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Abstract

Building upon kernel-based multi-task learning, a novel methodology for estimating and predicting simultane-
ously several conditional quantiles is proposed. We particularly focus on curbing the embarrassing phenomenon of
quantile crossing. Moreover, this framework comes along with a uniform convergence bound and an efficient coor-
dinate descent learning algorithm. Numerical experiments on benchmark datasets highlight the enhancements of our
approach regarding the prediction error, the crossing occurrences and the training time.

1 Introduction
Given a couple (X,Y ) of random variables, where Y takes scalar continuous values, a common aim in statistics and
machine learning is to estimate the conditional expectation E [Y | X = x] as a function of x. In the previous setting,
called regression, one assumes that the main information in Y is a scalar value corrupted by a centered noise. How-
ever, in some applications such as econometrics, social sciences and ecology, Y may carry a structural information,
represented by its conditional distribution. Such a scenario raises the will to know more than the expectation of the
distribution and for instance, expectiles and quantiles are different quantities able to achieve this goal.

This paper deals with this last setting, called (conditional) quantile regression. This topic has been championed by
Koenker & Bassett (1978) as the minimization of the pinball loss (see (Koenker, 2005) for an extensive presentation)
and brought to the attention of the machine learning community by Takeuchi et al. (2006); Rosset (2009). Ever
since then, several studies have built upon this framework and the most recent ones include a definition of multivariate
quantiles (when Y is a random vector) and the corresponding framework for multiple-output quantile regression (where
we are interested in a single quantile level) Hallin et al. (2010, 2015); Hallin & Šiman (2016). On the contrary, we are
interested in estimating and predicting simultaneously several quantiles of a scalar-valued random variable Y |X (see
Figure 1), what is called joint quantile regression. For this purpose, we focus on non-parametric hypotheses from a
vector-valued Reproducing Kernel Hilbert Space (RKHS).

Since quantiles of a distribution are closely related, joint quantile regression is subsumed under the field of multi-
task learning Jebara (2004); Evgeniou et al. (2005); Argyriou et al. (2008); Ciliberto et al. (2015). As a consequence,
vector-valued kernel methods Micchelli & Pontil (2005b) are appropriate for such a task. They have already been used
for various applications, such as image colorization Minh et al. (2010), classification Dinuzzo et al. (2011); Mroueh
et al. (2012), manifold regularization Minh & Sindhwani (2011); Brouard et al. (2011), vector autoregression Lim
et al. (2014), functional regression Kadri et al. (2010, 2015) and structured regression Brouard et al. (2015). Quantile
regression is a new opportunity for vector-valued RKHSs to perform in a multi-task problem, along with a loss that is
different from the `2 cost predominantly used in the previous references.

In addition, such a framework offers a novel way to deal with an embarrassing phenomenon: often, estimated
quantiles cross, thus violating the basic principle that the cumulative distribution function should be monotonically
non-decreasing. The method proposed in this paper can curb that phenomenon while preserving the so called quantile
property. This one guarantees that the ratio of observations lying below a predicted quantile is bounded by the quantile
level of interest. The quantile property may not be satisfied if, for instance, hard non-crossing constraints are enforced
during the estimation (Takeuchi et al., 2006).

In a nutshell, this work provides the following contributions (reflecting the outline of the paper): i) a novel method-
ology for joint quantile regression, that is based on vector-valued RKHSs; ii) enhanced predictions thanks to a multi-
task approach along with limited appearance of crossing curves; iii) a uniform bound regarding the generalization of
the model, which is, as far as we know, the first such result based on the Rademacher average for kernelized hypothesis
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spaces; iv) an efficient coordinate descent algorithm, that is able to handle the intercept of the model in a manner that is
simple and different from Sequential Minimal Optimization (SMO). Besides these novelties, the enhancements of the
proposed method and the efficiency of our learning algorithm are supported by numerical experiments on benchmark
datasets.

2 Related work
Since the introduction of quantile regression Koenker & Bassett (1978); Koenker (2005) research spread in two note-
worthy directions. First, estimators opened onto scalar-valued RKHSs (Takeuchi & Furuhashi, 2004; Takeuchi et al.,
2006; Li et al., 2007). Second, different losses have been used, such as the ε-insensitive loss (Takeuchi & Furuhashi,
2004; Takeuchi et al., 2006; Steinwart & Christmann, 2008) and a re-weighted least squares penalty (Schnabel & Eilers,
2012).

Regarding the embarrassing phenomenon of quantile crossing, it has been first tackled with a location-scale model
Y = µ(X) + σ(X)ε, where ε is a noise with zero mean and prescribed variance. A multi-step strategy to estimate
sequentially (linear or spline-based) mappings µ and σ by enforcing σ to be positive enables to get non-crossing
τ -quantile regressors of the form µ(X) + σ(X)cτ (He, 1997). Thereafter, an extension based on penalized kernel
machines has been proposed (Shim et al., 2009).

Even though the quantile property may not be satisfied in this case, a common way to prevent curve crossing is to
enforce hard non-crossing constraints during the M-estimation process. For instance, for linear estimators, all it takes
to make sure that quantile functions do not cross on the vertices of the hypercube including the data (Wu & Liu, 2009).
On the other hand, for non-linear estimators, hard non-crossing constraints are generally enforced on training points
(Takeuchi & Furuhashi, 2004; Takeuchi et al., 2006; Wu & Liu, 2009; Bondell et al., 2010). This solution cannot
guarantee that curve crossing does not occur elsewhere. To fight this remark, an option is to work with RKHSs based
on a non-negative-valued kernel and to enforce constraints on the weights of the kernel expansion (Liu & Wu, 2011).

