
HAL Id: hal-01272327
https://hal.science/hal-01272327v2

Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint quantile regression in vector-valued RKHSs
Maxime Sangnier, Olivier Fercoq, Florence d’Alché-Buc

To cite this version:
Maxime Sangnier, Olivier Fercoq, Florence d’Alché-Buc. Joint quantile regression in vector-valued
RKHSs. Neural Information Processing Systems, Dec 2016, Barcelona, France. �hal-01272327v2�

https://hal.science/hal-01272327v2
https://hal.archives-ouvertes.fr


Joint quantile regression in vector-valued RKHSs

Maxime Sangnier Olivier Fercoq Florence d’Alché-Buc
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Université Paris-Saclay
75013, Paris, France

{maxime.sangnier, olivier.fercoq, florence.dalche}
@telecom-paristech.fr

September 26, 2017

Abstract

Addressing the will to give a more complete picture than an average relationship provided
by standard regression, a novel framework for estimating and predicting simultaneously several
conditional quantiles is introduced. The proposed methodology leverages kernel-based multi-task
learning to curb the embarrassing phenomenon of quantile crossing, with a one-step estimation
procedure and no post-processing. Moreover, this framework comes along with theoretical guaran-
tees and an efficient coordinate descent learning algorithm. Numerical experiments on benchmark
and real datasets highlight the enhancements of our approach regarding the prediction error, the
crossing occurrences and the training time.

1 Introduction

Given a couple (X,Y ) of random variables, where Y takes scalar values, a common aim in statistics
and machine learning is to estimate the conditional expectation E [Y | X = x] as a function of x. In
the previous setting, called regression, one assumes that the main information in Y is a scalar value
corrupted by a centered noise. However, in some applications such as medicine, economics, social
sciences and ecology, a more complete picture than an average relationship is required to deepen the
analysis. Expectiles and quantiles are different quantities able to achieve this goal.

This paper deals with this last setting, called (conditional) quantile regression. This topic has
been championed by Koenker and Bassett [18] as the minimization of the pinball loss (see [17] for an
extensive presentation) and brought to the attention of the machine learning community by Takeuchi
et al. [29]. Ever since then, several studies have built upon this framework and the most recent ones
include regressing a single quantile of a random vector [13]. On the contrary, we are interested in
estimating and predicting simultaneously several quantiles of a scalar-valued random variable Y |X
(see Figure 1), thus called joint quantile regression. For this purpose, we focus on non-parametric
hypotheses from a vector-valued Reproducing Kernel Hilbert Space (RKHS).

Since quantiles of a distribution are closely related, joint quantile regression is subsumed under the
field of multi-task learning [3]. As a consequence, vector-valued kernel methods are appropriate for
such a task. They have already been used for various applications, such as structured classification [11]
and prediction [8], manifold regularization [24, 7] and functional regression [15]. Quantile regression
is a new opportunity for vector-valued RKHSs to perform in a multi-task problem, along with a loss
that is different from the `2 cost predominantly used in the previous references.

In addition, such a framework offers a novel way to curb the phenomenon of quantile curve crossing,
while preserving the so called quantile property (which may not be true for current approaches). This
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one guarantees that the ratio of observations lying below a predicted quantile is close to the quantile
level of interest.

In a nutshell, the contributions of this work are (following the outline of the paper): i) a novel
methodology for joint quantile regression, that is based on vector-valued RKHSs; ii) enhanced predic-
tions thanks to a multi-task approach along with limited appearance of crossing curves; iii) theoretical
guarantees regarding the generalization of the model; iv) an efficient coordinate descent algorithm, that
is able to handle the intercept of the model in a manner that is simple and different from Sequential
Minimal Optimization (SMO). Besides these novelties, the enhancements of the proposed method and
the efficiency of our learning algorithm are supported by numerical experiments on benchmark and
real datasets.

2 Problem definition

2.1 Quantile regression

Let Y ⊂ R be a compact set, X be an arbitrary input space and (X,Y ) ∈ X × Y a pair of random
variables following an unknown joint distribution. For a given probability τ ∈ (0, 1), the conditional
τ -quantile of (X,Y ) is the function µτ : X → R such that µτ (x) = inf{µ ∈ R : P (Y ≤ µ | X = x) ≥ τ}.
Thus, given a training set {(xi, yi)}ni=1 ∈ (X ×Y)n, the quantile regression problem aims at estimating
this conditional τ -quantile function µτ . Following Koenker [17], this can be achieved by minimization
of the pinball loss: `τ (r) = max(τr, (τ − 1)r), where r ∈ R is a residual. Using such a loss first arose
from the observation that the location parameter µ that minimizes the `1-loss

∑n
i=1 |yi − µ| is an

estimator of the unconditional median [18].
Now focusing on the estimation of a conditional quantile, one can show that the target function µτ is

a minimizer of the τ -quantile riskRτ (h) = E [`τ (Y − h(X))] [19]. However, since the joint probability of
(X,Y ) is unknown but we are provided with an independent and identically distributed (iid) sample of
observations {(xi, yi)}ni=1, we resort to minimizing the empirical risk: Remp

τ (h) = 1
n

∑n
i=1 `τ (yi−h(xi)),

within a class H ⊂ (R)X of functions, calibrated in order to overcome the shift from the true risk to
the empirical one. In particular, when H has the form: H = {h = f + b : b ∈ R, f ∈ (R)X , ψ(f) ≤ c},
with ψ : (R)X → R being a convex function and c > 0 a constant, Takeuchi et al. [29] proved that

(similarly to the unconditional case) the quantile property is satisfied: for any estimator ĥ, obtained

by minimizing Remp
τ in H, the ratio of observations lying below ĥ (i.e. yi < ĥ(xi)) equals τ to a small

error (the ration of observations exactly equal to ĥ(xi)). Moreover, under some regularity assumptions,
this quantity converges to τ when the sample grows. Note that these properties are true since the
intercept b is unconstrained.

2.2 Multiple quantile regression

In many real problems (such as medical reference charts), one is not only interested by estimating a
single quantile curve but a few of them. Thus, denoting Np the range of integers between 1 and p, for
several quantile levels τj (j ∈ Np) and functions hj ∈ H, the empirical loss to be minimized can bi
written as the following separable function: Remp

τ (h1, . . . , hp) = 1
n

∑n
i=1

∑p
j=1 `τj (yi − hj(xi)), where

τ denotes the p dimensional vector of quantile levels.
A nice feature of multiple quantile regression is thus to extract slices of the conditional distribution

of Y |X. However, when quantiles are estimated independently, an embarrassing phenomenon often
appears: quantile functions cross, thus violating the basic principle that the cumulative distribution
function should be monotonically non-decreasing. We refer to that pitfall as the crossing problem.

In this paper, we propose to prevent curve crossing by considering the problem of multiple quantile
regression as a vector-valued regression problem where outputs are not independent. An interesting
feature of our method is to preserve the quantile property while most other approaches lose it when
struggling to the crossing problem.
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2.3 Related work

Going beyond linear and spline-based models, quantile regression in RKHSs has been introduced a
decade ago [29, 19]. In [29], the authors proposed to minimize the pinball loss in a scalar-valued RKHS
and to add hard constraints on the training points in order to prevent the crossing problem. Our work
can be legitimately seen as an extension of [29] to multiple quantile regression using a vector-valued
RKHS and structural constraints against curve crossing thanks to an appropriate matrix-valued kernel.

Another related work is [30], which first introduced the idea of multi-task learning for quantile
regression. In [30], linear quantile curves are estimated jointly with a common feature subspace shared
across the tasks, based on multi-task feature learning [3]. In addition, the authors showed that for
such linear regressors, a common representation shared across infinitely many tasks can be computed,
thus estimating simultaneously conditional quantiles for all possible quantile levels. Both previous
approaches will be considered in the numerical experiments.

