∞

0
‖SB1

(τ)fB(t)‖
2
X dτ ≤ −

3

8
‖fB(t)‖

2
X +

η1
4
‖fB(t)‖

2

L2(m̃
1/2
1

)
.

We split the term T3 as

T3 =
1

2

d

dt

∫ ∞

0
‖SB1

(τ)fB(t)‖
2
L1(m) dτ +

1

2

d

dt

∫ ∞

0
‖SB1

(τ)fB(t)‖
2
L2(m1/2)

dτ

=: T3,1 + T3,2.

For the first term, we compute

T3,1 =

∫ ∞

0

1

2

d

dt
‖SB1

(τ)fB(t)‖
2
L1(m) dτ

=

∫ ∞

0
〈SB1

(τ)BfB(t), sign(SB1
(τ)fB(t))〉L1(m),L∞ ‖SB1

(τ)fB(t)‖L1(m) dτ

=

∫ ∞

0
〈B1SB1

(τ)fB(t), sign(SB1
(τ)fB(t))〉L1(m),L∞ ‖SB1

(τ)fB(t)‖L1(m) dτ

+

∫ ∞

0
〈SB1

(τ)Ac
123fB(t), sign(SB1

(τ)fB(t))〉L1(m),L∞ ‖SB1
(τ)fB(t)‖L1(m) dτ

=: T3,1,1 + T3,1,2.

On the one hand, we observe that

T3,1,1 =

∫ ∞

0

1

2

d

dτ
‖SB1

(τ)fB(t)‖
2
L1(m) dτ = −

1

2
‖fB(t)‖

2
L1(m),

where in the last line we have use that SB1
f0 has the nice decay estimate (3.6) in the space

L1(m) because f0 ∈ X. On the other hand, using again the decay estimate (3.6), for any
ε > 0, we have

T3,1,2 =

∫ ∞

0
‖SB1

(τ)Ac
123fB(t)‖L1(m) ‖SB1

(τ)fB(t)‖L1(m) dτ

≤
1

2ε

∫ ∞

0
‖SB1

(τ)Ac
123fB(t)‖

2
L1(m) dτ +

ε

2

∫ ∞

0
‖SB1

(τ)fB(t)‖
2
L1(m) dτ

.
1

ε
‖Ac

123fB(t)‖
2
X + ε ‖fB(t)‖

2
X .

We may treat the second term in a similar way, using in particular the fact that SB1
f0 has

the nice decay estimate (3.6) in the space L2(m1/2) because f0 ∈ X. Gathering the two
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resulting estimates and taking ε > 0 small enough, we get

(4.7) T3 ≤ −
7

16
‖fB(t)‖

2
X + T̃3, T̃3 . ‖Ac

123fB(t)‖
2
X .

In order to conclude, we compute the contributions ‖Ac
ifB(t)‖

2
X for any i ∈ {1, 2, 3}.

On the one hand, using the Cauchy-Schwarz inequality, for any p ∈ {1, 2}, R > 2 and
δ1 ∈ (0, 1), we have

‖Ac
1f‖

p
Lp(m

1/p) =

∫ ∣∣∣φR(x)
∫

V
K ′f ′ψcδ1(v

′)dv′
∣∣∣
p
mdxdv

≤ 2pm(2R)

∫ [∫

V
|f ′|2 dv′

∣∣∣
p/2[∫

V

(
1|v′|≤2δ1 + 1V0−|v′|≤2δ1

)
dv′

]p/2
dxdv

. m(2R) δ
p/2
1 ‖f‖

p/2
L2 .

Similarly, when furthermore δ2 ∈ (0, 1/4), we have

‖Ac
2f‖

p
Lp(m

1/p) =

∫ ∣∣∣φδ2(x)
∫

V
K ′f ′ψδ1(v

′)dv′
∣∣∣
p
mdxdv

≤ 2pm(2)
[∫

B(0,1)×V
1|x|≤2δ2 |f

′|2 1|v′|≥δ1 dv
′dx

]p/2

.
[δ1/22

δ1

]p/2
‖f‖p

L2(m
1/2
1

)
.