Other techniques exist, such as computing a simultaneous inversion and monotonization of an initial estimate of
the conditional distribution function (Dette & Volgushev, 2008) or rearranging the quantile estimations to make them
monotonely increasing with respect to the quantile level (Chernozhukov et al., 2010). In another study, Schnabel &
Eilers (2012) consider a quantile as a bivariate functions (of the input variable and the quantile level) and estimate it as
a tensor product spline surface, smooth enough to prevent crossing.

Last but not least, Takeuchi et al. (2013) showed that for linear regressors, estimators are piecewise linear functions
of the quantile level. Thus, estimating simultaneously all conditional quantiles is theoretically feasible.

In comparison to the literature, we propose a novel methodology, based on vector-valued RKHSs, with a one-step
estimation, no post-processing, and keeping the quantile property while dealing with curve crossing.

3 Framework

3.1 Problem definition
Let Y ⊂ R be a compact set, X be an arbitrary input space and (X,Y ) ∈ X × Y a pair of random variables following
an unknown joint distribution. For a given probability τ ∈ (0, 1), the τ -quantile of Y , denoted µτ , is the minimal
scalar value µ for which P (Y ≤ µ) = τ . Likewise, the conditional τ -quantile of (X,Y ) is the function µτ : X → R
such that µτ (x) = min{µ ∈ R : P (Y ≤ µ | X = x) = τ}.

Given a training set {(xi, yi)}ni=1 ∈ (X × Y)n and a vector τ ∈ (0, 1)p of quantile levels, the paradigm is to
estimate the vector-valued function x ∈ X 7→ (µτ1(x), . . . , µτp(x)) ∈ Rp of conditional quantiles (hence the name
joint regression).

3.2 Loss function
Following Koenker (2005), we estimate quantiles by minimization of the pinball loss: for a residual r ∈ Rp,

`τ (r) =

p∑
j=1

{
τjrj if rj ≥ 0,
(τj − 1)rj if rj < 0.
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Using such a loss arose from the observation that the location parameter µ that minimizes the `1-loss
∑n
i=1 |yi−µ| is an

estimator of the median. This idea has been extended by Koenker & Bassett (1978) to the estimation of other quantiles.
Let Nn be the range of integers between 1 and n and suppose for a while that we are interested in a single quantile τ
(p = 1). Let µτ be a minimizer of the function µ ∈ R 7→

∑n
i=1 `τ (yi−µ) and denote n− = card ({i ∈ Nn, yi < µτ}),

n+ = card ({i ∈ Nn, µτ < yi}) and n0 = card ({i ∈ Nn, yi = µτ}), respectively the number of observations yi that
lie below, above and on the location parameter µτ . As a consequence, we know that (τ − n0

n ) ≤ n−
n ≤ τ and

(1− τ − n0

n ) ≤ n+

n ≤ (1− τ) (Koenker & Bassett, 1978) 1. Moreover, if Y has a continuous distribution, n−n −→
n→∞

τ

(Takeuchi et al., 2006). The previous statements indicate that the expected quantile property is empirically satisfied:
the ratio of observations lying below µτ is bounded by above by τ and converges to τ when the sample grows (and
respectively for the ratio of observations lying above µτ ).

The quantile property comes with another interesting fact: when one estimates jointly two quantiles with the pinball
loss, the natural order is respected. Let 1 be the all-ones vector (the size depends on the context). Then, for two quantile
levels τ = (τ, τ ′) ∈ (0, 1)2, such that τ > τ ′, any minimizer (µτ , µτ ′) of the function µ ∈ R2 7→

∑n
i=1 `τ (yi1− µ)

is such that µτ ≥ µτ ′ . An original proof is given in Appendix A.
The next sections will focus on the estimation of conditional quantiles, instead of unconditional ones. In particular,

we will see that the natural order of conditional quantiles is not easily satisfied.

3.3 Estimation of conditional quantiles
Spinning the estimation process introduced in the previous section, let us define the joint quantile risk:

R : h ∈ (Rp)X 7→ E [`τ (Y 1− h(X))] ,

where (Rp)X is the set of functions from X to Rp. In the scalar case (p = 1 and τ reduces to a scalar τ ), Li et al.
(2007) have shown that the conditional τ -quantile of (X,Y ) is a minimizer of R (see Appendix A for a reminder of
the proof). This is also true for several quantiles (p ≥ 1). To see this, all it takes to remark that the objective function is
separable: R(h) =

∑p
j=1 E

[
`τj (Y − hj(X))

]
, where hj is the jth component of h. Thus minimizing R boils down to

minimizing each contribution E
[
`τj (Y − hj(X))

]
independently, for which we know that the conditional τj-quantile

of (X,Y ) is a minimizer (Li et al., 2007).
Since the joint probability of (X,Y ) is unknown but we are provided with an independent and identically distributed