Quantile regression has been investigated from many perspectives, including different losses leading
to an approximate quantile property (ε-insensitive [28], re-weighted least squares [25]) along with
models and estimation procedures to curb the crossing problem: location-scale model with a multi-
step strategy [14], tensor product spline surface [25], non-negative valued kernels [20], hard non-
crossing constraints [29, 31, 6], inversion and monotonization of a conditional distribution estimation
[10] and rearrangement of quantile estimations [9], to cite only a few references. Let us remark that
some solutions such as non-crossing constraints [29] lose theoretically the quantile property because of
constraining the intercept.

In comparison to the literature, we propose a novel methodology, based on vector-valued RKHSs,
with a one-step estimation, no post-processing, and keeping the quantile property while dealing with
curve crossing. We also provide an efficient learning algorithm and theoretical guarantees.

3 Vector-valued RKHS for joint quantile regression

3.1 Joint estimation

Given a vector τ ∈ (0, 1)p of quantile levels, multiple quantile regression is now considered as a joint
estimation in (Rp)X of the target function x ∈ X 7→ (µτ1(x), . . . , µτp(x)) ∈ Rp of conditional quantiles.
Thus, let now ψ be a convex regularizer on (Rp)X and H = {h = f + b : b ∈ Rp, f ∈ (Rp)X , ψ(f) ≤ c}
be the hypothesis set. Similarly to previously, joint quantile regression aims at minimizing Remp

τ (h) =
1
n

∑n
i=1 `τ (yi1 − h(xi)), where 1 stands for the all-ones vector, `τ (r) =

∑p
j=1 `τj (rj) and h is in H,

which is to be appropriately chosen in order to estimate the p conditional quantiles while enhancing
predictions and avoiding curve crossing. It is worthwhile remarking that, independently of the choice
of ψ, the quantile property is still verified for a vector-valued estimator since the loss is separable
and the intercept is unconstrained. Similarly, the vector-valued function whose components are the
conditional τj-quantiles is still a minimizer of the τ -quantile risk Rτ (h) = E [`τ (Y 1− h(X))].

In this context, the constraint ψ does not necessarily apply independently on each coordinate
function hj but can impose dependency between them. The theory of vector-valued RKHS seems
especially well suited for this purpose when considering ψ as the norm associated to it. In this
situation, the choice of the kernel does not only influence the nature of the hypotheses (linear, non-
linear, universal approximators) but also the way the estimation procedure is regularized. In particular,
the kernel critically operates on the output space by encoding structural constraints on the outputs.

3.2 Matrix-valued kernel

Let us denote ·> the transpose operator and L(Rp) the set of linear and bounded operators from Rp to
itself. In our (finite) case, L(Rp) comes down to the set of p× p real-valued matrices. A matrix-valued
kernel is a function K : X × X → L(Rp), that is symmetric and positive [23]: ∀(x,x′) ∈ X × X ,
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K(x,x′) = K(x′,x)> and ∀m ∈ N,∀{(αi,βi)}1≤i≤m ∈ (X ×Rp)m,
∑

1≤i,j≤m
〈
βi | K(αi,αj)βj

〉
`2
≥

0.
Let K be such a kernel and for any x ∈ X , let Kx : y ∈ Rp 7→ Kxy ∈ (Rp)X be the linear

operator such that: ∀x′ ∈ X , (Kxy)(x′) = K(x′,x)y. There exists a unique Hilbert space of functions
KK ⊂ (Rp)X (with an inner product and a norm respectively denoted 〈· | ·〉K and ‖·‖K), called the
RKHS associated to K, such that ∀x ∈ X [23]: Kx spans the space KK (∀y ∈ Rp : Kxy ∈ K), Kx

is bounded for the uniform norm (supy∈Rp ‖Kxy‖K < ∞) and ∀f ∈ K : f(x) = K∗xf (reproducing
property), where ·∗ is the adjoint operator.

From now on, we assume that we are provided with a matrix-valued kernel K and we limit the
hypothesis space to: H = {f + b : b ∈ Rp, f ∈ KK , ‖f‖K ≤ c} (i.e. ψ = ‖·‖K). Though several candi-
dates are available [1], we focus on one of the simplest and most efficiently computable kernels, called
decomposable kernel : K : (x,x′) 7→ k(x,x′)B, where k : X ×X → R is a scalar-valued kernel and B is
a p× p symmetric Positive Semi-Definite (PSD) matrix. In this particular case, the matrix B encodes
the relationship between the components fj and thus, the link between the different conditional quan-
tile estimators. A rational choice is to consider B =

(
exp(−γ(τi − τj)2)

)
1≤i,j≤p. To explain it, let us

consider two extreme cases (see also Figure 1).
First, when γ = 0,B is the all-ones matrix. SinceKK is the closure of the space span {Kxy : (x,y) ∈ X × Rp},

any f ∈ KK has all its components equal. Consequently, the quantile estimators hj = fj+bj are paral-
lel (and non-crossing) curves. In this case, the regressor is said homoscedastic. Second, when γ → +∞,
then B → I (identity matrix). In this situation, it is easy to show that the components of f ∈ KK are

independent from each other and that ‖f‖2K =
∑p
j=1 ‖fj‖

2
K′ (where ‖·‖K′ is the norm coming with the

RKHS associated to k) is separable. Thus, each quantile function is learned independently from the
others. Regressors are said heteroscedastic. It appears clearly that between these two extreme cases,
there is a room for learning a non-homescedastic and non-crossing quantile regressor (while preserving
the quantile property).

Figure 1: Estimated (plain lines) and true (dashed lines) conditional quantiles of Y |X (synthetic
dataset) from homoscedastic regressors (γ = 0) to heteroscedastic ones (γ → +∞).

4 Theoretical analysis

This section is intended to give a few theoretical insights about the expected behavior of our hypotheses.
Here, we do assume working in an RKHS but not specifically with a decomposable kernel. First, we aim
at providing a uniform generalization bound. For this purpose, let F = {f ∈ KK , ‖f‖K ≤ c}, tr(·) be

the trace operator, ((Xi, Yi))1≤i≤n ∈ (X ×Y)n be an iid sample and denote R̂n(h) = 1
n

∑n
i=1 `τ (Yi1−

h(Xi)), the random variable associated to the empirical risk of a hypothesis h.

Theorem 4.1 (Generalization). Let a ∈ R+ such that supy∈Y |y| ≤ a, b ∈ Yp and H = {f + b : f ∈ F}
be the class of hypotheses. Moreover, assume that there exists κ ≥ 0 such that: supx∈X tr(K(x,x)) ≤ κ.
Then with probability at least 1− δ (for δ ∈ (0, 1]):

∀h ∈ H, R(h) ≤ R̂n(h) + 2
√

2c

√
pκ

n
+ (2pa+ c

√
pκ)

√
log(1/δ)

2n
.
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Sketch of proof (full derivation in Appendix A.1). We start with a concentration inequality for scalar-
valued functions [4] and we use a vector-contraction property [22]. The bound on the Rademacher
complexity of [27, Theorem 3.1] concludes the proof.

The uniform bound in Theorem 4.1 states that, with high probability, all the hypotheses of interest
have a true risk which is less that an empirical risk to an additive bias in O(1/

√
n). Let us remark that

it makes use of the output dimension p. However, there exist non-uniform generalization bounds for
operator-valued kernel-based hypotheses, which do not depend on the output dimension [15], being thus

well-suited for infinite-dimensional output spaces. Yet those results, only hold for optimal solutions ĥ
of the learning problem, which we never obtain in practice.