Finally and similarly again, when furthermore δ3 ∈ (0, 1/2), observing that

0 ≤ Kc
δ3(x, v

′) = χ (ζ − ζδ3)(x · v′) ≤ χ1|x·v′|≤δ3 ,

we have

‖Ac
3f‖

p
Lp(m

1/p) =

∫ ∣∣∣φδ2,R(x)
∫
Kc
δ3(x · v′)f ′ψδ1(v

′) dv′
∣∣∣
p
mdxdv

≤ m(2R)χp
∫ [∫

V
|f ′|2 dv′

∣∣∣
p/2[∫

V
1|x·v′|≤2δ3 dv

′
]p/2

1|x|≥δ2 dxdv

. m(2R)
[∫

f2 dvdx
∣∣∣
p/2[

meas
{
v ∈ V; |v1| ≤ δ3/δ2

}]p/2

. m(2R)
δ
p/2
3

δ
p/2
2

‖f‖p
L2 .

All these estimates together, we get

(4.8) ‖Ac
123fB(t)‖

2
X . m(2R) δ1 ‖f‖

2
X +

δ
1/2
2

δ1
‖f‖2

L2(m
1/2
1

)
+m(2R)

δ3
δ2

‖f‖2X .

We thus obtain (4.6) by just gathering (4.7) and (4.8) and by choosing δ1, δ2, δ3 > 0
adequately.

Step 5. Conclusion. From estimates (4.4), (4.5) and (4.6), we have

T ≤ η1 C1 ‖fB‖
2
X + η2 C2 ‖fB‖

2
X −

3

8
‖fB‖

2
X

≤ −
1

4
‖fB‖

2
X . −N(fB)

2,

by choosing η1, η2 > 0 small enough. We have proved that B is −1/4-dissipative for the
norm N and thus (4.2) follows. �
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4.3. Some regularity associated to ASB. In this section we show that the family of
operators ASB satisfies a regularity and growth estimate that we express in terms of the

abstract Sobolev space X
1/2
B defined as the usual 1/2 interpolated space between X and

the domain
X1

B = D(B) := {f ∈ X;Bf ∈ X}

endowed with the graph norm.

Proposition 4.2. For the same constant a∗ < 0 as defined in Lemma 3.3, the family of
operators ASB satisfies

(4.9)

∫ ∞

0
‖ASB(t)‖

2
X→Y e

−2a∗t dt <∞,

with
Y := {f ∈ L2(Rd × V); supp f ⊂ B(0, R)× V, f ∈ H1/2}.

The proof is mainly a consequence of Bouchut-Desvillettes’ version [3, Theorem 2.1] (see
also [6] for a related discrete version) of the classical averaging Lemma initiated in the
famous articles of Golse et al. [11, 10]. We give in step 1 below a simpler, more accurate
and more adapted version of [3, Theorem 2.1] for which we sketch the proof for the sake
of completeness. During the proof, we will use the following classical trace result.

Lemma 4.3. There exists a constant Cd ∈ (0,∞) such that for any φ ∈ Hd/2(Rd) and
any u ∈ R

d, |u| = 1, the function φu(s) := φ(su) satisfies

‖φu‖L2(R) ≤ Cd‖φ‖Hd/2(Rd) = Cd

(∫

Rd

|F̌ φ|2(w) 〈w〉d dw

)1/2

,

where F̌ stands for the (inverse) Fourier transform operator.

Proof of Proposition 4.2. We split the proof into two steps.

Step 1. We consider the damped free transport equation

(4.10) ∂tf = T f := −v · ∇xf − f, f|t=0 = f0,

and we denote by ST (t) the associated semigroup defined through the characteristics
formula

(4.11) [ST (t)f0](x, v] := f(t, x, v) = f0(x− vt, v) e−t.