(iid) sample of observations {(xi, yi)}ni=1, we resort to minimizing the empirical risk within a class H ⊂ (Rp)X
of functions, calibrated in order to overcome the shift from the true risk to the empirical one. Thus the estimation
procedure is to solve the following optimization problem:

minimize
h∈H

Remp(h) =
1

n

n∑
i=1

`τ (yi1− h(xi)). (1)

Let ψ : (Rp)X → R be a convex function and a constant c > 0. In the following, we assume thatH is a convex set
of bounded functions with an unconstrained intercept: H = {h = f + b : b ∈ Rp, f ∈ (Rp)X , ψ(f) ≤ c}. Then the
estimator ĥ, obtained by minimizing Remp, comes with the expected quantile property for each level τj (j ∈ Np), as

for unconditional quantile estimation 2: (τj − n
(j)
0

n ) ≤ n
(j)
−
n ≤ τj and (1− τj − n

(j)
0

n ) ≤ n
(j)
+

n ≤ (1− τj), where n(j)− =

card
({
i ∈ Nn, yi < ĥ(xi)

})
n
(j)
+ = card

({
i ∈ Nn, ĥ(xi) < yi

})
and n

(j)
0 = card

({
i ∈ Nn, yi = ĥ(xi)

})
.

Moreover, under some regularity assumptions,
n
(j)
−
n −→

n→∞
τj almost surely. These statements were proven by Takeuchi

et al. (2006) in the scalar case. For several probabilities τj , it is enough to remark that the objective function is separa-
ble.

The proof relies on the fact that the intercept b is unconstrained. Without this assumption (for instance when
hard non-crossing constraints are enforced during the estimation process (Takeuchi et al., 2006)), the previous quantile
property for conditional quantiles may not be satisfied.

1 Formal statement and proof are given in Appendix A.
2Formal statement and proof are given in Appendix A.
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3.4 The crossing problem
A nice feature of quantile regression is to enable us to look at slices of the conditional distribution of Y |X . However,
when quantiles are estimated independently, an embarrassing phenomenon often appears: quantile functions cross,
thus violating the basic principle that the cumulative distribution function should be monotonically non-decreasing.

The crossing problem is often handled empirically (like in this paper) and few theoretical insights exist. Yet, it
is comforting to know that if the regularizer ψ is separable (that is ψ(f) does not exhibit interaction terms between
components fj), the conditional quantile estimator is monotonically non-decreasing in the probability τj on average 3:
∀j ∈ Np−1, 1

n

∑n
i=1 h

∗
j (xi) ≥ 1

n

∑n
i=1 h

∗
j+1(xi), as soon as τj > τj+1.

Let us remark that, on the one hand, when the different components hj are estimated independently from each
other, ψ is separable, so quantile functions effectively do not cross on average, even though crossing may occur. On
the other hand, ψ can be chosen in order to reflect the similarity between the components hj . In this paper, we propose
to use this mean to prevent curve crossing.

In the forthcoming section, we focus on a particular kind of subspace H, built upon an RKHS. Then, it will be
shown that, in this spaceH, the crossing problem can be avoided.

3.5 Reproducing kernel Hilbert space
Let us denote ·T the transpose operator and L(Rp) the set of linear and bounded operators from Rp to itself. In our
(finite) case, L(Rp) comes down to the set of p× p real-valued matrices. A matrix-valued kernel is a function K : X ×
X → L(Rp), that is symmetric and positive (Senkene & Tempel’man, 1973; Micchelli & Pontil, 2005b): ∀(x,x′) ∈
X×X , K(x,x′) = K(x′,x)T and ∀m ∈ N,∀{(αi,βi)}1≤i≤m ∈ (X×Rp)m,

∑
1≤i,j≤m

〈
βi |K(αi,αj)βj

〉
`2
≥ 0.

Let K be such a kernel and for any x ∈ X , let Kx : y ∈ Rp 7→ Kxy ∈ (Rp)X be the linear operator such that:
∀x′ ∈ X , (Kxy)(x′) = K(x′,x)y. Then, there exists a unique Hilbert space of functions KK ⊂ (Rp)X (with an
inner product and a norm respectively denoted 〈· | ·〉K and ‖·‖K), called the RKHS associated to K, such that ∀x ∈ X
(Senkene & Tempel’man, 1973; Carmeli et al., 2010): Kx spans the space KK (∀y ∈ Rp : Kxy ∈ K), Kx is bounded
for the uniform norm (supy∈Rp ‖Kxy‖K < ∞) and ∀f ∈ K : f(x) = K∗xf (reproducing property), where ·∗ is the
adjoint operator.

From now on, we assume that we are provided with a kernel K and we limit the hypothesis space to: H =
{f + b : f ∈ KK , ‖f‖K ≤ c, b ∈ Rp} (we have chosen the regularizer ψ = ‖·‖K). To this point, the choice of the
kernelK is critical, since it controls both the data-dependent part of the hypothesis f ∈ KK and the way the estimation
procedure is regularized (‖f‖K ≤ c).