As a second theoretical insight, Theorem A.5 gives a bound on the quantile property, which is similar
to the one provided in [29] for scalar-valued functions. This one states that E [P (Y ≤ hj(X) | X)] does
not deviate to much from τj .

Theorem 4.2 (Quantile deviation). Let us consider that the assumptions of Theorem 4.1 hold. More-
over, let ε > 0 be an artificial margin, Γ+

ε : r ∈ R 7→ proj[0,1]
(
1− r

ε

)
and Γ−ε : r ∈ R 7→ proj[0,1]

(
− rε
)
,

two ramp functions, j ∈ Np and δ ∈ (0, 1]. Then with probability at least 1− δ:

∀h ∈ H, 1

n

n∑
i=1

Γ−ε (Yi − hj(Xi))−∆ ≤ E [P (Y ≤ hj(X) | X)] ≤ 1

n

n∑
i=1

Γ+
ε (Yi − hj(Xi))︸ ︷︷ ︸
≈τj

+∆,

where ∆ = 2c
ε

√
κ
n +

√
log(2/δ)

2n .

Sketch of proof (full derivation in Appendix A.2). The proof is similar to the one of Theorem 4.1, when
remarking that Γ+

ε and Γ−ε are 1/ε-Lipschitz continuous.

5 Optimization algorithm

In order to finalize the M-estimation of a non-parametric function, we need a way to jointly solve the
optimization problem of interest and compute the estimator. For ridge regression in vector-valued
RKHSs, representer theorems enable to reformulate the hypothesis f and to derive algorithms based
on matrix inversion [23, 7] or Sylvester equation [11]. Since the optimization problem we are tackling
is quite different, those methods do not apply. Yet, deriving a dual optimization problem makes it
possible to hit the mark.

Quantile estimation, as presented in this paper, comes down to minimizing a regularized empirical
risk, defined by the pinball loss `τ . Since this loss function is non-differentiable, we introduce slack
variables ξ and ξ∗ to get the following primal formulation. We also consider a regularization parameter
C to be tuned:

minimize
f∈KK,b∈Rp,

ξ,ξ∗∈(Rp)n

1

2
‖f‖2K + C

n∑
i=1

(
〈τ | ξi〉`2 +〈1− τ | ξ∗i 〉`2

)
s. t.

{
∀i ∈ Nn : ξi < 0, ξ∗i < 0,
yi − f(xi)− b = ξi − ξ

∗
i ,

(1)

where < is a pointwise inequality. A dual formulation of Problem (1) is (see Appendix B):

minimize
α∈(Rp)n

1

2

n∑
i,j=1

〈αi | K(xi,xj)αj〉`2 −
n∑
i=1

yi 〈αi | 1〉`2 s. t.


n∑
i=1

αi = 0Rp , ∀i ∈ Nn :

C(τ − 1) 4 αi 4 Cτ ,

(2)

where the linear constraints come from considering an intercept b. The Karush-Kuhn-Tucker
(KKT) conditions of Problem (1) indicate that a minimizer f̂ of (1) can be recovered from a solution α̂

of (2) with the formula f̂ =
∑n
i=1Kxiα̂i. Moreover, b̂ can also be obtained thanks to KKT conditions.

However, as we deal with a numerical approximate solution α, in practice b is computed by solving
Problem (1) with f fixed. This boils down to taking bj as the τj-quantile of (yi − fj(xi))1≤i≤n.
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Problem (2) is a common quadratic program that can be solved with off-the-shelf solvers. However,
since we are essentially interested in decomposable kernels K(·, ·) = k(·, ·)B, it appears that the
quadratic part of the objective function would be defined by the np×np matrix K⊗B, where ⊗ is the
Kronecker product and K = (k(xi,xj))1≤i,j≤n. Storing this matrix explicitly is likely to be time and
memory expensive. In order to improve the estimation procedure, ad hoc algorithms can be derived.
For instance, regression with a decomposable kernel boils down to solving a Sylvester equation (which
can be done efficiently) [11] and vector-valued Support Vector Machine (SVM) without intercept can
be learned with a coordinate descent algorithm [24]. However, these methods can not be used in our
setting since the loss function is different and considering the intercept is necessary for the quantile
property. Yet, coordinate descent could theoretically be extended in an SMO technique, able to handle
the linear constraints introduced by the intercept. However, SMO works usually with a single linear
constraint and needs heuristics to run efficiently, which are quite difficult to find (even though an
implementation exists for two linear constraints [28]).

Therefore, for the sake of efficiency, we propose to use a Primal-Dual Coordinate Descent (PDCD)
technique, recently introduced in [12]. This algorithm (which is proved to converge) is able to deal
with the linear constraints coming from the intercept and is thus utterly workable for the problem at
hand. Moreover, PDCD has been proved favorably competitive with SMO for SVMs.

PDCD is described in Algorithm 1, where, for α = (αi)1≤i≤n ∈ (Rp)n, αj ∈ Rn denotes its jth

row vector and αji its ith component, diag is the operator mapping a vector to a diagonal matrix
and proj1 and proj[C(τl−1),Cτl] are respectively the projectors onto the vector 1 and the compact set
[C(τl− 1), Cτl]. PDCD uses dual variables θ ∈ (Rp)n (which are updated during the descent) and has
two sets of parameters ν ∈ (Rp)n and µ ∈ (Rp)n, that verify (∀(i, l) ∈ Nn × Np): µli < 1

(K(xi,xi))l,l+νl
i

.

In practice, we kept the same parameters as in [12]: νli = 10(K(xi,xi))l,l and µli equal to 0.95 times the
bound. Moreover, as it is standard for coordinate descent methods, our implementation uses efficient

updates for the computation of both
∑n
j=1K(xi,xj)αj and θ

l
.

6 Numerical experiments

Two sets of experiments are presented, respectively aimed at assessing the ability of our methodology to
predict quantiles and at comparing an implementation of Algorithm 1 with an off-the-shelf solver and
an augmented Lagrangian scheme. Following the previous sections, a decomposable kernel K(x,x′) =

k(x,x′)B is used, where B = (exp(−γ(τi − τj)2))1≤i,j≤p and k(x,x′) = exp(−‖x− x′‖2`2 /2σ
2), with

σ being the 0.7-quantile of the pairwise distances of the training data {xi}1≤i≤n. Quantile levels of
interest are τ = (0.1, 0.3, 0.5, 0.7, 0.9).

6.1 Quantile regression

Quantile regression is assessed with two criteria: the pinball loss 1
n

∑n
i=1 `τ (yi1−h(xi)) is the one mini-

mized to build the proposed estimator and the crossing loss
∑p−1
j=1

[
1
n

∑n
i=1 max(0, hj+1(xi)− hj(xi))

]
,

assuming that τj > τj+1, quantifies how far hj goes below hj+1, while hj is expected to stay always
above hj+1. More experiments are in Appendix D.1.

This study focuses on three non-parametric models based on the RKHS theory. Other linear and
spline-based models have been dismissed since Takeuchi et al. [29] have already provided a comparison
of these ones with kernel methods. First, we considered an independent estimation of quantile regres-
sors (Ind.), which boils down to setting B = I (this approach could be set up without vector-valued
RKHSs but with scalar-valued kernels only). Second, hard non-crossing constraints on the training
data have been imposed (Ind. (nc)), as proposed in [29]. Third, the proposed joint estimator (JQR)
uses the Gaussian matrix B presented above.

