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A classical Theorem of Mumford implies that a topologically regular complex algebraic surface in C 3 with an isolated singular point is smooth. We prove that any Lipschitz regular complex algebraic set is smooth. No restriction on the dimension and no restriction on the singularity to be isolated is needed.

Introduction

A classical theorem proved by David Mumford in 1961 [START_REF] Mumford | The topology of normal singularities of an algebraic surface and a criterion for simplicity[END_REF] is stated as follows: a normal complex algebraic surface with a simply connected link at a point x is smooth in x. This was a pioneer work in the topology of singular algebraic surfaces. An important sequence of works in this area and some applications to the 3-folds topology were deeply stimulated by this theorem.

From a modern viewpoint this result can be seen as follows: a topologically regular normal complex algebraic surface is smooth. Since, in C 3 , a surface is normal if and only if it has isolated singularities, the result can be formulated as follows: topologically regular complex surface in C 3 with isolated singularity is smooth. The condition on the singularity to be isolated is important because there are examples of non-smooth and topologically regular surfaces, with non-isolated singularities.

There are also examples of non smooth surfaces in C 4 (see Section 5 of [START_REF] Tibar | Beyond Mumford's theorem on normal surfaces[END_REF]) with topologically regular isolated singularity .

Here we study Lipschitz regular complex algebraic sets. Lipschitz regularity simply means that the complex algebraic set is a Lipschitz submanifold of C n . The main result is that Lipschitz regular points of a complex algebraic set are smooth points, i.e. the conclusion of the Mumford theorem holds without any restrictions.

There are two basic ingredients in the proof. The first one is the theory of normal embedding, created by Birbrair and Mostowski [START_REF] Birbrair | Normal embeddings of semialgebraic sets[END_REF] (The paper contains some lines describing the theory). Using the Bernig-Lytchak [START_REF] Bernig | Lytchak Tangent spaces and Gromov-Hausdorff limits of subanalytic spaces[END_REF] map (see also [START_REF] Birbrair | Normal embedding of complex algebraic surfaces, in Real and Complex Singularities[END_REF]), one can make a reduction of a Lipschitz regular point to its tangent cone. The second ingredient is the extraordinary theorem by David Prill [START_REF] Prill | Cones in complex affine space are topologically singular[END_REF]. D. Prill proved that algebraic and topologically regular complex cones are smooth.
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Normally embedded sets

Given a closed and connected subanalytic subset X ⊂ R m the inner metric on X is defined as follows: given two points x 1 , x 2 ∈ X, d X (x 1 , x 2 ) is the infimum of the lengths of rectifiable paths on X connecting x 1 to x 2 . According to the real cusp x 2 = y 3 , one can see that the inner metric is not necessarily bi-Lipschitz equivalent to the Euclidean metric on X. A subanalytic set is called normally embedded if these two metrics (inner and Euclidean) are bi-Lipschitz equivalent.

Proposition 2.1. Let X ⊂ C n be an algebraic subset. Let x 0 ∈ X be such that the reduced tangent cone

T x 0 X := |C x 0 X| is a linear subspace of C n . If there exists a neighborhood U of x o in X such that U is normally embedded, then x 0 is a smooth point of X.
Proof. Since T x 0 X is a linear subspace of C n , we can consider the orthogonal projection

P : C n → T x 0 X.
We may suppose that x 0 = 0 and P (x 0 ) = 0.

Notice that the germ of the restriction of the orthogonal projection P to X has the following properties:

(1) It is finite complex analytic germ of map;

(2) If γ : [0, ε) → X is a real analytic arc, such that γ(0) = 0, then the arcs γ and P • γ are tangent at 0.

Then the germ at 0 of P |X : X → T 0 X is a ramified cover and the ramification locus is the germ of a codimension 1 complex analytic subset Σ of the plane T 0 X.

The multiplicity of X at 0 can be interpreted as the degree d of this germ of ramified covering map, i.e. there are open neighborhoods U 1 of 0 in X and U 2 of 0 in T 0 X, such that d is the degree of the topological covering:

P |X : X ∩ U 1 \ P -1 |X (Σ) → T 0 X ∩ U 2 \ Σ.
Let us suppose that the degree d is bigger than 1. Since Σ is a codimension 1 complex analytic subset of the space T 0 X, there exists a unit tangent vector v

0 ∈ T 0 X \ C 0 Σ.
where C 0 Σ is the tangent cone of Σ at 0. Since v 0 is not tangent to Σ at 0, there exists a positive real number k such that the real cone

{v ∈ T 0 X | |v -tv 0 | < tk ∀ 0 < t < 1}
does not intersect the set Σ. Since we have assumed that the degree d ≥ 2, we have two (different) liftings γ 1 (t) and γ 2 (t) of the half-line r(t) = tv 0 , i.e. P (γ 1 (t)) = P (γ 2 (t)) = tv 0 and they satisfy γ i (t) -0 = t, i = 1, 2. Since P is the orthogonal projection on the reduced tangent cone T 0 X, the vector v 0 is the unit tangent vector to the images P • γ 1 and P • γ 2 of the arcs γ 1 and γ 2 at 0. By construction, we have dist(γ i (t), P -1 |X (Σ)) ≥ kt (i = 1, 2).