Though several candidates are available Micchelli & Pontil (2005a); Alvarez et al. (2012); Baldassarre et al. (2012),
we focus on one of the simplest and most efficiently computable kernels, called decomposable kernel: K : (x,x′) 7→
k(x,x′)B, where k : X × X → R is a scalar-valued kernel and B is a p× p symmetric positive semi-definite matrix.
In this particular case, the matrix B encodes the relationship between the components fj and thus, the link between
the different conditional quantile estimators. A rational choice is to consider B =

(
exp(−γ(τi − τj)2)

)
1≤i,j≤p. To

explain it, let us consider two extreme cases.
First, when γ = 0, B is the all-ones matrix. Since KK is the closure of span {Kxy : (x,y) ∈ X × Rp} (Senkene

& Tempel’man, 1973), then any f ∈ KK has all its components equal. This means that quantile estimations hj =
fj + bj only differ thanks to the intercept bj . Moreover, a straightforward application of the natural order property
stated in Section 3.2 leads to bj ≥ bj+1 when τj > τj+1. Consequently, the quantile estimators are parallel (and
non-crossing) curves. In this case, we talk about a homoscedastic regressor (see Figure 1).

Second, when γ → +∞, then B → I (identity matrix). In this situation, it is easy to show that the components
of f ∈ KK are independent from each other and that ‖f‖2K =

∑p
j=1 ‖fj‖

2
K′ , where ‖·‖K′ is the norm coming with

the RKHS associated to k. Thus, each quantile function is learned independently from the others during the estimation
procedure. We are then talking about heteroscedastic regressors (see Figure 1).

It appears clearly that between these two extreme cases, there is a room for learning a non-homescedastic and
non-crossing quantile regressor by tuning γ. Before studying this fact empirically in Section 6.1, the next section will
highlight a uniform convergence bound.

3A formal definition of a separable regularizer along with a proof of the previous statement is provided in Appendix A. This is an extension of
the argument given by Koenker (2005) for a linear and unregularized estimator.
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Figure 1: Estimated (plain lines) and true (dashed lines) conditional quantiles of Y |X (synthetic dataset) from ho-
moscedastic regressors (γ = 0) to heteroscedastic ones (γ → +∞).

4 Theoretical analysis
This section provides a theoretical analysis based on the Rademacher complexity of the hypothesis space, which is a
standard technique to obtain uniform bounds for scalar-valued functions (Bartlett & Mendelson, 2002). Here, we do
assume working in an RKHS but not specifically with a decomposable kernel.

The Rademacher complexity, previously defined for scalar-valued functions, is readily generalizable to vector-
valued hypothesis spaces (Maurer, 2006). Following this trend, bounds for multiple-output RKHSs recently appeared
(Sindhwani et al., 2013). In this last paper, however, the authors do not explicitly discuss how to use such a result
in order to get a generalization bound, yet it is not trivial. For this reason, we propose to use a slightly different
definition of the Rademacher complexity, which uses the maximum on each component instead of the summation of
them. Given an iid sample (Xi)1≤i≤n ∈ Xn and independent Rademacher variables (εi)1≤i≤n ∈ {−1, 1}n (i.e.
uniformly distributed on {−1, 1}), the Rademacher complexity (or average) of a class F ⊂ (Rp)X of functions is:

Rn(F) = max
1≤j≤p

E

[
sup
f∈F

1

n

n∑
i=1

εifj(Xi)

]
,

where the expectation is computed jointly on (Xi, εi)1≤i≤n.
The choice of the last definition is motivated by two facts. First, for scalar-valued hypotheses (p = 1), the last

quantity boils down to the usual Rademacher average (Kakade et al., 2009). Second, it naturally appears in the exten-
sion to vector-valued hypotheses of Bartlett & Mendelson’s generalization bound (for which we derive a full proof in
Appendix A). Indeed, this definition makes easier getting the so called composition lemma, which is the key element
to bridge the gap between bounding a risk and bounding the Rademacher average of a hypothesis space. This lemma
is true for a mapping φ : Rp → R, that is separable (∀z ∈ Rp : φ(z) =

∑p
j=1 φj(zj) for some φj) and with each
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component φj Lipschitz continuous.

Lemma 4.1 (Composition lemma). Let φ : Rp → R be a separable Lipschitz continuous mapping with Lipschitz
constant Lφ and denote Φ = {φ ◦ f, f ∈ F}. Then:

Rn(Φ) ≤ pLφRn(F).

Proof. In Appendix A.

Given the composition lemma, the next step is to bound the Rademacher complexity of our hypothesis space
F = {f ∈ KK , ‖f‖K ≤ c}. It appears that this quantity is bounded the same way as in (Sindhwani et al., 2013). Let
us denote tr(·) the trace operator.

Lemma 4.2. Assume that there exists κ ≥ 0 such that: supx∈X tr(K(x,x)) ≤ κ. Then:

Rn(F) ≤ c
√
κ

n
.

Proof. Our proof (given in Appendix A) is an extension of Sindhwani et al.’s one for their own definition of the
Rademacher average.

The last step of the derivation is to combine these two lemmas in order to get a uniform generalization bound (The-
orem 4.3). For this purpose, let ((Xi, Yi))1≤i≤n ∈ (X ×Y)n be an iid sample and denote R̂n(h) = 1

n

∑n
i=1 `τ (Yi1−

h(Xi)), the random variable associated to the empirical risk of an hypothesis h.

Theorem 4.3 (Generalization). Let a ∈ R+ such that supy∈Y |y| ≤ a, b ∈ Yp andH = {f + b : f ∈ F} be the class
of hypotheses. Then under the assumption of Lemma 4.2 and with probability at least 1−δ (for δ ∈ (0, 1]): ∀h ∈ H,

R(h) ≤ R̂n(h) + 2pc

√
κ

n
+ p(2a+ c

√
κ)

√
log(1/δ)

2n
.