Quantile regression with multi-task feature learning (MTFL), as proposed in [30], is also included.
For a fair comparison, each point is mapped with ψ(x) = (k(x,x1), . . . , k(x,xn)) and the estimator
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Table 1: Empirical pinball loss and crossing loss ×100 (the less, the better). Bullets (resp. circles)
indicate statistically significant (resp non-significant) differences. The proposed method is JQR.

- Pinball loss Crossing loss

Data set - Ind. Ind. (nc) MTFL JQR - Ind. Ind. (nc) MTFL JQR

caution - 102.6 ± 17.3 103.2 ± 17.2 102.9 ± 19.0 ◦◦◦ 102.6 ± 19.0 - 0.53 ± 0.67 0.31 ± 0.70 0.69 ± 0.54 •◦• 0.09 ± 0.14
ftcollinssnow - 151.1 ± 8.2 150.8 ± 8.0 152.4 ± 8.9 ◦◦◦ 153.7 ± 12.1 - 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 ◦◦◦ 0.00 ± 0.00
highway - 102.9 ± 39.1 102.8 ± 38.9 102.0 ± 34.5 ◦◦◦ 103.7 ± 35.7 - 9.08 ± 7.38 9.00 ± 7.39 3.48 ± 4.49 ◦◦• 8.81 ± 7.46
heights - 128.2 ± 2.4 128.2 ± 2.4 128.6 ± 2.2 ◦◦• 127.9 ± 1.8 - 0.04 ± 0.05 0.04 ± 0.05 0.07 ± 0.14 ••• 0.00 ± 0.00
sniffer - 44.8 ± 6.7 44.6 ± 6.8 46.9 ± 7.6 ◦◦• 45.2 ± 6.9 - 1.01 ± 0.75 0.52 ± 0.48 1.23 ± 0.77 ••• 0.15 ± 0.22
snowgeese - 68.4 ± 35.3 68.4 ± 35.3 75.3 ± 38.2 ◦◦◦ 76.0 ± 31.5 - 3.24 ± 5.10 2.60 ± 4.28 8.93 ± 19.52 ••◦ 0.94 ± 3.46
ufc - 81.8 ± 4.6 81.6 ± 4.6 84.9 ± 4.7 ••• 80.6 ± 4.1 - 0.24 ± 0.22 0.27 ± 0.42 0.82 ± 1.47 ••• 0.05 ± 0.15
birthwt - 139.0 ± 9.9 139.0 ± 9.9 142.6 ± 11.6 ◦◦◦ 139.8 ± 11.7 - 0.00 ± 0.00 0.00 ± 0.00 0.31 ± 0.88 ◦◦• 0.00 ± 0.00
crabs - 12.3 ± 1.0 12.3 ± 1.0 12.6 ± 1.0 ••• 11.9 ± 0.9 - 0.46 ± 0.33 0.35 ± 0.24 0.30 ± 0.22 ••• 0.06 ± 0.20
GAGurine - 62.6 ± 8.2 62.6 ± 8.2 64.5 ± 7.5 ◦◦• 62.6 ± 8.1 - 0.05 ± 0.08 0.04 ± 0.07 0.05 ± 0.09 ◦◦◦ 0.03 ± 0.08
geyser - 110.2 ± 7.8 110.1 ± 7.8 109.4 ± 7.1 ◦◦◦ 111.3 ± 8.2 - 0.87 ± 1.60 0.92 ± 2.02 0.80 ± 1.18 ◦◦◦ 0.72 ± 1.51
gilgais - 47.4 ± 4.4 47.2 ± 4.4 49.9 ± 3.6 ◦◦• 46.9 ± 4.6 - 1.23 ± 0.96 0.95 ± 0.85 0.71 ± 0.96 ◦◦◦ 0.81 ± 0.43
topo - 71.1 ± 13.0 70.1 ± 13.7 73.1 ± 11.8 ◦◦◦ 69.6 ± 13.4 - 2.72 ± 3.26 1.52 ± 2.47 2.75 ± 2.93 •◦• 1.14 ± 2.02
BostonHousing - 48.5 ± 5.0 48.5 ± 5.0 49.7 ± 4.7 ••• 47.4 ± 4.7 - 0.64 ± 0.32 0.48 ± 0.27 1.11 ± 0.33 ◦•• 0.58 ± 0.34
CobarOre - 0.5 ± 0.5 0.5 ± 0.5 5.0 ± 4.9 ••• 0.6 ± 0.5 - 0.10 ± 0.13 0.10 ± 0.13 0.29 ± 0.35 ••• 0.02 ± 0.05
engel - 61.3 ± 18.3 61.2 ± 19.0 58.7 ± 17.9 ◦◦• 64.4 ± 23.2 - 1.50 ± 4.94 1.25 ± 4.53 1.65 ± 5.97 •◦◦ 0.06 ± 0.14
mcycle - 89.2 ± 8.5 88.9 ± 8.4 102.0 ± 11.7 ••• 84.3 ± 10.3 - 2.10 ± 1.83 0.92 ± 1.25 1.13 ± 1.10 ••• 0.14 ± 0.37
BigMac2003 - 71.0 ± 21.0 70.9 ± 21.1 68.7 ± 18.1 ••◦ 67.6 ± 20.9 - 2.50 ± 2.12 1.87 ± 1.68 0.73 ± 0.92 ◦◦◦ 1.55 ± 1.75
UN3 - 99.5 ± 7.0 99.4 ± 7.0 101.8 ± 7.1 ◦◦• 98.8 ± 7.6 - 1.06 ± 0.85 0.85 ± 0.70 0.65 ± 0.62 ••• 0.09 ± 0.31
cpus - 20.0 ± 13.7 19.9 ± 13.6 23.8 ± 16.0 ◦◦• 19.7 ± 13.7 - 1.29 ± 1.13 1.17 ± 1.15 0.46 ± 0.28 ••• 0.09 ± 0.13

h(x) = W>ψ(x) + b (W ∈ Rn×p) is learned jointly with the PSD matrix D ∈ Rn×n of the regularizer
ψ(h) = tr(W>D−1W ). This comes down to alternating our approach (with B = I and k(·, ·) =
〈· | D·〉`2) and the update D ← (WW>)1/2/ tr((WW>)1/2).

To present an honorable comparison of these four methods, we did not choose datasets for the
benefit of our method but considered the ones used in [29]. These 20 datasets (whose names are
indicated in Table 1) come from the UCI repository and three R packages: quantreg, alr3 and MASS.
The sample sizes vary from 38 (CobarOre) to 1375 (heights) and the numbers of explanatory variables
vary from 1 (5 sets) to 12 (BostonHousing). The datasets were standardized coordinate-wise to have
zero mean and unit variance. Results are given in Table 1 thanks to the mean and the standard
deviation of the test losses recorded on 20 random splits train-test with ratio 0.7-0.3. The best result
of each line is boldfaced and the bullets indicate the significant differences of each competitor from
JQR (based on a Wilcoxon signed-rank test with significance level 0.05).

The parameter C is chosen by cross-validation (minimizing the pinball loss) inside a logarithmic
grid (10−5, 10−4, . . . , 105) for all methods and datasets. For our approach (JQR), the parameter γ is
chosen in the same grid as C with extra candidates 0 and +∞. Finally, for a balanced comparison,
the dual optimization problems corresponding to each approach are solved with CVXOPT [2].

Regarding the pinball loss, joint quantile regression compares favorably to independent and hard
non-crossing constraint estimations for 12 vs 8 datasets (5 vs 1 significantly different). These results
bear out the assumption concerning the relationship between conditional quantiles and the usefulness
of multiple-output methods for quantile regression. Prediction is also enhanced compared to MTFL
for 15 vs 5 datasets (11 vs 1 significantly different).