On the other hand, any path in X connecting γ 1 (t) to γ 2 (t) is the lifting of a loop, based at the point tv 0 , which is not contractile in the germ, at 0, of T 0 X \ Σ. Thus such a path must be longer than kt. It implies that the inner distance, d inner (γ 1 (t), γ 2 (t)), in X, between γ 1 (t) and γ 2 (t), is at least kt. But, since γ 1 (t) and γ 2 (t) are tangent at 0, that is |γ 1 (t)γ 2 (t)| t → 0 as t → 0 + , and k > 0, we get a contradiction to the fact that X is normally embedded near 0.

Main result

All the sets considered in the paper are supposed to be equipped with the Euclidean metric. When we consider the inner metric, then we will emphasize it clearly.

Definition 3.1. A subanalytic subset X ⊂ R n is called Lipschitz regular at x 0 ∈ X if there is an open neighborhood U of x 0 in X which is subanalytically bi-Lipschitz homeomorphic
to an Euclidean ball.

Theorem 3.2. Let X ⊂ C n be a complex algebraic variety. If X is Lipschitz regular at

x 0 ∈ X, then x 0 is a smooth point of X.
Proof. Let X ⊂ C n be a complex algebraic variety. We start the proof from the following lemma:

Lemma 3.3. If X is Lipschitz regular at x 0 ∈ X, then there exists a neighborhood U of x 0 in X which is normally embedded in C n .

Proof of the Lemma. Let X be Lipschitz regular at x 0 . By definition, there exists a neighborhood U of x 0 in X and a subanalytic bi-Lipschitz homeomorphism ψ : B → U, where B is an Euclidean ball. Since ψ induces a bi-Lipschitz homeomorphism between the metric spaces (B, d B ) (B equipped with its inner metric) and (U, d U ) (U equipped with its inner metric) (see [START_REF] Birbrair | Normal embeddings of semialgebraic sets[END_REF]), we have positive real constants λ 1 and λ 2 such that

λ 1 |p -q| ≤ |ψ(p) -ψ(q)| ≤ λ 2 |p -q| ∀p, q ∈ B and λ 1 d B (p, q) ≤ d U (ψ(p), ψ(q)) ≤ λ 2 d B (p, q) ∀p, q ∈ B.
On the other hand, Euclidean balls are normally embedded; or more precisely, d B (p, q) = |p -q| for all p, q ∈ B. By inequalities above, we have that

d U (ψ(p), ψ(q)) ≤ λ 2 λ 1 |ψ(p) -ψ(q)| ∀ p, q ∈ B.
In other words, U is normally embedded.

An algebraic subset of C n is called a complex cone if it is a union of one-dimensional linear subspaces of C n . The next result was proved by David Prill in [START_REF] Prill | Cones in complex affine space are topologically singular[END_REF].

Lemma 3.4 (Theorem of Prill [START_REF] Prill | Cones in complex affine space are topologically singular[END_REF]). Let V ⊂ C n be a complex cone. If 0 ∈ V has a neighborhood homeomorphic to a Euclidean ball, then V is a linear subspace of C n Let us suppose that X is Lipschitz regular at x 0 . Let C x 0 X be the tangent cone of X at x 0 . Let h : U → B be a subanalytic bi-Lipschitz homeomorphism where U is a neighborhood of x 0 in X and B ⊂ R N is an Euclidean ball centered at origin 0 ∈ R N .

Let us suppose that h(x 0 ) = 0. Then the derivative of h, dh : |C x 0 X| → T 0 B, defined by Bernig and Lytchak [START_REF] Bernig | Lytchak Tangent spaces and Gromov-Hausdorff limits of subanalytic spaces[END_REF] (see also [START_REF] Birbrair | Normal embedding of complex algebraic surfaces, in Real and Complex Singularities[END_REF]), is a bi-Lipschitz homeomorphism between the reduced tangent cones |C x 0 X| and T 0 B = R N . In particular, it proves that |C x 0 X| is also bi-Lipschitz regular at x 0 . By the Theorem of Prill (Lemma 3.4) , we have that the reduced cone |C x 0 X| is a linear subspace of C n . In order to finish the proof we just need to recall Lemma 3.3 and Proposition 2.1.