Sketch of proof (full derivation in Appendix A). Following the technique developed by Bartlett & Mendelson (2002);
Kakade et al. (2009) for real-valued functions, the proof uses McDiarmid’s inequality. We prove that: ∀(f,x) ∈
F × X , ‖f(x)‖`2 ≤ c

√
κ. Finally, `τ being separable 1-Lipschitz, Lemmas 4.1 and 4.2 give the middle term of the

right hand side.

The uniform bound in Theorem 4.3 states that, with high probability, all the hypotheses of interest have a true risk
which is less that an empirical risk to an additive bias in O(1/

√
n). Let us remark that it makes use of the output

dimension p. However, there exist non-uniform generalization bounds for operator-valued kernel-based hypotheses,
which do not depend on the output dimension p (Audiffren & Kadri, 2013; Kadri et al., 2015), being thus well-suited
for infinite-dimensional output spaces. Yet those results, only hold for optimal solutions ĥ of the learning problem,
which we never obtain in practice.

Finally, following the example of Takeuchi et al. (2006) and using the same technique as for Theorem 4.3, a bound
on the quantile property can also be derived (see Theorem A.12 in Appendix A). This one states that E [P (Y ≤ hj(X) | X)]
does not deviate to much from τj .

5 Optimization algorithm
In order to finalize the M-estimation of a non-parametric function, we need a way to jointly solve the optimization
problem of interest and compute the estimator. For ridge regression in vector-valued RKHSs, representer theorems
enable to reformulate the estimator (Micchelli & Pontil, 2005b; Brouard et al., 2011) and to derive algorithms based on
matrix inversion (Micchelli & Pontil, 2005b), Sylvester equation (Dinuzzo et al., 2011) or proximal gradient Lim et al.
(2014). Since the optimization problem we are tackling is quite different, those methods can not be applied. Yet, we
will shortly see that Karush-Kuhn-Tucker (KKT) conditions (see Appendix B) lead straightforwardly to a representer
property and that an efficient coordinate descent can be devised.
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Quantile estimation, as presented in this paper, comes down to minimizing a regularized empirical risk, defined
by the pinball loss `τ . Since this loss function is non-differentiable, we introduce slack variables ξ and ξ∗ to get the
following primal formulation. We also consider a regularization parameter C to be tuned:

minimize
f∈KK,b∈Rp,

ξ,ξ∗∈(Rp)n

1

2
‖f‖2K + C

n∑
i=1

(
〈τ | ξi〉`2 +〈1− τ | ξ∗i 〉`2

)
s. t.

{
∀i ∈ Nn : ξi < 0, ξ∗i < 0
yi − f(xi)− b = ξi − ξ

∗
i : αi ∈ Rp,

(2)

where < is a pointwise inequality. Problem (2) also introduces the dual vectors αi (i ∈ Nn) corresponding to the
linear constraint. In order to make the numerical approximation easier, we focus on a dual formulation of Problem (2)
(see Appendix B for a full derivation):

minimize
α∈(Rp)n

1

2

n∑
i,j=1

〈αi |K(xi,xj)αj〉`2−
n∑
i=1

yi 〈αi | 1〉`2

s. t.


∀i ∈ Nn : C(τ − 1) 4 αi 4 Cτ
n∑
i=1

αi = 0Rp .

(3)

The KKT conditions of Problem (2) indicate that a minimizer f̂ of (2) can be recovered from a solution α̂ of (3)
with the formula f̂ =

∑n
i=1Kxi

α̂i. Moreover, b̂ can also be obtained thanks to KKT conditions. However, as we deal
with a numerical approximate solution α, in practice b is computed by solving primal Optimization Problem (2) with
all other variables fixed. This boils down to taking bj as the τj-quantile of (yi − fj(xi))1≤i≤n.

As soon as the αi’s are stacked in a big vector, Optimization Problem (3) becomes a common quadratic program.
However, since we are essentially interested in decomposable kernels K(·, ·) = k(·, ·)B, it appears that the quadratic
part of the objective function would be defined by the np× np matrixK ⊗B, where ⊗ is the Kronecker product and
K = (k(xi,xj))1≤i,j≤n. Storing this matrix explicitly is likely to be time and memory expensive.

To overcome this issue, Dinuzzo et al. (2011) showed that ridge regression with a decomposable kernel boils
down to solving a Sylvester equation (which can be done efficiently) and Minh et al. (2015) recently proposed a
coordinate descent for vector-valued Support Vector Machine (SVM) without intercept. However, these methods can
not be used in our setting since the loss function is different and considering the intercept is necessary for the quantile
property. Theoretically, coordinate descent could be extended in an SMO technique, able to handle the linear constraint
introduced by the intercept in Optimization Problem 3 (Platt, 1999). However, SMO works usually with a single linear
constraint and needs heuristics to pick the pair of points of interest at each iteration. Even though it has already been
implemented for two linear constraints (Takeuchi & Furuhashi, 2004), those heuristics are quite difficult to find.

Therefore, for the sake of efficiency, we propose to use a Primal-Dual Coordinate Descent (PDCD) technique,
recently introduced by Fercoq & Bianchi (2015). This algorithm (which is proved to converge) is able to deal with the
linear constraint coming from the intercept and is thus utterly workable for the problem at hand. Moreover, PDCD has
been proved favorably competitive with SMO for SVMs.