The crossing loss clearly shows that joint regression enables to weaken the crossing problem, in
comparison to independent estimation and hard non-crossing constraints (18 vs 1 favorable datasets
and 9 vs 0 significantly different). Results are similar compared to MTFL (16 vs 3, 12 vs 1). Note
that for Ind. (nc), the crossing loss is null on the training data by construction but not necessarily
on the test data. In addition, let us remark that model selection (and particularly for γ, which tunes
the trade-off between hetero and homoscedastic regressors) has been performed based on the pinball
loss only. It seems that, in a way, the pinball loss embraces the crossing loss as a subcriterion.

6.2 Learning algorithms

This section is aimed at comparing three implementations of algorithms for estimating joint quantile
regressors (solving Problem 2), following their running (CPU) time. First, the off-the-shelf solver
(based on an interior-point method) included in CVXOPT [2] (QP) is applied to Problem (2) turned
into a standard form of linearly constrained quadratic program. Second, an augmented Lagrangian
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Algorithm 1 Primal-Dual Coordinate Descent.
Initialize αi,θi ∈ Rp (∀i ∈ Nn).
repeat

Choose (i, l) ∈ Nn × Np uniformly at random.

Set θ
l ← proj1

(
θl + diag(νl)αl

)
.

Set dli ←
∑n
j=1(K(xi,xj)αj)

l − yi + 2θ
l
i − θli.

Set αli ← proj[C(τl−1),Cτl]

(
αli − µlidli

)
.

Update coordinate (i, l): αli ← αli, θ
l
i ← θ

l
i,

and keep other coordinates unchanged.
until duality gap (1)-(2) is small enough

Table 2: CPU time (s) for training a model.
Size QP Aug. Lag. PDCD

250 8.73 ± 0.34 261.11 ± 46.69 18.69 ± 3.54
500 75.53 ± 2.98 865.86 ± 92.26 61.30 ± 7.05
1000 621.60 ± 30.37 – 266.50 ± 41.16
2000 3416.55 ± 104.41 – 958.93 ± 107.80

scheme (Aug. Lag) is used in order to get rid of the linear constraints and to make it possible to use
a coordinate descent approach (detailed procedure in Appendix C). In this scheme, the inner solver is
Algorithm 1 when the intercept is dismissed, which boils down to be the algorithm proposed in [26].
The last approach (PDCD) is Algorithm 1.

We use a synthetic dataset (the same as in Figure 1), for which X ∈ [0, 1.5]. The target Y is
computed as a sine curve at 1 Hz modulated by a sine envelope at 1/3 Hz and mean 1. Moreover, this
pattern is distorted with a random Gaussian noise with mean 0 and a linearly decreasing standard
deviation from 1.2 at X = 0 to 0.2 at X = 1.5. Parameters for the models are: (C, γ) = (102, 10−2).

To compare the implementations of the three algorithms, we first run QP, with a relative tolerance
set to 10−2, and store the optimal objective value. Then, the two other methods (Aug. Lag and
PDCD) are launched and stopped when they pass the objective value reached by QP (optimal objective
values are reported in Appendix D.2). Table 2 gives the mean and standard deviation of the CPU
time required by each method for 10 random datasets and several sample sizes. Some statistics are
missing because Aug. Lag. ran out of time.

As expected, it appears that for a not too tight tolerance and big datasets, implementation of
Algorithm 1 outperforms the two other competitors. Let us remark that QP is also more expensive
in memory than the coordinate-based algorithms like ours. Moreover, training time may seem high
in comparison to usual SVMs. However, let us first remind that we jointly learn p regressors. Thus,
a fair comparison should be done with an SVM applied to an np × np matrix, instead of n × n. In
addition, there is no sample sparsity in quantile regression, which does speed up SVM training.

Last but not least, in order to illustrate the use of our algorithm, we have run it on two 2000-point
datasets from economics and medicine: the U.S. 2000 Census data, consisting of annual salary and 9
related features on workers, and the 2014 National Center for Health Statistics’ data, regarding girl
birth weight and 16 statistics on parents.1 Parameters (C, γ) have been set to (1, 100) and (0.1, 1)
respectively for the Census and NCHS datasets (determined by cross-validation). Figure 2 depicts 9
estimated conditional quantiles of the salary with respect to the education (17 levels from no schooling
completed to doctorate degree) and of the birth weight (in grams) vs mother’s pre-pregnancy weight (in
pounds). As expected, the Census data reveal an increasing and heteroscedastic trend while new-born’s
weight does not seem correlated to mother’s weight.

7 Conclusion

This paper introduces a novel framework for joint quantile regression, which is based on vector-valued
RKHSs. It comes along with theoretical guarantees and an efficient learning algorithm. Moreover, this
methodology, which keeps the quantile property, enjoys few curve crossing and enhanced performances
compared to independent estimations and hard non-crossing constraints.

1Data are available at www.census.gov/census2000/PUMS5.html and www.nber.org/data/

vital-statistics-natality-data.html.

8



Figure 2: Estimated conditional quantiles for the Census (left, salary vs education) and the NCHS
data (right, birth weight vs mother’s pre-pregnancy weight).

To go forward, let us remark that this framework benefits from all the tools now associated with
vector-valued RKHSs, such as manifold learning for the semi-supervised setting, multiple kernel learn-
ing for measuring feature importance and random Fourier features for very large scale applications.
Moreover, extensions of our methodology to multivariate output variables are to be investigated, given
that it requires to choose among the various definitions of multivariate quantiles.
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A Detailed proofs

A.1 Generalization

This section describes a proof of the generalization bound given in the corpus of the paper. The result
is based on a concentration inequality à la Bartlett and Mendelson [4] for vector-valued functions
[21], along with a bound on the Rademacher complexity of operator-valued kernel based hypothesis
sets [27]. Before stating these two critical properties, let us remind the definition of the Rademacher
complexity, used to quantify the complexity of a class of functions.

Definition A.1 (Rademacher complexity [21]). Let (Xi)1≤i≤n ∈ Xn be an iid sample of random
variables and (εi,j) 1≤i≤n

1≤j≤p
∈ {−1, 1}n×p be n × p independent Rademacher variables ( i.e. uniformly

distributed on {−1, 1}). Let now F ⊂ (Rp)X be a class of functions from X to Rp. The Rademacher
complexity (or average) of the class F is defined as:

Rn(F) = E

sup
f∈F

1

n

∑
1≤i≤n
1≤j≤p

εi,jfj(Xi)

 ,
where the expectation is computed jointly on (Xi)1≤i≤n and (εi,j) 1≤i≤n

1≤j≤p
.

Proposition A.1 (Concentration for Lipschitz hypotheses). Let X ∈ X and (Xi)1≤i≤n ∈ Xn be
iid random variables, F ⊂ (Rp)X a class of functions. Let φ : Rp → [a, b] (a, b ∈ R) be a Lipschitz
continuous mapping with Lipschitz constant Lφ:

∀(z, z′) ∈ Rp : |φ(z)− φ(z′)| ≤ Lφ ‖z − z′‖`2 .

Let δ ∈ (0, 1], then with probability at least 1− δ:

sup
f∈F

(
E [φ(f(X))]− 1

n

n∑
i=1

φ(f(Xi))

)
≤ 2
√

2LφRn(F) + (b− a)

√
log(1/δ)

2n
.
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Proof. Thanks to the assumptions above, with probability at least 1− δ, we have [4, 16]:

sup
f∈F

(
E [φ(f(X))]− 1

n

n∑
i=1

φ(f(Xi))

)
≤ 2Rn(Φ) + (b− a)

√
log(1/δ)

2n
,

where Φ = {φ ◦ f : f ∈ F} . Then, using [22, Corollary 1], we obtain:

Rn(Φ) ≤
√

2LφRn(F).