We claim that for any ϕ ∈ L2(V), there holds

(4.12)

∫ ∞

0
‖AϕST (t)‖

2

L2
x,v→H

1/2
x

e2t dt . ‖ϕ‖L2(V).

For a given function h which depends on the x variable or on the (x, v) variable, we

denote by ĥ its Fourier transform on the x variable and by Fh its Fourier transform on
both variables x and v. We fix f0 ∈ L2(Rd × V) and ϕ ∈ L∞(Rd), we denote by f be the
solution to the free transport equation (4.10) and by ρ the average function

ρ(t, x) :=

∫

Rd

f(t, x, v)ϕ(v) dv = [AϕST (t)f0](x).

In Fourier variables, the free transport equation (4.10) writes

∂tf̂ + iv · ξf̂ − f̂ = 0, f̂|t=0 = f̂0,

so that
f̂(t, ξ, v) = eiv·ξ t−tf̂0(ξ, v)
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and

ρ̂(t, ξ) =

∫

Rd

eiv·ξ t−tf̂0(ξ, v)ϕ(v) dv = F(f0 ϕ)(ξ, tξ) e
−t.

We deduce
∫ ∞

0
|ρ̂(t, ξ)|2 e2t dt ≤

∫

R

|F(f0 ϕ)(ξ, tξ)|
2 dt.

Performing one change of variable, introducing the notation σξ = ξ/|ξ| and using
Lemma 4.3, we deduce

∫

R

|F(f0 ϕ)(ξ, tξ)|
2 dt =

1

|ξ|

∫

R

|F(f0 ϕ)(ξ, s σξ)|
2 ds

.
1

|ξ|

∫

Rd

|(f̂0 ϕ)(ξ, w)|
2〈w〉d dw.

Thanks to Plancherel identity, we then obtain

∫ ∞

0

∫

Rd

|ξ| |ρ̂(t, ξ)|2 dξ e2tdt .

∫

Rd

∫

Rd

|(f0 ϕ)(x,w)|
2〈w〉d dwdx = ‖ϕ‖2L2

d/2
‖f0‖

2
L2
xv
,

which ends the proof (4.12).

Step 2. We show a similar estimate on AST (t). Using that KR,δi ∈ C∞
c (Rd × R

d),
suppKR,δi ⊂ B(0, 2R) ∩B(0, V ′

0), V
′
0 ∈ (0, V0), we may expand it as a Fourier series

KR,δi(x, v) =
∑

k,ℓ∈Zd

ak,ℓ e
i x·k ei v·ℓ ϑ(v), ∀ (x, v) ∈ Q,

Q := {x ∈ R
d, v ∈ R

d; |xi| ≤ 2R, |vi| ≤ V0, ∀ i = 1, ..., d}, for a truncation function
ϑ ∈ C∞(Rd), suppϑ ⊂ B(0, V0), ϑ ≡ 1 on B(0, V ′

0) and with fast decaying Fourier
coefficients

|ak,ℓ| . 〈k〉−2d−4 〈ℓ〉−2d−2.

From the definition of A and denoting f(t) = ST (t) f0 for some f0 ∈ L
2(Rd ×V), we may

then write

(AST (t)f0)(x) =
∑

k,ℓ∈Zd

ak,ℓ e
i x·k ρℓ(t, x), ρℓ(t, x) :=

∫

V
f(t, x, v) ei v·ℓ ϑ(v) dv.

On the one hand, from Step 1, we have

(4.13) sup
ℓ∈Zd

∫ ∞

0
‖ρℓ(t, ·)‖

2
H1/2 e

2t dt . ‖f0‖
2
L2 .