From now on, for α = (αi)1≤i≤n ∈ (Rp)n, let us denote αj the row vector
(

(αi)j

)n
i=1
∈ Rn and αji its ith

component. Moreover, let diag be the operator mapping a vector to a diagonal matrix and proj1 and proj[C(τl−1),Cτl]
be respectively the projectors onto the vector 1 and the compact set [C(τl − 1), Cτl]. PDCD is described in Algorithm
1. It uses dual variables θ ∈ (Rp)n (which are updated during the descent) and has two sets of parameters ν ∈ (Rp)n
and µ ∈ (Rp)n, that verify (∀(i, l) ∈ Nn × Np):

µli <
1

(K(xi,xi))l,l + νli
.

In practice, we kept the same parameters as in (Fercoq & Bianchi, 2015): νli = 10(K(xi,xi))l,l and µli equal to 0.95
times the bound. Moreover, as it is standard for coordinate descent methods, our implementation makes use of efficient
updates for the computation of both

∑n
j=1K(xi,xj)αj and of θ

l
.
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Algorithm 1 Primal-Dual Coordinate Descent
Initialize αi,θi ∈ Rp (∀i ∈ Nn).
repeat

Choose (i, l) ∈ Nn × Np uniformly at random.

Set θ
l ← proj1

(
θl + diag(νl)αl

)
.

Set dli ←
∑n
j=1(K(xi,xj)αj)

l − yi + 2θ
l

i − θli.
Set αli ← proj[C(τl−1),Cτl]

(
αli − µlidli

)
.

Update coordinate (i, l): αli ← αli, θ
l
i ← θ

l

i,
and keep other coordinates unchanged.

until duality gap (2)-(3) is small enough

6 Numerical experiments
Two sets of experiments are presented 4. The first one is aimed at assessing the ability of the methodology introduced
in this paper to predict quantiles. The second one compares an implementation of Algorithm 1 with an off-the-shelf
solver and an augmented Lagrangian scheme.

Following the previous sections, a decomposable kernel K(x,x′) = k(x,x′)B is used, with B = (exp(−γ(τi −

τj)
2))1≤i,j≤p. The parameter γ is either fixed or chosen by cross-validation. Moreover, k(x,x′) = exp(−

‖x−x′‖2
`2

2σ2 ),
with σ being the 0.7-quantile of the pairwise distances of the training data {xi}1≤i≤n. Eventually, regressors are build
in order to estimate quantile functions for levels τ = (0.1, 0.3, 0.5, 0.7, 0.9).

6.1 Quantile regression
Quantile regression is assessed with three criteria. First, the pinball loss 1

n

∑n
i=1 `τ (yi − h(xi)) is the one minimized

to build the proposed estimator. Second, the quantile loss
∑p
j=1

[[
1
n

∑n
i=1 IR−(yi − hj(xi))

]
− τj

]
, where IR− is the

indicator function of the set R−, measures the deviation of the estimators hj to the prescribed quantile levels τj . Third,
the crossing loss

∑p−1
j=1

[
1
n

∑n
i=1 max(0, hj+1(xi)− hj(xi))

]
, assuming that τj > τj+1, quantifies how far hj goes

below hj+1, while hj is expected to stay always above hj+1.
This study is restricted to three non-parametric models based on the RKHS theory. Other linear and spline-based

models have been dismissed since Takeuchi et al. (2006) have already provided a comparison of these ones with kernel
methods. First, we considered an independent estimation of quantile regressors (IND.), which boils down to setB = I .
This can be done out of the vector-valued RKHS theory, considering only scalar-valued kernels. Second, hard non-
crossing constraints on the training data have been imposed (IND. (NC)), as proposed by Takeuchi et al. (2006). Third,
the proposed joint estimator (JOINT) uses the Gaussian matrixB presented above.

These three methods are compared based on 20 regression datasets, which are the ones used in (Takeuchi et al.,
2006). These datasets come from the UCI repository and three R packages: quantreg, alr3 and MASS. Their names
are indicated in Table 1. The sample sizes vary from 38 (CobarOre) to 1375 (heights) and the numbers of explanatory
variables vary from 1 (5 sets) to 12 (BostonHousing) 5. The datasets were standardized coordinate-wise to have zero
mean and unit variance. Results are given in Tables 1, 2 and 3 thanks to the mean and the standard deviation of the
test losses recorded on 10 random splits train-test with ratio 0.7-0.3 (except for the dataset heights: 0.5-0.5). The best
result of each line is boldfaced and the bullet indicate that it is significantly different from JOINT or from both IND.
and IND. (NC). All these statements are based on a Wilcoxon signed-rank test with significance level 0.05.

The parameterC is chosen by cross-validation (minimizing the pinball loss) inside a logarithmic grid (10−5, 10−4, . . . , 105)
for all methods and datasets. For our approach (JOINT), the parameter γ is chosen the same way asC but we also added
0 and +∞ in the grid. Finally, the dual optimization problems corresponding to each approach are solved with CVX-
OPT (Anderson et al., 2012).