Gathering both equations concludes the proof.

Proposition A.2 (Bound on the Rademacher average [27, Theorem 3.1]). Assume that there exists
κ ∈ R+ such that: supx∈X tr(K(x,x)) ≤ κ and let F = {f ∈ KK , ‖f‖K ≤ c} for a given c ∈ R+.
Then:

Rn(F) ≤ c
√
κ

n
.

Theorem A.3 (Generalization). Let τ ∈ (0, 1)p, ((Xi, Yi))1≤i≤n ∈ (X × Y)n be iid random variables
(independent from (X,Y )), a ∈ R+ such that supy∈Y |y| ≤ a and b ∈ Yp. Let H = {f + b : f ∈ KK/ ‖f‖K ≤ c},
for a given c ∈ R+, be the class of hypotheses. Moreover, assume that there exists κ ∈ R+ such that:
supx∈X tr(K(x,x)) ≤ κ and, for a hypothesis h, let us denote

R̂n(h) =
1

n

n∑
i=1

`τ (Yi1− h(Xi)),

the random variable associated to the empirical risk. Let δ ∈ (0, 1], then with probability at least 1− δ:

∀h ∈ H : R(h) ≤ R̂n(h) + 2
√

2c

√
pκ

n
+ (2pa+ c

√
pκ)

√
log(1/δ)

2n
.

Proof. Let F = {f ∈ KK , ‖f‖K ≤ c}. The proof begins with the following lemma.

Lemma A.4. Under the assumptions of Theorem A.3: ∀(f,x) ∈ F × X , ‖f(x)‖`2 ≤ c
√
κ.

Proof of Lemma A.4.

∀(f,x,y) ∈ F × X × Rp,
〈f(x) | y〉`2 = 〈Kxy | f〉K

≤ ‖f‖K ‖Kxy‖K

≤ c
√
〈Kxy | Kxy〉K

= c
√
〈y | K(x,x)y〉`2 .

From the properties of operator-valued kernels, we know that K(x,x) is symmetric positive semi-
definite. Thus, denoting (λj)1≤j≤p its (non-negative) eigenvalues and (ej)1≤j≤p the corresponding

10



orthonormal basis, we obtain when ‖y‖`2 ≤ 1:

〈y | K(x,x)y〉`2 =
∑
i,j

〈y | ei〉`2 〈y | ej〉`2 〈ei | K(x,x)ej〉`2

=
∑
j

〈y | ej〉2`2 λj

≤
∑
j

λj (since ‖y‖`2 ≤ 1)

= tr(K(x,x)).

Thus: ∀(f,x) ∈ F × X , ‖f(x)‖`2 = sup‖y‖`2≤1
〈f(x) | y〉`2 ≤ c

√
κ.

In order to apply Proposition A.1, let us observe that the loss function `τ is
√
p-Lipschitz:

∀(r, r′) ∈ Rp,
`τ (r) = `τ (r − r′ + r′)

=

p∑
j=1

max
(
τj(rj − r′j + r′j), (τj − 1)(rj − r′j + r′j)

)
=

p∑
j=1

{
τj(rj − r′j + r′j) if rj − r′j + r′j ≥ 0
(τj − 1)(rj − r′j + r′j) if rj − r′j + r′j ≤ 0

=

p∑
j=1

{
τj(rj − r′j) + τjr

′
j if rj − r′j + r′j ≥ 0

(τj − 1)(rj − r′j) + (τj − 1)r′j if rj − r′j + r′j ≤ 0

≤
p∑
j=1

{
|rj − r′j |+ τjr

′
j if rj − r′j + r′j ≥ 0

|rj − r′j |+ (τj − 1)r′j if rj − r′j + r′j ≤ 0

≤
p∑
j=1

(
|rj − r′j |+ max(τjr

′
j , (τj − 1)r′j)

)
= ‖r − r′‖`1 + `τ (r′).

Switching r and r′ we get |`τ (r)− `τ (r′)| ≤ ‖r − r′‖`1 . Since by Cauchy-Schwarz inequality ‖r − r′‖`1 ≤√
p ‖r − r′‖`2 , we obtain that `τ is

√
p-Lipschitz.

In addition, `τ is bounded for the residuals of interest:

∀(f,x,y) ∈ F × X × Yp,
0 ≤ `τ (y − f(x)− b) ≤ ‖y − f(x)− b‖`1

≤ ‖y − b‖`1 + ‖f(x)‖`1
≤ 2pa+

√
p ‖f(x)‖`2

≤ 2pa+ c
√
pκ.

Let U = {u : (x,y) ∈ X ×Rp 7→ y−f(x)−b, f ∈ F}. By Proposition A.1 we have with probability
at least 1− δ:

sup
u∈U

(
E [`τ (u(X,Y ))]− 1

n

n∑
i=1

`τ (u(Xi, Yi))

)
≤ 2
√

2pRn(U) + (2pa+ c
√
pκ)

√
log(1/δ)

2n
.
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Let (εi,j) 1≤i≤n
1≤j≤p

be an iid sample of Rademacher random variables. Then:

Rn(U) = E

sup
u∈U

 1

n

∑
1≤i≤n
1≤j≤p

εi,juj(Xi, Yi)




= E

sup
f∈F

 1

n

∑
1≤i≤n
1≤j≤p

εi,j(Yi − fj(Xi)− bj)




= E

sup
f∈F

 1

n

∑
1≤i≤n
1≤j≤p

εi,jfj(Xi)




+ E

 1

n

∑
1≤i≤n
1≤j≤p

εi,jYi

+ bjE

 1

n

∑
1≤i≤n
1≤j≤p

εi,j


= E

[
sup
f∈F

(
1

n

n∑
i=1

εi,jfj(Xi)

)]

+
1

n

∑
1≤i≤n
1≤j≤p

E [εi,j ]E [Yi] + bj
1

n

∑
1≤i≤n
1≤j≤p

E [εi,j ]

= E

sup
f∈F

 1

n

∑
1≤i≤n
1≤j≤p

εi,jfj(Xi)




= Rn(F)

≤ c
√
κ

n
(Proposition A.2).

This concludes the proof.

A.2 Quantile deviation

Given a vector of probabilities τ ∈ (0, 1)p and a quantile estimator ĥ : X → Rp, we are interested in

controlling the deviation of E
[
P
(
Y ≤ ĥj(X) | X

)]
from τj (for a particular j ∈ Np). For this purpose,

we would like to derive a uniform bound using the scalar counterpart of Proposition A.1 (which is
identical but substituting

√
2 by 1 [16]). Since such a bound is true for all hypothesis h, we do not

require E [P (Y ≤ hj(X) | X)] to be close to τj , but to its empirical twin 1
n

∑n
i=1 IR− (Yi − hj(Xi)),

where IR− is the indicator function of the set R−. For a quantile estimator ĥ, the quantile property

states that τj is sufficiently close to 1
n

∑n
i=1 IR−

(
yi − ĥj(xi)

)
.

Now, remark that:

E [P (Y ≤ hj(X) | X)] = E
[
E
[
IR− (Y − hj(X)) | X

]]
= E

[
IR− (Y − hj(X))

]
.