On the other hand, we denote ek(x) := ei x·k and we define the mapping

U(ρℓ) :=
∑

k,ℓ∈Zd

ak,ℓ ek ρℓ.
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From Cauchy-Schwarz inequality and Fubini Theorem, we have
∫ ∞

0
‖U(ρℓ)(t, ·)‖

2
L2(B2R) e

2t dt ≤

≤

∫ ∞

0

∫

B2R

(∑

k,ℓ

|ak,ℓ|
2 〈k〉d+1 〈ℓ〉d+1

)(∑

k,ℓ

|ρℓ|
2 〈k〉−d−1 〈ℓ〉−d−1

)
e2t dxdt

.
∑

k,ℓ

〈k〉−d−1 〈ℓ〉−d−1

∫ ∞

0

∫

B2R

|ρℓ|
2 e2t dtdx

. sup
ℓ∈Zd

∫ ∞

0
‖ρℓ(t, ·)‖

2
L2(BR) e

2t dt.

Using furthermore that

∇xU(ρℓ) =
∑

k,ℓ∈Zd

ak,ℓ (ik) ek ρℓ +
∑

k,ℓ∈Zd

ak,ℓ ek∇xρℓ,

we find similarly
∫ ∞

0
‖∇xU(ρℓ)(t, ·)‖

2
L2(B2R) e

2t dt . sup
ℓ∈Zd

∫ ∞

0
‖ρℓ(t, ·)‖

2
H1(BR) e

2t dt.

Observing that

{g ∈ L2(Rd × V); supp g ⊂ B(0, 2R) × V, ∇xg ∈ L2} ⊂ X1
B,

both estimates together and an interpolation argument yield

(4.14)

∫ ∞

0
‖U(ρℓ)(t, ·)‖

2

X
1/2
B

e2t dt . sup
ℓ∈Zd

∫ ∞

0
‖ρℓ(t, ·)‖

2
H1/2(BR)

e2t dt.

Gathering estimates (4.13) and (4.14), we have established

(4.15)

∫ ∞

0
‖AST (t)f0‖

2

X
1/2
B

e2t dt . ‖f0‖
2
L2 .

Step 3. Conclusion. We split B as B = T + C. The Duhamel formula writes

SB = ST + ST ∗ CSB,

from which we deduce

ASB = AST +AST ∗ CSB.

Using that identity and estimates (4.2) and (4.15), we obtain (4.9). �

4.4. A first asymptotic stability estimate in X. In order to apply the semigroup
version [18, Theorem 5.3] of the Krein-Rutman theorem, we list below some properties
satisfied by the operators L, A and B.

Fact 1. There exists a∗ < 0 such that for any a > a∗ and ℓ ∈ N, the following growth
estimate holds

t 7→ ‖SB ∗ (ASB)
(∗ℓ)(t)‖B(X) e

−at ∈ L∞(R+).

That is an immediate consequence of Proposition 4.1 and A ∈ B(X).

Fact 2. For the same value a∗ < 0, there exists Y ⊂ Xs
L, s ∈ (0, 1/2), with compact

embedding such that for any a > a∗ the following growth estimate holds

t 7→ ‖ASB(t)‖B(X,Y ) e
−at ∈ L1(R+).
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That is an immediate consequence of Proposition 4.2 together with the fact that

{f ∈ L2(Rd × V); supp f ⊂ B(0, R)× V, f ∈ H1} ⊂ X1
L

and an interpolation argument.

Fact 3. The semigroup SL is positive, the operator −L satisfies the strong maximum
principle as stated in Lemma 3.7 and L satisfies the following Kato’s inequality

(signf)Lf :=
1

2|f |
(fLf̄ + f̄Lf) ≤ L|f |,(4.16)

for any complex valued function f ∈ X + iX. For proving the last inequality, we just
compute

1

2|f |
(fLf̄ + f̄Lf) = −v · ∇|f | −K|f +

1

2|f |

(
f

∫

V
K ′f̄ ′ + f̄

∫

V
K ′f ′

)

≤ −v · ∇|f | −K|f |+

∫

V
K ′|f ′| = L|f |.

Fact 4. The mass conservation property writes L∗1 = 0, so that 0 > a∗ and 0 is an
eigenvalue for the dual problem associated to a positive dual eigenfunction.