Regarding the pinball loss, (Table 1), joint quantile regression compares favorably to independent and hard non-
crossing constraint estimations for 13 datasets (5 significantly different). These results bear out the assumption con-

4Numerical experiments ran on an Intel R© CoreTM i7-4600U CPU, operating at 2.10 GHz with 4 cores and 8 Gb of RAM.
5Categorical and indexing variables were dropped (see (Takeuchi et al., 2006)).

8



Table 1: Empirical pinball loss ×100 (the less, the better).

DATA SET IND. IND. (NC) JOINT

CAUTION 99.01± 20.72 100.33± 20.54 99.46± 21.82

FTCOLLINSSNOW 152.13± 8.99 151.78± 8.84 151.55± 8.43
HIGHWAY 107.14± 40.97 107.08± 40.97 109.23± 35.24
HEIGHTS 127.93± 2.09 127.93± 2.09 • 127.47± 2.20
SNIFFER 45.29± 5.84 45.17± 5.87 44.92± 5.22
SNOWGEESE 71.27± 32.52 71.19± 32.54 80.25± 26.97
UFC 81.96± 3.76 82.08± 3.71 • 80.54± 3.90
BIRTHWT 139.93± 10.56 139.92± 10.55 139.21± 12.91
CRABS 12.48± 0.83 12.46± 0.85 12.19± 0.68
GAGURINE 62.61± 8.99 62.61± 8.98 62.37± 8.58
GEYSER 108.07± 8.34 108.06± 8.33 108.65± 8.46
GILGAIS 46.42± 4.76 46.25± 4.83 45.67± 5.52
TOPO 67.65± 8.18 66.63± 9.56 70.52± 8.93
BOSTONHOUSING 50.12± 6.14 50.05± 6.13 • 48.97± 5.52
COBARORE • 0.54± 0.62 0.54± 0.62 0.63± 0.62
ENGEL 59.28± 7.18 58.77± 6.32 64.96± 17.62
MCYCLE 83.48± 7.77 83.15± 7.64 • 78.92± 8.43
BIGMAC2003 70.25± 21.11 69.90± 21.59 • 66.24± 19.62
UN3 101.95± 8.26 101.86± 8.21 100.31± 6.97
CPUS 18.83± 15.55 18.81± 15.58 18.73± 15.57

Table 2: Empirical quantile loss ×100 (the closer to 0, the better).

DATA SET IND. IND. (NC) JOINT

CAUTION 12.00± 38.79 9.33± 35.80 13.00± 35.54

FTCOLLINSSNOW 6.79± 47.85 6.79± 47.85 5.36± 43.89
HIGHWAY -9.17± 64.38 -8.33± 65.30 -5.00± 61.26
HEIGHTS -0.16± 6.03 -0.13± 6.12 -0.65± 6.13
SNIFFER -10.00± 22.39 -10.26± 25.17 -5.79± 26.05
SNOWGEESE • 3.57± 57.17 3.57± 55.54 -8.57± 58.19
UFC 6.07± 11.06 6.34± 10.91 3.93± 12.65
BIRTHWT 16.49± 24.00 16.49± 24.00 15.61± 28.45
CRABS 3.67± 23.16 5.33± 24.66 5.00± 21.90
GAGURINE -2.53± 20.42 -2.53± 20.48 -3.47± 18.53
GEYSER 4.44± 19.26 5.33± 19.29 7.00± 18.16
GILGAIS 4.36± 22.19 3.91± 22.22 3.09± 23.90
TOPO -16.25± 63.57 -12.50± 63.92 -20.00± 62.80
BOSTONHOUSING 10.39± 19.14 10.46± 18.85 7.76± 14.68
COBARORE 29.17± 80.99 29.17± 80.99 44.17± 70.12
ENGEL -8.45± 20.52 -8.73± 20.60 -7.46± 20.20
MCYCLE 11.25± 31.71 10.25± 35.42 13.75± 36.88
BIGMAC2003 -4.76± 38.47 -2.38± 38.69 7.14± 40.01
UN3 1.90± 24.03 2.22± 23.93 4.29± 24.17
CPUS 3.33± 20.29 4.60± 20.80 3.02± 23.85

cerning the relationship between conditional quantiles and the usefulness of multiple-output methods for quantile
regression.

The quantile loss is quite an equivocal criterion, since it measures how much the unconditional quantile property is
satisfied. This unconditional indicator is indeed the only way to get a piece of information concerning the conditional
quantile property. For instance, Takeuchi et al. (2006) empirically showed (with the same datasets) that the constant
function based on the unconditional quantile estimator performs best under this criterion, even though it is expected to
be a poor conditional quantile regressor. The numerical results in Table 2 follow this remark and the results previously
obtained (Takeuchi et al., 2006). No significant ranking comes out.

Last but not least, the results for the crossing loss (Table 3) clearly show that joint regression enables to weaken the
crossing problem, in comparison to independent estimation and hard non-crossing constraints (13 favorable datasets
and 6 significantly different). Note that for the estimation with hard non-crossing constraints (IND. (NC)), the crossing
loss is null on the training data but is not guaranteed to be null on the test data. In addition, let us remark that model
selection (and particularly for the parameter γ, which tunes the trade-off between hetero and homoscedastic regressors)
has been performed based on the pinball loss only. It seems that, in a way, the pinball loss embraces the crossing loss
as a subcriterion.