Thus, the two quantities to compare clearly appear as an expected and an empirical costs based on the
loss function IR− . Unfortunately, that loss function is not Lipschitz continuous. In order to circumvent
that pitfall, we introduce an artificial margin ε > 0 and two ramp functions Γ−ε and Γ+

ε (see definition
in Theorem A.5). These surrogate mappings are 1

ε -Lipschitz and respectively lower and upper bound
IR− .
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Finally, Theorem A.5 states that E [P (Y ≤ hj(X) | X)] is uniformly bounded by the empirical
quantile levels 1

n

∑n
i=1 Γ−ε (Yi − hj(Xi)) and 1

n

∑n
i=1 Γ+

ε (Yi − hj(Xi)) to an additive bias in O(1/
√
n).

Theorem A.5 (Quantile deviation). Let τ ∈ (0, 1)p, ((Xi, Yi))1≤i≤n ∈ (X × Y)n be iid random vari-
ables (independent from (X,Y )) and b ∈ Rp. Let H = {f + b : f ∈ KK/ ‖f‖K ≤ c}, for a given c ∈ R+,
be the class of hypotheses. Moreover, assume that there exists κ ∈ R+ such that: supx∈X tr(K(x,x)) ≤
κ. Let ε > 0 be an artificial margin,

Γ+
ε : r ∈ R 7→ proj[0,1]

(
1− r

ε

)
and Γ−ε : r ∈ R 7→ proj[0,1]

(
−r
ε

)
,

two ramp functions, j ∈ Np and δ ∈ (0, 1]. Then with probability at least 1− δ:

∀h ∈ H :
1

n

n∑
i=1

Γ−ε (Yi − hj(Xi))−∆ ≤ E [P (Y ≤ hj(X) | X)] ≤ 1

n

n∑
i=1

Γ+
ε (Yi − hj(Xi)) + ∆,

where ∆ = 2c
ε

√
κ
n +

√
log(2/δ)

2n .

Proof. First, let us remind that: E [P (Y ≤ hj(X) | X)] = E
[
IR− (Y − hj(X))

]
, and ∀r ∈ R,Γ−ε (r) ≤

IR−(r) ≤ Γ+
ε (r). Thus,

E
[
Γ−ε (Y − hj(X))

]
≤ E [P (Y ≤ hj(X) | X)] ≤ E

[
Γ+
ε (Y − hj(X))

]
.

Then, remarking that Γ+
ε is 1

ε -Lipschitz, we obtain (by the same reasoning as for the proof of
Theorem A.3 and using [16, Theorem 1]):

∀h ∈ H : E
[
Γ+
ε (Y − hj(X))

]
≤ 1

n

n∑
i=1

Γ+
ε (Yi − hj(Xi)) +

2c

ε

√
κ

n
+

√
log(1/δ)

2n
,

with probability at least 1− δ. Respectively, for −Γ−ε , with probability at least 1− δ:

∀h ∈ H : − E
[
Γ−ε (Y − hj(X))

]
≤ − 1

n

n∑
i=1

Γ−ε (Yi − hj(Xi)) +
2c

ε

√
κ

n
+

√
log(1/δ)

2n
.

Gathering everything with the union bound concludes the proof.

B Dual formulation

In this section, we derive a dual problem for learning a joint quantile regressor with non-crossing
constraints. These last constraints are set thanks to a matrix A defined below. Considering A as the
null-matrix gives a dual formulation for the learning problem without non-crossing constraints.

Let C ∈ R+, τ ∈ (0, 1)p, such that τj > τj+1 (∀j ∈ Np−1) and the finite difference operator,
embodied by the matrix:

A =


1 −1 0 . . . 0

0 1 −1
. . . 0

...
. . .

. . .
. . . 0

0 . . . 0 1 −1

 ∈ R(p−1)×p.

The primal problem we are interested in (with the associated dual variables) is:

minimize
f∈H,b∈Rp
ξ,ξ∗∈(Rp)n,

1

2
‖f‖2K + C

n∑
i=1

〈τ | ξi〉`2 + C

n∑
i=1

〈1− τ | ξ∗i 〉`2

s. t.


∀i ∈ Nn : yi − f(xi)− b = ξi − ξ

∗
i : αi ∈ Rp

ξi < 0 : βi ∈ Rp+
ξ∗i < 0 : γi ∈ Rp+
A(f(xi) + b) < 0 : δi ∈ Rp−1+ .
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The last constraint enforces the regressors not to cross on the training points (hard non-crossing
constraints). Let us write the Lagrangian function:

L(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) =

1

2
‖f‖2K + C

n∑
i=1

〈τ | ξi〉`2 + C

n∑
i=1

〈1− τ | ξ∗i 〉`2

+

n∑
i=1

〈αi | yi〉`2 −
n∑
i=1

〈αi | f(xi)〉`2 −
n∑
i=1

〈αi | b〉`2

−
n∑
i=1

〈αi | ξi〉`2 +

n∑
i=1

〈αi | ξ∗i 〉`2

−
n∑
i=1

〈βi | ξi〉`2 −
n∑
i=1

〈γi | ξ
∗
i 〉`2

−
n∑
i=1

〈δi | A(f(xi) + b)〉`2

=
1

2
‖f‖2K −

〈
n∑
i=1

Kxi
(αi +A>δi) | f

〉
H

+

n∑
i=1

〈Cτ −αi − βi | ξi〉`2

+

n∑
i=1

〈C(1− τ ) +αi − γi | ξ
∗
i 〉`2 −

〈
n∑
i=1

(αi +A>δi) | b

〉
`2

+

n∑
i=1

〈αi | yi〉`2 .

First order optimality conditions for the primal variables give:

∇fL(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) = f −

n∑
i=1

Kxi
(αi +A>δi) = 0

∇bL(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) = −

n∑
i=1

(αi +A>δi) = 0

∇ξiL(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) = Cτ −αi − βi = 0

∇ξ∗i L(f, b, ξi, ξ
∗
i ,αi,βi,γi, δi) = C(1− τ ) +αi − γi = 0.

That is: 

f =

n∑
i=1

Kxi(αi +A>δi)

0 =

n∑
i=1

(αi +A>δi)

βi = Cτ −αi
γi = C(1− τ ) +αi.

Recalling that βi < 0 and γi < 0, we obtain: C(τ − 1) 4 αi 4 Cτ . Then, by substitution of the first
order equations in the Lagrangian function, the linear expressions in the primal variables vanish and
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the quadratic part becomes:

1

2
‖f‖2K −

〈
n∑
i=1

Kxi
(αi +A>δi) | f

〉
H

=
1

2

n∑
i,j=1

〈
Kxi

(αi +A>δi) | Kxj
(αj +A>δj)

〉
H

−
n∑

i,j=1

〈
Kxi

(αi +A>δi) | Kxj
(αj +A>δj)

〉
H

= −1

2

n∑
i,j=1

〈
(αi +A>δi) | K(xi,xj)(αj +A>δj)

〉
`2
.

Gathering every thing, the dual problem writes:

maximize
αi∈Rp,δi∈Rp−1

∀i∈Nn

−1

2

n∑
i,j=1

〈
(αi +A>δi) | K(xi,xj)(αj +A>δj)

〉
`2

+

n∑
i=1

〈αi | yi〉`2

s. t.


∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ

δi < 0
n∑
i=1

(αi +A>δi) = 0Rp .

In order to simplify the previous problem, let ui = αi+A
>δi and remark that Ayi = yi(A1) = 0.

The new dual problem then becomes:

maximize
ui∈Rp,δi∈Rp−1

∀i∈Nn

−1

2

n∑
i,j=1

〈ui | K(xi,xj)uj〉`2 +

n∑
i=1

〈ui | yi〉`2

s. t.


∀i ∈ Nn : C(τ − 1) 4 ui −A>δi 4 Cτ

δi < 0
n∑
i=1

ui = 0Rp .