Gathering these above facts, we may then apply [18, Theorem 5.3], or more exactly we
may repeat the proof of [18, Theorem 5.3] with minor and straightforward adaptations
(we refer to [15] where these slight modifications are performed), in order to obtain that 0
is a (algebraically) simple eigenvalue, that there exists a spectral gap between this largest
eigenvalue 0 and the remainder part of the spectrum and that a quantitative (partial but
principal) spectral mapping theorem holds true. More precisely, we have the following
asymptotic estimate: there exists α ∈ (a∗, 0) such that

(4.17) ‖SL(t)Π
⊥f0‖X . eat ‖f0‖X , ∀ f0 ∈ X, ∀ a > α, ∀ t ≥ 0,

where we have set Π⊥ := I −Π and Πf0 := 〈〈f0〉〉G.

4.5. Asymptotic stability estimate in weighted L1 spaces. We first consider the
exponential weightm(x) := exp(γ〈x〉) with γ ∈ (0, γ∗) and γ∗ > 0 identified in Lemma 2.2.
Iterating the Duhamel formula, we may write

SLΠ
⊥ = Π⊥{SB1

+ ...+ SB1
∗ (A1SB1

)N−1}+ (SLΠ
⊥) ∗ (A1SB1

)N ,

with N = d + 2. From Lemma 3.3 and (3.8) we have SB1
∗ (A1SB1

)ℓ : L1(m) → L1(m)
with rate eat for any ℓ ∈ {0, ..., N − 1} and (A1SB1

)N : L1(m) → X with rate eat. Using
that SLΠ

⊥ : X → X ⊂ L1(m) with rate eat from (4.17) and gathering all the preceding
decay estimates, we conclude that (1.9) holds in L1(m).

We next consider the polynomial weight m(x) := 〈x〉k with k ∈ (0,∞). We begin with
a decay estimate on the semigroup SB1

.

Lemma 4.4. For any k > ℓ > 0, the semigroup SB1
satisfies the following growth estimate

‖SB1
‖L1

k→L1

ℓ
. 〈t〉−(k−ℓ), ∀t ≥ 0.

Proof of Lemma 4.4. Recalling that the dual operator L∗ has been defined in the proof
of Lemma 2.2, for any q > 0, we compute

L∗〈γx〉q = qγ(v · x)〈γx〉q−2,
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L∗(v · x)〈γx〉q−2 = v · ∇x[(v · x)〈γx〉
q−2]− q (v · x)〈γx〉q−2

=
(
|v|2 − (v · x)− χ|v · x|

)
〈γx〉q−2 + (q − 2)γ(v · x)2〈γx〉q−4.

We then compute

L∗|v · x|〈γx〉q−2 = v · ∇x[|v · x|〈γx〉
q−2] + (1 + χζ)

(
V1|x|〈γx〉

q−2 − |v · x|〈γx〉q−2
)

=
(
|v|2

v · x

|v · x|
+ (1 + χζ)V1|x| − (1 + χζ)|v · x|

)
〈γx〉q−2

+(q − 2)γ|v · x|(v · x)〈γx〉q−4,

where we recall that V1 has been defined in (2.2). We consider β, γ ∈ (0, 1) to be fixed
later such that the weight function