6.2 Training algorithms
This section is aimed at comparing three implementations of algorithms for estimating joint quantile regressors, fol-
lowing their running (CPU) time. First, the off-the-shelf solver included in CVXOPT (Anderson et al., 2012) (QP) is
applied to Optimization Problem (3) turned into a standard form of linearly constrained quadratic program. This solver
is based on an interior-point method. Second, an augmented Lagrangian scheme (AUG. LAG) is used in order to get
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Table 3: Empirical crossing loss ×100 (the less, the better).

DATA SET IND. IND. (NC) JOINT

CAUTION 0.46± 0.74 0.38± 0.95 0.07± 0.10

FTCOLLINSSNOW 0.00± 0.00 0.00± 0.00 0.00± 0.00
HIGHWAY 10.01± 7.88 9.90± 7.93 9.52± 8.10
HEIGHTS 0.03± 0.05 0.01± 0.02 0.00± 0.00
SNIFFER 0.93± 0.67 0.48± 0.63 0.10± 0.17
SNOWGEESE 2.92± 2.66 2.17± 2.32 1.68± 4.77
UFC 0.22± 0.22 0.33± 0.58 • 0.02± 0.07
BIRTHWT 0.00± 0.00 0.00± 0.00 0.00± 0.00
CRABS 0.47± 0.28 0.40± 0.25 • 0.13± 0.27
GAGURINE 0.06± 0.08 0.05± 0.07 0.05± 0.10
GEYSER 0.60± 1.41 0.60± 1.41 0.82± 1.49
GILGAIS 0.95± 0.27 • 0.69± 0.23 0.89± 0.42
TOPO 1.83± 1.25 0.67± 0.90 1.79± 2.53
BOSTONHOUSING 0.64± 0.20 • 0.47± 0.18 0.62± 0.26
COBARORE 0.10± 0.15 0.10± 0.15 • 0.02± 0.03
ENGEL 0.33± 0.62 0.03± 0.04 0.09± 0.18
MCYCLE 2.77± 2.23 1.30± 1.45 • 0.07± 0.14
BIGMAC2003 2.24± 2.30 1.63± 1.60 1.05± 1.26
UN3 0.85± 0.52 0.67± 0.43 • 0.14± 0.41
CPUS 0.91± 0.34 0.85± 0.33 • 0.15± 0.15

Table 4: Comparison of CPU time (s) for training a model.

SIZE QP AUG. LAG. PDCD

100 0.85± 0.07 49.21± 12.28 3.76± 0.80

250 8.73± 0.34 261.11± 46.69 18.69± 3.54
500 75.53± 2.98 865.86± 92.26 61.30± 7.05

1000 621.60± 30.37 – 266.50± 41.16

rid of the linear constraint that defines the intercept 6. In this scheme, the inner solver is the algorithm proposed in
(Shalev-Shwartz & Zhang, 2013), which boils down to be the same as Algorithm 1 when the intercept is dismissed.
The last approach (PDCD) is Algorithm 1.

We use a synthetic dataset (the same as in Figure 1), for which X ∈ [0, 1.5]. The target Y is computed as a sine
curve at 1 Hz modulated by a sine envelope at 1/3 Hz and mean 1. Moreover, this pattern is distorted with a random
Gaussian noise with mean 0 and a linearly decreasing standard deviation from 1.2 at X = 0 to 0.2 at X = 1.5.

Parameters for the models are: (C, γ) = (102, 10−2). To compare the implementations of the three algorithms, we
first run CVXOPT (QP), with a relative tolerance set to 10−2, and store the optimal objective value. Then, the two
other methods (AUG. LAG and PDCD) are launched and stopped when they pass the objective value reached by QP
7. Table 4 gives the mean and standard deviation of the CPU time required by each method for 10 random datasets and
several sample sizes. Some statistics are missing because AUG. LAG. ran out of time.

As expected, it appears that for a not too tight tolerance and big datasets, implementation of Algorithm 1 outper-
forms the two other competitors. Let us remark that CVXOPT is also more expensive in memory than the coordinate-
based algorithms like ours. To conclude, training time may seem high in comparison to usual SVMs. However, let
us first remind that we jointly learn p regressors. Thus, a fair comparison should be done with an SVM applied to an
np × np matrix, instead of n × n. Moreover, there is no natural sparsity in quantile regression (while there is one in
SVM), which slows down computation.

7 Conclusion
This paper introduces a novel methodology for joint quantile regression, which is based on vector-valued RKHSs.
It comes along with theoretical guarantees and an efficient learning algorithm. Moreover, this framework enjoys
enhanced performances and few occurrences of curve crossing, compared to independent estimations and hard non-
crossing constraints.

6The procedure AUG. LAG is detailed in Appendix C.
7During the descent, we used an efficient accumulated objective value, which is not exact since the iterate α is not feasible to the linear constraint.

Appendix D gives the average objective values reached by each algorithm after projection of the best candidate onto the set of constraints. We can
check that PDCD always reach a smaller objective value than the target QP.
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As a future work, we envisage: i) an empirical comparison with the several approaches from the literature; ii) a
theoretical analysis of the crossing probability; iii) a tighter and dimensional-free generalization bound (Boucheron
et al., 2005; Kadri et al., 2015); iv) predicting all quantile curves (Takeuchi et al., 2013; Kadri et al., 2015); v) an
extension to the multivariate setting (Hallin et al., 2010).
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