Primal variables are recovered thanks to first order conditions. First, f =
∑n
i=1Kxi

ui. Second,
the intercept b can be obtained either by detecting couples (i, `) ∈ Nn × Np such that C(τ` − 1) <

(ui)` − (A>δi)` < Cτ` (in this case b` = yi − f`(xi)), or by remarking that b is a dual vector for the
linear constraint

∑n
i=1 ui = 0Rp (if one uses a primal-dual algorithm to solve the previous optimization

problem).
When non-crossing constraints are dismissed (A = 0R(p−1)×p), the regressor h = f + b satisfies

the quantile property. Thus, knowing f , the intercepts b` can be recovered as τ`-quantiles of (yi −
f`(xi)1≤i≤n.

C Algorithmic details

This section details an augmented Lagrangian scheme for estimating quantile regressors. We start
with the dual formulation of the learning problem (without non-crossing constraints):

minimize
α∈(Rp)n

1

2

n∑
i,j=1

〈αi | K(xi,xj)αj〉`2 −
n∑
i=1

yi 〈αi | 1〉`2

s. t.


∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ
n∑
i=1

αi = 0Rp .
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Algorithm 2 Augmented Lagrangian algorithm

Initialize µ← 10, b← 0Rp .
repeat

Solve Optimization Problem (3).
Make a gradient step on b with step size µ.

until ‖
∑n
i=1αi‖

2

`2
is small enough

The method consists in solving the saddle point problem with an additional squared penalty [5]:

maximize
b∈Rp

minimize
α∈(Rp)n

1

2

n∑
i,j=1

〈αi | K(xi,xj)αj〉`2 −
n∑
i=1

yi 〈αi | 1〉`2

+

〈
b |

n∑
i=1

αi

〉
`2

+
µ

2

∥∥∥∥∥
n∑
i=1

αi

∥∥∥∥∥
2

`2
s. t. ∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ ,

where µ is a positive scalar. The next step is to split the optimization program into an outer
problem (depending only on the variable b) and an inner one (depending on α). This latter problem
is:

minimize
α∈(Rp)n

1

2

n∑
i,j=1

〈αi | (K(xi,xj) + µI)αj〉`2 +

n∑
i=1

〈αi | b− yi1〉`2

s. t. ∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ ,

(3)

where I is the identity matrix. This inner optimization problem is a quadratic program with a box
constraint. This is quite easily solvable. Thus, following [5], we can learn quantile estimators thanks to
the simple alternate scheme described in Algorithm 2. In practice, the inner solver used in Algorithm
2 in order to get an approximate solution for Problem (3) is the primal dual-dual coordinate descent
proposed in [26] with 104 as the maximum number of iterations.

D Numerical results

D.1 Quantile regression

Another criterion for assessing quantile regression methods is the quantile loss
∑p
j=1

[[
1
n

∑n
i=1 IR−(yi − hj(xi))

]
− τj

]
,

where IR− is the indicator function of the set R−. This loss measures the deviation of the estimators
hj to the prescribed quantile levels τj .

However, the quantile loss is quite an equivocal criterion, since it measures how much the uncon-
ditional quantile property is satisfied. This unconditional indicator is indeed the only way to get a
piece of information concerning the conditional quantile property. For instance, Takeuchi et al. [29]
empirically showed (with the same datasets) that the constant function based on the unconditional
quantile estimator performs best under this criterion, even though it is expected to be a poor condi-
tional quantile regressor. The numerical results in Table 3 follow this remark and the results previously
obtained [29]. No significant ranking comes out.

D.2 Training algorithms

In order to compare the implementations of the three algorithms for solving the dual optimization
problem of joint quantile regession, the following procedure has been set up: we first run QP, with
a relative tolerance set to 10−2, and store the optimal objective value. Then, the two other methods
(Aug. Lag and PDCD) are launched and stopped when they pass the objective value reached by
QP.
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Table 3: Empirical quantile loss ×100 (the closer to 0, the better).
Data set Ind. Ind. (nc) MTFL JQR

caution 4.50 ± 39.08 3.33 ± 37.84 7.00 ± 32.57 ◦◦◦ 7.17 ± 36.40
ftcollinssnow 1.43 ± 38.49 1.79 ± 38.12 1.25 ± 38.50 ◦◦◦ 0.54 ± 35.77
highway 10.83 ± 70.12 10.83 ± 71.20 7.50 ± 62.96 ◦◦◦ 15.00 ± 67.11
heights -1.15 ± 9.88 -1.14 ± 9.88 -0.76 ± 9.39 ◦◦◦ -1.26 ± 9.31
sniffer -6.58 ± 26.45 -6.58 ± 27.59 -3.95 ± 27.57 ◦◦◦ -4.08 ± 29.23
snowgeese -0.00 ± 44.03 1.07 ± 43.41 1.43 ± 50.03 ◦◦◦ -6.43 ± 44.94
ufc 0.58 ± 12.13 0.89 ± 11.97 -0.31 ± 13.59 ••◦ -1.79 ± 13.42
birthwt 2.02 ± 29.80 2.02 ± 29.80 2.11 ± 34.55 ◦◦◦ 0.88 ± 33.86
crabs -2.42 ± 20.52 -1.25 ± 22.08 -2.17 ± 22.21 ◦◦◦ -0.50 ± 21.75
GAGurine 1.95 ± 17.43 1.74 ± 17.39 0.89 ± 16.71 ◦◦◦ 1.84 ± 16.89
geyser 1.22 ± 18.84 1.17 ± 18.66 0.22 ± 19.20 ◦◦◦ 1.61 ± 19.04
gilgais 0.95 ± 18.35 0.95 ± 18.19 -0.64 ± 16.12 ◦◦◦ 0.18 ± 20.22
topo -19.38 ± 70.18 -19.38 ± 71.34 -20.00 ± 64.18 ◦◦◦ -20.31 ± 65.73
BostonHousing 7.40 ± 18.26 7.30 ± 17.94 5.72 ± 16.72 ◦◦◦ 5.30 ± 15.74
CobarOre 26.67 ± 72.49 25.42 ± 72.58 -22.08 ± 77.16 ◦◦◦ 20.00 ± 72.62
engel -3.66 ± 18.71 -3.73 ± 18.72 -3.73 ± 19.73 ◦◦◦ -2.39 ± 17.18
mcycle 1.37 ± 29.20 1.75 ± 30.73 4.75 ± 28.42 ◦◦◦ 6.25 ± 30.84
BigMac2003 -4.76 ± 51.10 -0.00 ± 45.24 1.67 ± 52.19 ◦◦◦ 0.24 ± 45.76
UN3 4.44 ± 19.11 4.21 ± 19.23 2.62 ± 17.06 ◦◦◦ 4.76 ± 20.68
cpus 2.38 ± 20.30 3.57 ± 19.63 1.51 ± 15.02 ◦◦◦ 1.67 ± 31.78

Table 4: Average objective value (divided by the sample size) reached in the second numerical exper-
iment presented in the corpus of the paper.

Size QP Aug. Lag. PDCD

250 -109.69 ± 5.41 -109.73 ± 5.41 -109.72 ± 5.40
500 -109.84 ± 2.09 -109.85 ± 2.08 -109.88 ± 2.11
1000 -104.13 ± 1.49 – -104.17 ± 1.49
2000 -106.35 ± 2.36 – -106.39 ± 2.38

During the descent of PDCD, we used an efficient accumulated objective value, which is not exact
since the iterate α is not feasible to the linear constraint. Table 4 describes the average objective values
(divided by the sample size) reached by each algorithm after projection of the best candidate onto the
set of constraints. We can check that our approach (PDCD) always reaches a smaller objective value
than the target QP. This validates our procedure.
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