m̃q := 〈γx〉q + qγ(v · x)〈γx〉q−2 − qβ|v · x|〈γx〉q−2

satisfies
(1− δ)〈γx〉q ≤ m̃q ≤ (1 + δ) 〈γx〉q ,

for some δ ∈ (0, 1). Gathering the previous estimates, there holds

B∗
1m̃q = L∗m̃q −A∗

1m̃q = L∗m̃q − (1 + χζ)φR

∫

V
m̃qdv

= qγ|v|2〈γx〉q−2 + q(q − 2)γ(v · x)2〈γx〉q−4 − qγχ|v · x|〈γx〉q−2

−qβ|v|2
v · x

|v · x|
〈γx〉q−2 − q(q − 2)βγ|v · x|(v · x)〈γx〉q−4

−qβ(1 + χζ)V1|x|〈γx〉
q−2φcR + qβ(1 + χζ)|v · x|〈γx〉q−2

−(1 + χζ)〈γx〉qφR,

and then

B∗
1m̃q ≤ qγV 2

0 〈γx〉
q−2 + q|q − 2|γV 2

0 |x|
2〈γx〉q−4 − qγχ|v · x|〈γx〉q−2

+qβV 2
0 〈γx〉

q−2 + q|q − 2|βγV 2
0 |x|

2〈γx〉q−2

−qβ(1− χ)V1|x|〈γx〉
q−2 + qβ(1 + χ)|v · x|〈γx〉q−2

−(1− χ)〈γx〉q−1φR + qβ(1− χ)V1〈γx〉
q−1φR

≤
(
qV 2

0 (γ + β) + qβ(1− χ)V1

)
〈γx〉q−2 + q|q − 2|V 2

0 γ(1 + β)|x|2〈γx〉q−4

−(1− χ)(1 − qβV1)〈γx〉
qφR − qβ(1− χ)V1〈γx〉

q−1

≤
( C1

〈γx〉
− C2φR − qβ(1− χ)V1

)
〈γx〉q−1.

Choosing β(1 + χ) = γχ with γ > 0 small enough and R ≥ 1 large enough, and observing
that C1 = O(γ), C2 ≥ (1− χ)/2 as γ → 0, we deduce

B∗
1m̃q ≤ −

qβ(1− χ)V1
2

〈γx〉q−1 . −〈x〉q−1.

We denote fB1
(t) := SB1

(t)f0 for some 0 ≤ f0 ∈ L1
k and then M̃q = 〈〈fB1

m̃q〉〉, Mq =
〈〈fB1

〈x〉q〉〉, so that

(4.18) M̃q .Mq . M̃q.

From the above inequality, we get

(4.19)
d

dt
M̃q =

∫
f (B∗

1m̃q) . −Mq−1,
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and in particular

(4.20) M̃k(t) ≤ M̃k(0), ∀ t ≥ 0.

A classical interpolation inequality together with (4.18) and (4.20) give

Mℓ(t) ≤Mℓ−1(t)
θMk(t)

1−θ .Mℓ−1(t)
θMk(0)

1−θ ,

with θ ∈ (0, 1) such that ℓ = θ(ℓ− 1) + (1− θ)k. Coming back to (4.19), we get

d

dt
M̃ℓ . −Mk(0)

−1/αM̃
1+1/α
ℓ

where

α :=
1

(1/θ)− 1
= k − ℓ.

Integrating the above differential inequality, we obtain

Mℓ(t) .
Mk(0)

tα
, ∀ t > 0,

and we conclude gathering that last inequality with (4.20). �

In order to establish the asymptotic stability in L1(m) for a polynomial weight m, we
write

SLΠ
⊥ = Π⊥SB1

+ (SLΠ
⊥) ∗ (A1SB1

).

Introducing the exponential weight m0 := e〈x〉, we observe that Π⊥SB1
: L1(m) → L1 and

A1SB1
L1(m) → L1(m0), with rate 〈t〉−ℓ for any ℓ ∈ (0, k) from Lemma 4.4. Because we

have already established that SLΠ
⊥ : L1(m0) → L1 with rate eat for any a ∈ (a∗, 0), we

immediately conclude that (1.9) holds in L1(m).
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(2005), 99–125.

[10] Golse, F., Lions, P.-L., Perthame, B., and Sentis, R. Regularity of the moments of the solution
of a transport equation. J. Funct. Anal. 76, 1 (1988), 110–125.

[11] Golse, F., Perthame, B., and Sentis, R. Un résultat de compacité pour les équations de transport
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Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16

FRANCE

e-mail: mischler@ceremade.dauphine.fr

Qilong Weng
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